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Abstract: In order to overcome the disadvantages of convolution neural network (CNN) in the cur-

rent hyperspectral image (HSI) classification/segmentation methods, such as the inability to recog-

nize the rotation of spatial objects, the difficulty to capture the fine spatial features and the problem 

that principal component analysis (PCA) ignores some important information when it retains few 

components, in this paper, an HSI segmentation model based on extended multi-morphological at-

tribute profile (EMAP) features and cubic capsule network (EMAP–Cubic-Caps) was proposed. 

EMAP features can effectively extract various attributes profile features of entities in HSI, and the 

cubic capsule neural network can effectively capture complex spatial features with more details. 

Firstly, EMAP algorithm is introduced to extract the morphological attribute profile features of the 

principal components extracted by PCA, and the EMAP feature map is used as the input of the 

network. Then, the spectral and spatial low-layer information of the HSI is extracted by a cubic 

convolution network, and the high-layer information of HSI is extracted by the capsule module, 

which consists of an initial capsule layer and a digital capsule layer. Through the experimental com-

parison on three well-known HSI datasets, the superiority of the proposed algorithm in semantic 

segmentation is validated. 

Keywords: hyperspectral image classification; morphological attribute profile; cubic convolution; 

cubic capsule network 

 

1. Introduction 

In recent years, hyperspectral remote sensing has become an important means of 

earth observation [1]. Hyperspectral images (HSIs) contain rich spectral and spatial infor-

mation and have been widely used in agricultural production [2], geological prospecting 

[3], food safety [4], military target reconnaissance [5] and other important fields. The clas-

sification of hyperspectral images plays a very important role in the above fields. With 

the development of hyperspectral imaging instruments, researchers can obtain HSIs with 

high spatial resolutions [6,7], which makes HSIs contain more effective information, thus 

providing great convenience for the development of HSIs segmentation. 

At present, there are more and more hyperspectral image classification/segmentation 

methods based on traditional machine learning techniques [8–12]. Most of them are based 

on the fusion of spectral and spatial information carried by the images for classification 

or segmentation [13,14], and representative methods include kernelized support vector 

machines (k-SVM) [15,16], Markov random fields (MRF) [17], sparse representation (SR) 
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[18,19], morphological transformations (MT) [20,21] and composite kernel or spatial–spec-

tral kernel [22,23]. Although these traditional methods have shown good performance and 

achieved appealing results, they cannot fully exploit the deep feature information of hy-

perspectral images, and it is difficult to significantly improve the classification perfor-

mance. 

Today, deep learning technology has developed rapidly. Because it can inde-

pendently extract rich deep features, it has outstanding performance in image and video 

processing, speech recognition and other fields [24–27]. Meanwhile, researchers are also 

considering the application of deep learning techniques for hyperspectral image pro-

cessing. Convolutional neural network (CNN) [28], as a classic framework in deep learn-

ing, shines in the field of computer vision. In the past few years, classification methods for 

HSIs based on CNNs have made great progress. Among them, CNN based on two-dimen-

sional convolution has a significant improvement in classification results compared with 

traditional machine learning based HSI classification methods. For instance, Zhen et al. 

[29] proposed a multi-scale spatial–spectral CNN, which combines multiple receptive 

field fusion and multi-scale spatial information for classification. Yu et al. [30] embedded 

hash semantic features in the CNN framework for hyperspectral image classification. Tun 

et al. [31] used 2D convolutional layers to learn spatial–spectral features and CNN fully 

connected layers for classification. Mou et al. [32] proposed 2D–CNN based on spectral 

attention mechanism, which selectively emphasizes the useful bands and suppresses the 

useless bands to adaptively calibrate different spectral bands. Gao et al. [33] embedded t-

distributed random neighborhoods into convolutional neural networks and used 2D–

CNN to classify HSIs. Zhang et al. [34] proposed a 2D–CNN that extracts features in dif-

ferent regions of HSIs, showing spectral and spatial context sensitivity. In recent years, 

the HSI classification/segmentation models based on 2D–CNNs have significantly im-

proved the classification accuracy; however, the two-dimensional convolution mainly lies 

in the extraction of spatial information while ignoring the spectral information, leaving 

room for improvement in the accuracies of HSI classification. 

