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Abstract: Wetlands play an important role in the terrestrial ecosystem. However, agricultural activ-

ities have resulted in a significant decrease in natural wetlands around the world. In the Tumen 

River Basin (TRB), a border area between China, the Democratic People’s Republic of Korea (DPRK), 

and Russia, natural wetlands have been reclaimed and converted into farmland, primarily due to 

the migration practices of Korean-Chinese. To understand the spatial and temporal patterns of this 

conversion from wetlands to farmland, Landsat remote sensing images from four time periods were 

analyzed. Almost 30 years of data were extracted using the object-oriented classification method 

combined with random forest classification. In addition, statistical analysis was conducted on the 

conversion from natural wetland to farmland and from farmland to wetland, as well as on the rela-

tionship between the driving factors. The results revealed that a loss of 49.2% (12540.1 ha) of natural 

wetlands in the Chinese portion of the TRB was due to agricultural encroachment for grain produc-

tion. At the sub-basin scale, the largest area of natural wetland converted into farmland in the past 

30 years was in the Hunchun River Basin (HCH), which accounts for 22.0% (2761.2 ha) of the total. 

Meanwhile, 6571.4 ha of natural wetlands, mainly in the Gaya River Basin (GYH), have been re-

stored from farmland. These changes are closely related to the migration of the agricultural popu-

lations. 

Keywords: natural wetland; farmland; Tumen river basin; multi-scale analysis; object-based image 

analysis 

 

1. Introduction 

Wetlands are defined as marshlands, peatlands, and water areas, whether natural or 

artificial, permanent or temporary, containing stationary or flowing fresh, brackish or sa-

line water, and including waters not more than six meters deep at low tide [1]. Wetlands 

are widely distributed globally and are ecosystems rich in biodiversity and with high 

productivity [2]. They are a source of water for agricultural production [3] and offer ex-

cellent conditions for agricultural development [4]. They also play a role in improving 

water quality, contributing to drought resistance, creating a humid climate, and promot-

ing the development of biodiversity. 

However, growing human populations are increasing the demand for food produc-

tion, resulting in the continuous loss of wetland areas through the development of large-

scale wetland agriculture [5]. Since 1970, about 50% of the global wetland area has disap-

peared under the influence of human activities [6]. In recent decades, the area of wetlands 
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in China has also sharply reduced and the ecological function of these ecosystems has 

correspondingly decreased [7]. Previous research has shown that excess reclamation and 

wetland conversion are the main reasons for the reduction in natural wetland area and 

function decline in China [8]. Therefore, agriculture development is at odds with the pro-

tection of wetland resources and environments [9]. Most traditional agricultural develop-

ment modes are unscientific [10], destroying the ecosystem function of wetlands [11]. To 

analyze the contradiction between wetland protection and sustainable development and 

utilization, an accurate quantification of the spatial and temporal patterns of agricultural 

encroachment on natural wetlands and their mutual conversion is necessary. Accurate 

monitoring of the spatial distribution and dynamic change of natural wetlands and farm-

land is a critical aspect of natural wetland protection and restoration. 

Through advances in science and technology, remote sensing technology has become 

increasingly sophisticated. It can quickly extract surface information over large areas, 

greatly saving manpower and material resources, and it can detect changes to the land 

surface through the analysis of long time series of remote sensing data [12]. Landsat data 

are currently widely used in wetland studies at global, regional, and watershed scales 

[13,14]. In recent years, visual interpretation [15], supervision classification [16], object-

oriented classification [17], and artificial neural network algorithm [18] methods have 

been applied to wetland information extraction. Of these, the object-based image analysis 

(OBIA) technique is the most widely used. It has obvious advantages, especially on the 

ground object recognition of high-resolution images and the detection of change [19]. The 

object-oriented classification method merges adjacent pixels with the same or similar set 

of homogeneous characteristics into an homogeneous object. Each homogeneous object 

has its own attribute description and, during classification, different sizes of homogenous 

objects are used instead of pixels as the basic unit of classification. Simultaneously, the 

spectra, shape, texture, shadow, and spatial information of different objects are combined 

for a comprehensive classification analysis [20]. Although a small amount of spectral in-

formation is lost in the process of image segmentation, object-oriented classification effec-

tively avoids the “salt effect” caused by the large variation in similar spectra in high-res-

olution images, and the false classification caused by the “synonyms spectrum” and “for-

eign body with spectrum” [21]. In nonparametric machine learning, a random forest (RF) 

classifier combined with OBIA (OBIA-RF) has received increased attention due to its effi-

cient and reliable high-precision classifications [22]. Applied to land cover classification, 

OBIA-RF has demonstrated an accuracy rate higher than 90% [23]. Moreover, this method 

is closer to the image interpretation process of the human brain and can thus effectively 

improve the classification accuracy of high-resolution images. 