CNN based on three-dimensional convolution performs better in hyperspectral im-

age classification and is a good improvement compared on methods based on 2D–CNN. 

Kanthi et al. [35] proposed a 3D deep feature extraction CNN that simultaneously uses 

spatial information and spectral information for hyperspectral image classification. Roy 

et al. [36] proposed a hybrid spectral CNN for HSI classification. This method mainly con-

sists of a spectral 3D–CNN and then a spatial 2D–CNN. Ge et al. [37] proposed an HSI 

classification method based on 2D–3D CNN and multi-branch feature fusion, that is, 2D–

3D CNN extracts image features and a multi-branch neural network performs feature fu-

sion. Zhang et al. [38] proposed an end-to-end 3D lightweight convolutional neural net-

work to solve the problem of hyperspectral image classification with small samples. Sun 

et al. [39] proposed a segmentation network for hyperspectral image preprocessing to in-

crease the number of pixels of the same class in the block and then used a 3D–CNN-based 

multi-layer network to classify the hyperspectral image. Zhong et al. [40] proposed a 3D 

deep residual network based on the combination of spectral residual blocks and spatial 

residual blocks, that is, firstly 3D convolution was used to extract spectral features in the 

spectral dimension and then extract spatial features in the spatial domain to classify hy-

perspectral images. Yu et al. [41] proposed a 2D–3D combined network architecture that 

performs the classification task of hyperspectral images in which the 2D convolution net-

work is used to extract the spatial features of the hyperspectral image and the 3D convo-

lution network is used to extract the space-spectrum joint features of the hyperspectral 

image. Those HSIs classification methods based on 3D–CNN have obvious advantages, 

but when the 3D convolution kernel is large, its extraction of pixel information is too 

rough, which may easily lead to loss of features and insufficient information representa-

tion. 

As a new method in deep learning, the capsule network (CapsNet) has outstanding 

feature extraction capabilities under limited samples due to the application of the idea of 
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locally connected networks [42]. In 2019, Zhu et al. [43] proposed an HSI classification 

method by combining 3D–CNN and capsule network. In the same year, Paoletti et al. [44] 

designed a 3D–CNN for joint feature extraction in spatial and spectral domains and com-

bined it with the capsule. The combination of networks improves the classification accu-

racy of hyperspectral images and significantly reduces the time complexity of classifica-

tion. In a word, capsule networks can make up for the shortcomings of ordinary convolu-

tional neural networks that make it difficult to extract finer spatial–spectral features of 

HSIs patches, because the capsule network uses a vector to express a feature, while CNN 

uses a numerical value to express it. Furthermore, the method of combining traditional 

features and deep networks has gradually received attention, such as the CNN network 

based on 3D Gabor features [45], which can extract richer features than a single CNN net-

work, thereby improving the performance of HSI processing. In theory, as long as the 

depth and nodes are large enough, the deep neural network can fit any non-linear struc-

ture, but this will bring many problems, such as the network not converging or the con-

vergence being too slow. To alleviate this problem, the method of combining traditional 

features and deep neural network has gradually become a new research line. 

In order to overcome the inherent disadvantage of convolutional neural networks 

and extract richer spatial–spectral features, in this paper, a novel cubic capsule network 

with extended multi-morphological attribute profile (EMAP) features (termed as EMAP–

Cubic-Caps) is used to classify hyperspectral images. Firstly, the principal component 

analysis (PCA) can only roughly extract the shallow features of the image, especially when 

fewer principal components are chosen; the information loss is serious, and it brings some 

other problems. This paper uses EMAP features to extract complex spatial features from 

hyperspectral images. Then, the EMAP features are used as the input of a cubic convolu-

tional network its main function is to extract the shallow spatial–spectral features. This 

process is followed by a capsule network, which consists of an initial capsule layer and a 

digital capsule layer. These two capsule layers are mainly utilized to extract the deep fine 

features and finally get the classification results. The proposed EMAP–Cubic-Caps is used 

for hyperspectral image classification tasks to verify its superiorities. 