The Tumen River is located at the border of China, the Democratic People’s Republic 

of Korea (DPRK), and Russia, and is one of China’s important international rivers. The 

Tumen River Basin (TRB) is an area of important ecological function, a pilot area of the 

national park system, and the core area of Northeast Asia’s ecological network. It is char-

acterized by diverse wetland types, fertile soil, abundant water, and is the habitat of en-

dangered species such as the Amur tiger and red-crowned crane [24]. In recent years, due 

to the interference of human activities in the TRB, the area and quality of natural wetlands 

in the basin have gradually declined [25]. The TRB is also the gathering place of the Ko-

rean-Chinese nationality. In 1851, the backward agricultural economy of the Joseon Dyn-

asty caused farmers to infiltrate the Chinese side of the Tumen River for farming [26], and 

a large proportion of natural wetlands were reclaimed and turned into paddy fields. 

Therefore, to effectively protect and manage the remaining wetlands, it is necessary that 

the area of degraded natural wetlands in the TRB is quantified and the underlying reasons 

for degradation identified. 

Based on remote sensing (RS) images from 1986, 1996, 2006, and 2016, this study used 

the OBIA-RF, the classification method to extract information on natural wetlands and 

farmland in the TRB. Temporal and spatial conversions from natural wetlands to farm-
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land in the TRB and its sub-basins were analyzed. Meteorological data and statistical year-

book and related policy data were used to identify the driving forces for the conversion 

from natural wetlands to farmland. The findings of the study provide basic data for wa-

tershed wetland conservation, restoration and sustainable management in the TRB, and 

theoretical grounding for the application of this method in other wetland contexts. 

2. Materials and Methods 

2.1. Study Area 

The TRB covers the Yanbian Korean Autonomous Prefecture in Jilin Province in 

China (3,145,000 ha); Raseon Special City, Ryanggang Province, and North Hamgyong 

Province in DPRK (1,883,000 ha); and the Hassan Region of Russia (418,000 ha), totaling 

5,446,000 ha [27]. The study area in this article is limited to the Chinese portion of the TRB. 

The study area (Figure 1) is located in the southeast of Jilin Province in northeast China 

(42°42′55″–42°14′54″N, 130°15′49″–130°52′20″E), which borders DPRK and Russia. It is 

China’s core Northeast Asian region and is an important point for China in the Northeast 

Asia “Golden Triangle” economy. The climate of this region is characterized by wet sum-

mer and winter seasons and dry spring and autumn seasons. In terms of climate, July and 

August are the hottest months of the year, with average temperatures between 22 °C and 

25 °C. 

 

Figure 1. Study area. 

The TRB water system originates on the eastern side of the highest peaks of the 

Changbai Mountains. The Chinese portion of the basin can be divided into 11 sub-basins: 

the upstream basins include Guangpinggou (GPG), Hongqihe (HQH), and Liudonghe 

(LDH); the midstream basins include Hailanjiang (HLJ), Yueqinggou (YQG), Buer-

hatonghe (BHH), Gayahe (GYH), Shitouhe (STH), and Mijiang (MJ); and the downstream 

basins include Hunchunhe (HCH) and Jingxinquanhe (JXQH). 
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2.2. Data Source 

RS images, the Shuttle Radar Topography Mission (SRTM) 30 m digital elevation 

model (DEM), wetland patch maps, meteorological data, socio-economic data, and other 

multi-source data were used in this study. 

The RS images were important data sources for extracting long-time-series wetland 

information to analyze wetland pattern changes. To reduce the effects of the data on the 

result, images with less than 10% cloud cover (some remote sensing images with a cloud 

cover of more than 10% were used because the covered scope of the study area was free 

of cloud cover) between June and September were used (USGS, http://glovis.usgs.gov/, 

accessed on 22 March 2019) (Table 1). The classification accuracy was verified using data 

from 478 field sampling points that were observed through fieldwork and a wetland patch 

map provided by the forestry bureau of every county and city in the TRB. 

Table 1. Remote sensing data. 