The contributions of our EMAP–Cubic-Caps method are elaborated as follows: 

 In theory, the neural network can extract any feature, as long as the network archi-

tecture is good enough. However, it is very complicated and time-consuming to de-

sign a neural network that can extract a specific geometric structure. Therefore, in 

this paper, EMAP features are used as the input of the network, which has the ad-

vantage of being able to extract rich spatial geometric features well. 

 The cubic convolutional network can extract the spatial–spectral features of the hy-

perspectral image from the three dimensions, which is conducive to making full use 

of the existing information and improving the classification accuracy. 

 The capsule network can further extract more discriminative deep features, such as 

spectra with the properties of heterogeneity and homogeneity, to better distinguish 

pixels at the class boundary. 

2. Deep Capsule Network 

Due to the intrinsic structure, CNNs have some shortcomings. For example, the main 

function of pooling is to retain the key features, reduce the time complexity of the network 

and make the network invariant to translational transformations. Because of this invari-

ance, it is difficult for CNNs to distinguish the positional relationship of features in the 

spatial domain, which results in poor ability in distinguishing the fine detailed objects. In 

2011, inspired by neuroanatomy and cognitive neuroscience, Hinton proposed the con-

cept of capsules to identify spatial location information. In 2017, Hinton published two 

papers on the classification of handwritten character sets using the capsule network to 

achieve the highest classification accuracy. 
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The capsule network is not composed of scalar neurons but capsules. A capsule is a 

vector composed of a group of neurons expressed as a vector so that it can represent var-

ious features such as the pose and edge of the entity [46]. Multiple capsules to form a 

hidden layer; the modulus length of the vector in the capsule represents the probability of 

classifying the entity, so the squash function is used to specify the modulus length in the 

interval {0, 1}, as shown in Equation (1). 

2
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j j

j
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v
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where js  represents the capsule input vector, and jv  represents the output vector of 

the capsule. The squash function does not change the direction of vector js , only the 

value of js , and the greater the value of 
2

js , the closer the value of 
2 2

1j js s  

is to 1; the smaller the value of 
2

js , the closer the value of 
2 2

1j js s  is to 0. This 

ensures that the learning of features is more stable. 

Different from the connection of neurons, the two adjacent layers of capsules are con-

nected in a fully connected way, as shown in Figure 1. The capsule of the 1l th layer is 

fully connected with the capsule of the lth layer. 
l
is  and 

l
iv  represent the input vector 

and output vector of the i th capsule of the lth layer, respectively. 
l
ijw  and 

l
ijc  respec-

tively represent the weight and coupling coefficient of the connection between the i th 

capsule in the 1l th layer and the j th capsule in the lth layer. 

 

Figure 1. Capsule connection mode in the capsule network. 

In addition to the input capsule of the first layer, the capsule input vector 
l
js  of the 

subsequent layers needs to be obtained by weighted summation of the prediction vector 

|
ˆl
j iu . The formula is defined as follows: 

|
ˆl l

j ij j i
i

s c u  (2)

1
|

ˆ l l l
j i ij iu W u   (3)

The value of the coupling coefficient 
l
ijc  is updated by the dynamic routing algo-

rithm in the iterative process. The sum of the coupling coefficients of capsule 
l
js  and all 
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capsules in the lth layer is 1, which is constrained by the softmax activation function [47]. 