Sensor Orbit Number Imaging Time Resolution Band Number Cloud Cover 

Landsat TM 114/30 9 June 1988 30 m 7 4% 

Landsat TM 115/29 14 August 1986 30 m 7 7% 

Landsat TM 115/30 11 June 1986 30 m 7 0% 

Landsat TM 115/31 24 June 1985 30 m 7 28% 

Landsat TM 116/29 26 August 1988 30 m 7 4% 

Landsat TM 114/30 16 August 1995 30 m 7 0% 

Landsat TM 115/29 8 July 1996 30 m 7 1% 

Landsat TM 115/30 8 July 1996 30 m 7 1% 

Landsat TM 115/31 8 July 1996 30 m 7 37% 

Landsat TM 116/29 31 July 1996 30 m 7 13% 

Landsat TM 116/30 16 August 1996 30 m 7 0% 

Landsat TM 116/31 16 August 1996 30 m 7 3% 

Landsat ETM+ 114/30 24 July 2007 30 m 8 0% 

Landsat ETM+ 115/29 7 June 2005 30 m 8 4% 

Landsat TM 115/30 23 July 2007 30 m 7 0% 

Landsat TM 115/31 23 July 2007 30 m 7 0% 

Landsat ETM+ 116/29 3 July 2006 30 m 8 2% 

Landsat ETM+ 116/30 3 July 2006 30 m 8 1% 

Landsat ETM+ 116/31 3 July 2006 30 m 8 13% 

Landsat OLI 114/30 9 August 2016 15 m 11 2% 

Landsat ETM+ 115/30 7 July 2016 30 m 8 0% 

Landsat OLI 115/31 15 July 2016 15 m 11 14% 

Landsat OLI 116/30 6 July 2016 15 m 11 4% 

Landsat OLI 116/31 1 July2016 15 m 11 4% 

Meteorological data were obtained from the China Meteorological Data Sharing Ser-

vice Network (http://cdc.cma.gov.cn, accessed on 9 September 2019). To reduce the errors 

caused by the edge effect of interpolation, daily temperature and precipitation data from 

118 major meteorological stations in the TRB and its surrounding areas from 1986 to 2016 

were used. In addition, discontinuous, redundant, and incorrect original data were elim-

inated and supplemented using the gray correlation method to obtain continuous and 

accurate meteorological data. 

Finally, to analyze the driving force of conversion from natural wetlands and farm-

land, socio-economic statistics from the Yanbian Statistical Yearbook from 1986 to 2016 

were used. This data included grain output, Han-Chinese agricultural population, and 

Korean-Chinese agricultural population. To ensure data uniformity, all data (except RS 

data) were resampled to a resolution of 150 m. 
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2.3. Methods 

2.3.1. Establish Land Use and Land Cover Classification System and Its Information Ex-

traction 

The wetland classification system is the basis of wetland research, and it directly af-

fects the accuracy of classification and mapping. The international Wetland Convention, 

the Chinese National Wetland Classification standard (GB/T 24708-2009), and the Chinese 

national standard “Classification of Land Use Status” (GB/T 21010-2017) were combined 

with sampling points that were obtained using GPS during fieldwork by the authors. The 

natural wetlands in the Chinese portion of the TRB were divided into four types (herb 

swamp, shrub swamp, forest swamp, and river), and farmland was divided into two types 

(paddy field and dry farmland) (Table 2) [25,28]. 

Table 2. Land use and land cover classification system. 

Category I Category II Description OLI Image 

Natural 

wetland 
Herb swamp 

Swamps with vegetation 

coverage ≥ 30% and 

mainly herbaceous plants 
 

 Shrub swamp 

Swamps dominated by 

shrubs, vegetation cover-

age ≥ 30% 
 

 Forest swamp 

Woody plant community 

swamp with obvious 

trunks, higher than 6 m, 

canopy closure ≥ 0.2  

 River 
Linear body of water with 

flowing water 
 

Farmland Paddy field 

Cultivated land used to 

grow aquatic crops such as 

rice  

 Dry farmland 

Cultivated land without ir-

rigation facilities, mainly 

relying on natural precipi-

tation to grow xerophytic 

crops 
 

Before extracting the information, Landsat data were pre-processed using ENVI5.3 

software to eliminate possible errors. This included strip removal, radiation correction, 

geometric correction, and atmospheric correction. The object-oriented method was used 

to extract information in eCognition9.02, the most critical of which was remote sensing 

image segmentation. The multi-scale segmentation algorithm is a common image segmen-

tation method in eCognition9.02. Using the fractal net evolution approach (FNEA), it 

merges neighboring pixels from bottom to top into the smallest heterogeneous object with 

different sizes and shapes. The landscape of each remote sensing image was analyzed, 

and the shapes were compared according to different segmentation scales (80 and 50, re-

spectively), before the image was finally segmented. When the segmentation scale was set 
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to 50, the segmentation result met the requirements of this classification, but it was too 

fragmented and took too long in the segment process. The segmentation scale of 80 was 

found to be more suitable for the landscape in this region (Figure 2); thus, we used the 

scale of 80 instead of 50 to segment the image. Next, the RF algorithm was used to extract 

the wetland information from the segmented images. 

 

Figure 2. Comparison of original segmentation (a) and optimal segmentation (b). (a), the parameters 

of scale, shapes, and compactness were 50, 0.20, and 0.40, respectively; (b), the parameters of scale, 

shape, and compactness were 80, 0.20, and 0.40, respectively. 

The RF algorithm is a nonparametric machine learning algorithm composed of mul-

tiple classifications and regression trees (CART). The algorithm can efficiently run large 

datasets and process thousands of input variables [29]. In the learning phase, multiple 

samples are extracted from the observation data, and then a large number of classification 

trees are merged from each sample [30]. For each routine in the tree, first, features were 

randomly selected, and the test was divided according to the Gini coefficient to find the 

optimal feature [31]. Following three repeats of this process, a random forest containing 

Ntree classification trees was built [32]. 

The sample size was set to 1000, with six different types of land cover (dry farmland, 

paddy field, river, herb swamp, shrub swamp, and forest swamp) randomly selected and 

defined over the entire study area. The object features included spectral measures such as 

the mean value of multispectral bands, brightness and maximum difference, and normal-

ized difference indices such as the normalized difference vegetation index (NDVI) and the 

normalized difference water index (NDWI): 

redNIR

redNIR

RR

RR
NDVI




 , (1)

NIRGreen

NIRGreen

RR

RR
NDWI




 , (2)

where RGreen, Rred, and RNIR refer to reflectance values derived from spectral radiances meas-

ured using the green, red, and near-infrared (NIR) bands, respectively. 

According to different wetland types, and considering the principles of accessibility, 

selectivity, and scientificity, the wetland patch map provided by each forestry bureau was 

used to determine the wetland type. Based on 3S technology, wetlands with larger patch 

areas and better wetland patches were subjectively selected. Based on different wetland 

types, such as rivers, swamps, and paddy fields, 478 field sampling points were finally 

selected to obtain GPS fixed-point data. The classification correction matrix was used to 

calculate classification producer accuracy, user accuracy, and overall accuracy, and the 

Kappa coefficient was used to evaluate the accuracy of the classification results. Producer 

accuracy refers to the number of accurately classified pixels of a given type of real data. 

User accuracy refers to the ratio of accurately classified pixels to the total number of pixels 

in the user classification result, reflecting a classified image. The overall accuracy of meta-
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energy is the ratio of the total number of accurately classified pixels to the total number 

of pixels, reflecting the overall correctness of the classification results. Each element in the 

Kappa coefficient comprehensive matrix can evaluate the classification results more ob-

jectively. The maximum likelihood method was used to verify that the measured accuracy 

remained optimal. After classifying and processing all the land use information from the 

remote sensing images for the four time periods, the misclassification of land was modi-

fied using the visual interpretation method. 

2.3.2. Analysis of Driving Factors 

The conversion from natural wetlands to farmland is affected by both natural and 

human factors, including the unique human environment, as well as natural and socio-

economic conditions. The research was affected by the availability of data and the repre-

sentativeness of indicators in the study area [8,25]. Five index variables, including annual 

average temperature, annual average precipitation, grain output, the population of Han-

Chinese farmers, and the population of Korean-Chinese farmers, were the factors for cor-

relation analysis on the conversion from natural wetland to farmland in the TRB [33]. The 

Pearson correlation coefficient was used to test the correlation degree of the model. The 

larger the Pearson correlation coefficient, the higher the correlation degree [34]. 

The Pearson simple correlation coefficient calculation formula was used: 

  

    



 








n

i

n

i
ii

n

i
ii

yyxx

yyxx

r

1 1

22

1
 (i = 1…N), (3)

where r is the correlation coefficient of observations, which is generally used to infer the 

overall correlation coefficient. Xi and Yi are the sample value of random variable X and 

random variable Y, respectively, and the total sample size is n. The value range of the 

correlation coefficient is between −1 and +1, that is, −1 ≤ r ≤ +1. Of these, if 0 < r < 1, there 

is a positive correlation between the variables; if −1 > r > 0, there is a negative correlation 

between the variables; if |r| = 1, the value of one of the variables is completely dependent 

on another variable; and if r = 0, there is no linear correlation between the two variables. 