The specific formula is expressed as follows: 

1

exp( )

exp( )

l
ijl

ij p
l
ij

j

b
c

b





 

(4)

where the initial value of parameter 
l
ijb  is 0, which changes during the iteration of the 

dynamic routing algorithm. It represents the prior probability of the coupling between the 

capsule i  in the 1l  th layer and the capsule j  in the l th layer. The updated formula 

is as follows: 

|
ˆl l l l

ij ij j i jb b u v    (5)

The dynamic routing algorithm is an excellent iterative algorithm. Its main purpose 

is to update the coupling coefficient by constantly comparing the degree of consistency 

between the prediction vector of the previous capsule layer and the output vector of the 

next capsule layer. It is re-allocated to the prediction vector to coordinate the relationship 

between the capsule layers so that the output vector of the next capsule layer can find the 

accurate prediction result. The pseudo-code of the dynamic routing algorithm is elabo-

rated in Algorithm 1 [48]. 

Algorithm 1. Pseudo code of dynamic routing algorithm 

1. Initialization: the number of iterations 0k , parameter 0l
ijb  , total     

number of iterations T . 

2. While k T ,  

3. Update the coupling coefficient softmax( )l l
ij ijc b . 

4. Update the input vector |
ˆl l l

j ij i ji
s c u . 

5. Update the output vector ( )l l
j jv squash s . 

6. Update the parameter |
ˆl l l l

ij ij j i jb b u v   . 

7. Update the number of iterations 1k k  . 

8. End 

9. Return the output vector 
l
jv . 

Figure 2 shows an architecture of a capsule network, which is composed of a convo-

lutional layer, an initial capsule layer and a digital capsule layer. The convolutional layer 

uses convolution operations and rectified linear unit (ReLU) activation functions to per-

form feature extraction on the image, and the output features are used as the inputs of the 

capsule layer. The initial capsule layer continues to perform convolution operations on 

the obtained feature maps, converts the local convoluted features into capsules and is fully 

connected with each capsule in the digital capsule layer. The digital capsule layer has a 

total of C  capsules; here, C  represents the number of categories in the data set, and the 

digital capsules are obtained through a dynamic routing algorithm, where the modulus 

of the output vector in a capsule represents the probability of being classified into this 

category. 
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Figure 2. Architecture of a capsule network. 

3. The Proposed Method 

3.1. Extended Morphological Attribute Profile 

Hyperspectral images have hundreds of bands and high spectral resolution. There-

fore, it is still a great challenge to analyze and process them. Specifically, due to the 

Hughes phenomenon, the high dimensionality of the data is a key problem; that is, given 

a fixed number of training samples, as the feature dimension increases up to a threshold, 

the generalization performance of the classifier does not increase but decreases. The 

threshold mainly depends on the number of training samples used for the classifier. For 

these reasons, to alleviate the disaster of dimensionality and reduce the amount of calcu-

lation, feature extraction is usually used as a preprocessing step. PCA is usually used for 

hyperspectral image classification tasks. The principle of PCA is to project the data into 

an orthogonal space so that the eigenvector corresponding to the largest eigenvalue main-

tains the maximum variance of the data. However, PCA may ignore some important in-

formation, especially when few components are retained. Therefore, it is a better choice to 

use morphological analysis to exploit spatial features of the image after PCA. 

Morphological Profile (MP) [49] is a spatial feature extraction operator based on 

mathematical morphology. The spatial information obtained by using multi-scale analysis 

can characterize the multi-scale variability of the structure in the image. The disadvantage 

is that it is difficult to simulate other geometric features in the image. Morphological at-

tribute profile (AP) [50] uses morphological attributes to perform operations under the 

constraints of specific attribute criteria to obtain a series of attribute refinement profile 

maps and attribute coarsening profile maps and stack them together. Extended Multiple 

Morphological Attribute Profile (EMAP) [51,52] uses multiple morphological attributes 

on the basis of AP algorithm to combine all the obtained profile feature maps for stacking. 

Compared to the MP algorithm, EMAP is more accurate in representing the spatial infor-

mation of the image. 

For a single band image f , its AP is obtained by attribute thickenings and attribute 

thinnings operation. For a given attribute A  and threshold set B, the AP algorithm cal-

culates the value of the attribute A  of each connected component in the image by com-

paring with the elements in the set and uses the opening and closing operation to deter-

mine whether the attribute thickening ( ) operation or the attribute thinning (  ) oper-

ation is to be performed. After comparing with all elements in the set, a set of attribute 

profiles can be obtained. 