3. Results 

3.1. Distribution of Natural Wetland and Farmland in Tumen River Basin from 1986 to 2016 

The overall accuracies of the land use classification for the four periods 1986, 1996, 

2006, and 2016 were 89.76, 90.28, 90.57, and 92.40, respectively, while the Kappa coeffi-

cients were 0.88, 0.89, 0.91, and 0.91, respectively. The overall classification accuracy was 

relatively high, meeting the demands of this study. The overall accuracy and Kappa coef-

ficient for 2016 were both the highest, owing to the higher remote sensing image resolu-

tion in 2016 and the auxiliary use of the forestry administration’s classification of wetland 

patches (Table 3). 

Table 3. Accuracy of land use classification in the TRB. 

 1986 1996 2006 2016 

Kappa 0.88 0.89 0.91 0.91 

Overall accuracy 89.76 90.28 90.57 92.40 

Natural wetlands and farmland are mainly distributed within the middle reaches of 

the TRB. Both exhibited a decreasing trend from 1986 to 2016 (Figure 3). At the sub-basin 

scale, natural wetlands are mainly distributed in GPG, HQH, BHH, GYH, and HCH, while 

farmland is mainly distributed in the middle and lower reaches of HLJ, the middle reaches 
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of BHH, the middle reaches of GYH, and the upper reaches of HCH (Figure 3). The area 

of both natural wetlands and farmland in the 11 sub-basins has continued to decrease over 

the past 30 years with the area of natural wetlands reduction about three times that of 

farmland reduction (Table 4). Specifically, those sub-basins with large losses of natural 

wetland area in the past 30 years include HCH (−3305.9 ha), GYH (−2759.6 ha), and BHH 

(−2460.2 ha). LDH (−269.4 ha) is the only sub-basin in which the area of natural wetlands 

has increased. During the third decade, the area of natural wetland loss in the 11 sub-

basins accounted for 23.1% of the total of the previous two decades, indicating that, over 

time, the area of natural wetland shrinkage has decreased, and natural wetlands are better 

protected. In the past 30 years, the area of farmland has both increased and decreased 

depending on the sub-basin. The farmland area in BHH (−3627.2 ha) and HCH (−2158.7 

ha) has decreased most, while the farmland area of LDH (488.8 ha) has increased most 

(Table 4). Between 1986 and 1996, the area of natural wetlands decreased slightly. Between 

1996 to 2006, the area of natural wetlands decreased, primarily due to conversion to paddy 

fields, and mainly in the middle reaches of BHH, the lower reaches of HLJ, and the middle 

reaches of GYH (Figure 3). Between 2006 and 2016, the area of natural wetlands in the 

upper reaches of HCH and JXQH decreased significantly (Figure 3). 

 

Figure 3. Spatial and temporal distribution maps of natural wetlands and farmlands in Tumen River 

Basin from 1986 to 2016. (a) 1986, (b) 1996, (c) 2006, (d) 2016. 
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Table 4. Changes in natural wetlands and farmland in the 11 sub-basins of the study area from 1986 

to 2016 (ha). 

 Natural Wetlands Farmlands 

 1986–1996 1996–2006 2006–2016 1986–1996 1996–2006 2006–2016 

GPG −225.8 −421.7 −283.2 69.0 −13.9 −178.4 

HQH −342.1 −470.7 −94.8 319.0 −7.1 −270.8 

LDH −60.0 −223.2 552.6 159.1 476.1 −146.5 

HLJ −730.6 −838.8 183.6 −240.4 74.1 87.0 

YQG −173.2 −311.8 276.4 239.4 158.5 −289.4 

BHH −1107.3 −887.6 −465.4 −5779.4 1631.5 520.8 

GYH −1507.0 −1138.8 −113.8 1228.7 −1259.3 −140.6 

STH −156.7 −73.1 −82.8 144.5 −290.8 40.7 

MJ 64.6 −289.6 13.7 125.3 −84.0 187.6 

HCH −1380.1 −509.1 −1416.7 614.3 −2085.1 −687.9 

JXQH −655.5 −44.0 −1223.0 389.4 −479.7 −273.1 

Total −6273.6 −5208.3 −2653.2 −2731.1 −1879.6 −1150.7 

3.2. Spatial and Temporal Changes of Natural Wetlands Converted into Farmland 

As shown in Figure 4, the natural wetlands converted into farmland are clustered 

and distributed in the lower reaches of the TRB and dispersed in the upper and middle 

reaches of the TRB. 

 

Figure 4. Hot spot areas of natural wetland converted to farmland. (Hot spot means that the area of natural wetland 

converted into farmland significantly in this study.). 

As shown in Figure 5a−k, HCH has the largest area of natural wetland converted into 

farmland (2761.2 ha, 22.0%), followed by GYH (2665.5 ha, 21.3%), BHH (2546.9 ha, 20.3%), 

and HLJ (1863.2 ha, 14.9%). The agricultural erosion percent of natural wetlands in MJ 

(126.0 ha, 1.0%), HQH (118.1 ha, 0.9%), and GPG (100.6 ha, 0.8%) was ≤1%. Specifically, 

almost all eroded natural wetlands were cultivated as dry farmland (11550.8 ha, 92.1%), 

of which the largest area was in HCH (2728.2 ha, 23.6%), followed by GYH (2378.7 ha, 
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20.6%) and BHH (2229.3 ha, 19.3%). The conversion of natural wetlands into paddy fields 

(989.3 ha) mainly took place in BHH (317.6 ha, 32.1%), GYH (286.9 ha, 29.0%), and HLJ 

(186.3 ha, 18.8%). In YQG (8.9 ha, 0.9%), LDH (1.4 ha, 0.1%), and HQH (0.3 ha, 0.0%), 

almost no natural wetlands were reclaimed into paddy fields, while in GPG, STH, and MJ, 

no natural wetlands were reclaimed into paddy fields. 

 

Figure 5. The area of natural wetlands converted to dry farmlands and paddy fields in eleven sub-basins. (a) GPG, (b) 

HQH, (c) LDH, (d) HLJ, (e) YQG, (f) BHH, (g) GYH, (h) STH, (i) MJ,(j) HCH, (k) JXQH. 

3.3. Spatial and Temporal Changes in Farmland Converted into Natural Wetlands 

Natural wetlands restored from farmland were mostly observed in the middle and 

lower reaches of the TRB (Figure 6a). Between 1986 and 2016, 6571.4 ha of natural wet-

lands were recovered from farmland. Specifically, 1365.6 ha (23.4%) of natural wetlands 

were recovered from farmland between 1986 and 1996, and 1536.3 ha (20.8%) between 

1996 and 2006. However, between 2006 and 2016, 3669.5 ha of natural wetlands were re-

stored from farmland, accounting for 55.8% of the total restored area in the past three 

decades. 

At the sub-basin scale, 21.8% of the total natural wetlands restored from farmland 

were observed in GYH (1433.0 ha) (Figure 6b,c). The restored areas of BHH 1233.5 ha 

(18.8%) and HCH 1204.4 ha (18.3%) were similar. Due to the minimal agricultural en-

croachment in GPG, HQH, STH, and MJ, almost no restoration of natural wetlands oc-

curred in these four sub-basins. During the three decades observed, significant increases 

in the area of natural wetlands restored from farmland were documented in five sub-ba-

sins, including HCH (556.5 ha), HLJ (518.2 ha), GYH (501.5 ha), YQG (259.7 ha), and LDH 

(203.4 ha). Most of these natural wetlands (93.0%) were restored from dry farmland. 
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Figure 6. Spatial distribution and area change of farmland into natural wetland: (a) spatial and temporal distribution of 

farmland restored to natural wetlands; (b) area of the sub-watershed restored from farmland to natural wetlands; (c) per-

centage of sub-watershed restored from farmland to natural wetlands. 

4. Discussion 

4.1. Mapping Natural Wetlands and Farmland Based on Remote Sensing 

This study proposed a long-term detection method of land-use/land-cover changes 

in the wetland landscape of the TRB. The OBIA-RF generated a consistent interannual 

land-use/land-cover distribution map from 1986 to 2016. Early research on wetland clas-

sification in the TRB mostly used supervised classification [25] and OBIA [35]. These not 

only made full use of an image’s spectral information but integrated spatial information 

into the classification by fully combining rule-based RF classification. This solves the clas-

sification problem of complex landscape types, such as the TRB [36]. In addition, the OBIA 

greatly reduced errors caused by the spatial mismatch of multi-temporal images and used 

478 field verification points to correct misclassification [37]. Compared with the traditional 

vision correction method, this method greatly improved the classification accuracy and 

production efficiency. 

4.2. The Driving Forces for the Conversion of Natural Wetlands into Farmland in the TRB 

The conversion of natural wetlands into farmland is influenced by both natural fac-

tors and human factors. Natural factors include changes in average annual temperature 

and precipitation, and human factors include the Han-Chinese agricultural population, 

the Korean-Chinese agricultural population, and grain production in the TRB. We used 

the R project to analyze the five driving factors of the conversion of natural wetlands into 

farmland at the TRB scale and the scale of the 11 sub-basins. At the TRB scale, grain output 

by the Korean-Chinese agricultural population has the greatest human impact on the con-

version of natural wetlands to farmland (Figure 7). This is due to the distinct Korean cul-

tural characteristics of the TRB, which include paddy field development and rice produc-

tion. The farmers from the Korean peninsula in Joseon Dynasty brought their traditional 

rice planting technology with them to the area. Rice is often grown in waterlogged areas 
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and near water sources. The TRB is rich in water resources, providing unique natural con-

ditions for the reclamation of paddy fields, leading to the large number of natural wet-

lands that have been reclaimed for rice production [38]. The Korean-Chinese also grows 

xerophytic cereal, such as corn and soybeans. Jilin province is now a major agricultural 

province, with its agricultural success closely related to the exploration, practice, and ac-

cumulated experience of Korean-Chinese rice production. Since China and South Korea 

formally established diplomatic relations in 1992, Korean-Chinese farmers have increas-

ingly sought nontraditional livelihoods. Diversified development means that many rural 

Korean-Chinese farmers have gradually abandoned rice cultivation, have gradually 

moved out of rural villages, and have migrated to South Korea to seek employment 

[39,40]. This decrease in the agricultural labor force of the TRB has led to a reduction in 

farmland cultivation. Therefore, economic and lifestyle changes among the Korean-Chi-

nese agricultural population had the greatest impact on the conversion of natural wetland 

to cultivated land and the restoration of wetlands at the scale of the TRB. 

 

Figure 7. An analysis diagram of the driving forces for the conversion of natural wetlands to farm-

land in the TRB. A represents the area of natural wetland converted into farmland, H represents the 

Han-Chinese agricultural population, K represents Korean-Chinese agricultural population, T rep-

resents average annual temperature, P represents average annual precipitation, and G represents 

grain output. 

However, the forces driving the transformation from natural wetland to farmland 

differ slightly in each of the sub-basins. BHH, HLJ, and STH were most affected by natural 

factors, while GPG, HQH, LDH, YQG, GYH, MJ, HCH, and JXQH were most affected by 

human factors, specifically the number of Korean-Chinese agricultural population and the 
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number of Han-Chinese agricultural population (Figure 8). In BHH, HLJ, and STH, aver-

age annual temperature and average annual precipitation had the greatest impact on the 

conversion of natural wetlands into farmland. These three sub-basins were traditional 

granaries in the TRB and were affected by human activities earlier. The area of farmland 

in the watershed is relatively high and, therefore, not very sensitive to human disturbance. 

On the other hand, agricultural irrigation, and paddy fields, in particular, require a large 

number of water resources, thus reducing groundwater and surface runoff. An increase 

in average annual precipitation meets the demand for water resources and has provided 

favorable natural conditions for the conversion of natural wetlands into farmland. How-

ever, an increase in average annual temperature has led to an increase in potential evap-

otranspiration, and the demand for water resources has not been met, resulting in a de-

cline in grain output. Farmers no longer clear new land for cultivation, thus limiting the 

conversion of natural wetlands to farmland. The other eight sub-basins are subject to hu-

man-made disturbances at the same scale as the entire TRB, indicating that grain output 

has the greatest impact on the conversion of natural wetlands into farmland in the TRB. 

 

Figure 8. An analysis diagram of the driving forces for the conversion of natural wetlands to farmland in the 11 sub-basins 

of the Tumen River. A represents the area of natural wetland converted into farmland, H represents the Han-Chinese 
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agricultural population, K represents the Korean-Chinese agricultural population, T represents average annual tempera-

ture, P represents average annual precipitation, and G represents grain output: (a) GPG; (b) HQH; (c) LDH; (d) HLJ; (e) 

YQG; (f) BHH; (g) GYH; (h) STH; (i) MJ; (j) HCH; (k) JXQH. 

4.3. Implications of Natural Wetland Management 

As shown in Figure 6, from 1986 to 2016, 6571.4 ha of natural wetlands were restored 

from farmland. The restored area in LDH was nearly double the area lost, while the re-

stored proportion of natural wetlands in YQG, GYH, and MJ reached more than 50%. 

Wetland rehabilitation was promoted by a series of projects issued at the national and 

local government levels. 

In 2000, 17 departments of the State Council jointly promulgated the Action Plan for 

Wetland Protection in China [41,42]. The National Wetland Conservation Project Plan 

(2004–2030), approved by China’s State Council, aims to establish 713 wetland reserves, 

including 80 of international importance. During this period, the TRB was established 

with five reserves and wetland parks with a total area of 13815.5 ha, including one national 

reserve (Jilin Yuan Pool) and two national wetland parks (Jilin Wangqing Gaya River Na-

tional Wetland Park and Jilin Helong Quanshui River National Wetland Park) [42]. In 

2011, the government of China created national key ecological regions, including the 

Changbai Mountain Forest Ecological Function Zone. The purpose of these regions is to 

protect and repair the ecological environment, promote forest ecological resource protec-

tion, maintain and restore wetlands, and strictly control and protect the water conserva-

tion functions of the natural vegetation, the source of the Tumen River, where the up-

stream region of the small basin governance provides the help [43]. In 2016, China estab-

lished the 14,600 km2 Northeast Tiger Leopard National Park, effectively promoting an 

innovative system of environmental protection and natural resource asset management, 

which achieved a unified, standardized, and efficient management strategy [44]. Thus far, 

the managed protection of the natural wetland landscape has achieved sound results. 

Despite the government’s conservation and restoration efforts, 5968.7 ha, or nearly 

half of the natural wetlands in the TRB lost to reclamation, have not been restored. There-

fore, both the ecological function and biodiversity of wetlands are in decline, thus jeop-

ardizing local lives and livelihoods and threatening sustainable economic development 

[2]. Priority must be given to the restoration of those sub-basins that have sustained the 

loss of large areas of natural wetland. For instance, in the past 30 years, HCH has under-

gone the largest reclamation of natural wetland (2761.2 ha). However, the area of restored 

wetland is less than half of the area lost to farmland (1204.4 ha). The restoration of natural 

wetlands should be strengthened in HCH because of the establishment of the Northeast 

Tiger Leopard National Park and the restoration of 741 ha of ecological area, thus making 

the restoration of natural wetlands easier [45]. An important step toward the sustainable 

development of the wetland ecosystem in the TRB is prioritizing the restoration of im-

portant wetlands that currently have seriously degraded ecological functions. This would 

involve increasing ecological investment, providing farmers with ecological compensa-

tion, strictly controlling the trend toward increased wetland area shrinkage and landscape 

fragmentation, building wetland ecological corridors and protection networks, improving 

the quality and stability of wetland ecosystems, and gradually restoring wetland ecologi-

cal functions, as well as forming a multi-point ecological protection and governance of 

nature reserves, wetland parks, and important wetlands [46,47]. 

4.4. Future Perspectives 

This study had several limitations. Remote sensing images are the basic data in the 

study of landscape patterns, and the quality directly determines the complete effect of the 

follow-up work. Given the study period, the resolution of remote sensing data was low. 

This required the use of the OBIA framework due to the lack of data, and such problems 

as classification accuracy. Future research should employ multi-source remote sensing 

data, such as Sentinel-2A, to resolve this problem. 
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5. Conclusions 

The spatiotemporal patterns of the conversion from natural wetlands to farmland in 

the TRB were revealed in this study based on object-oriented classification and the RF 

approach. The study revealed that, between 1986 and 2016, nearly half of the natural wet-

lands in the TRB were reclaimed as farmland and for agricultural activities. From the per-

spective of the entire TRB, the conversion from natural wetlands to farmland was affected 

by changes in agricultural practices among the local Korean-Chinese population. In con-

trast, the driving forces for conversion from natural wetlands to farmland varied at the 

sub-basin scale. Among the eight sub-basins (GPG, HQH, LDH, YQG, GYH, MJ, HCH, 

and JXQH) that were previously less affected by human activities, the area of natural wet-

land converted into farmland is mainly affected by the agricultural activities of the Ko-

rean-Chinese agricultural population and the Han-Chinese agricultural population. In the 

three sub-basins (BHH, HLJ, and STH) that were previously heavily influenced by human 

activities, the area of natural wetland converted into farmland is mainly affected by natu-

ral factors such as average annual temperature and average annual precipitation. In addi-

tion, sub-basin HCH has undergone a loss of a large area of the natural wetland due to 

reclamation, and priority should be given to restoring this sub-basin. This study provides 

important information necessary for wetland conservation and restoration policies in the 

TRB. At the same time, this study also has reference significance for natural wetland man-

agement in other river basins. 
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