1 1( ) { ( ), ( ), , ( ), , ( )}n nAP f f f f f f       (6) 

In order to reduce the dimensionality of the hyperspectral image and extract the ef-

fective features of the image, PCA is generally used to reduce the dimensionality of the 

image. Suppose the number of channels after dimensionality reduction is C ; then, the 
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stacked feature maps after AP operation on the single band image of each channel are 

called extended morphological attribute profile (EAP). 

1 2{ ( ), ( ), , ( )}cEAPs AP PC AP PC AP PC   (7)

where iPC  represents the i th principal component. The EMAP feature uses multiple 

morphological attributes, obtains EAP separately and stacks them together. 

1 2
{ , , , }

na a aEMAPs EAP EAP EAP   (8)

where ia  represents the i th morphological attribute. Commonly used morphological 

attributes include area, diagonal length of the external moment of the area, moment of in-

ertia, standard deviation, etc. EMAP has a stronger ability to extract spatial features and has 

more advantages in extracting the spatial structure of the image. 

3.2. Cubic Capsule Network with EMAP Features 

Aiming at alleviating the difficulty of neural networks to obtain specific spatial struc-

ture features in hyperspectral images, inspired by [43], we combined the cubic convolu-

tional network with the capsule network and proposed a cubic capsule network with 

EMAP features for hyperspectral image classification. At the beginning of the network, 

the original hyperspectral image was first pre-processed; the high-dimensional hyper-

spectral data was analyzed by PCA, and the first three principal components were ex-

tracted. In addition, three morphological attributes, i.e., the area, the diagonal length of 

the external moment of the area, and the standard deviation, were used to extract the EMAP 

features, and finally, a stacked data cube with 108 feature maps was obtained and was 

used as the input of the network. We chose an image patch with a size of 15 × 15 × 108 as 

the size of each training sample, and the batch_size was 100. Figure 3 shows the structure 

diagram of the proposed EMAP–Cubic-Caps network. The network is divided into three 

parts, namely cubic convolutional network, initial capsule layer and digital capsule layer. 

Cubic convolutional network can effectively extract spatial features and spatial–spec-

tral features and is more flexible in training parameters than three-dimensional convolu-

tion, and the training speed is faster. The part of cubic convolutional network is shown in 

Figure 4. That is, in the input 15 × 15 × 108 image patch, the convolution operation is per-

formed on the three planes of the data cube. The size of the convolution kernel of each 

branch is 3 × 3 × 1, and the number of convolution kernels is 12. The convolution step size 

is (1, 1, 1), and the convolution is filled with 0. After each convolution layer, the feature 

map is batch normalized, and the ReLU activation function is performed. Three convolu-

tions are performed on the three branches. After the convolutions, the three branches re-

spectively generate feature maps with sizes (15 × 15 × 108, 12), (15 × 108 × 15, 12) and (108 

× 15 × 15, 12). The three data cubes are stacked together to generate a (15 × 15 × 108, 36)-

sized feature map, which is used as the input of the initial capsule layer. 
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Figure 3. Architecture of the proposed EMAP–Cubic-Caps network for HSI classification. 
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Figure 4. Architecture of the cubic convolutional network. 

The initial capsule layer further combines the features extracted from the cubic con-

volutional network and encapsulates them into capsules. As shown in Figure 3, the tensor 

dimension output by the initial capsule layer is (6 × 6 × 9, 32). The input tensor of the 

capsule layer was conducted by the convolutions operation, where the kernel size is 5 × 5 

× 60, the number of kernels is 32, the convolution step size is (2, 2, 8) and those convolu-

tions are not filled by 0. It performs feature integration and obtains a feature map with a 

size of (6 × 6 × 9, 32). Therefore, we extracted every 9 scalars of the third dimension as 

vectors and encapsulated them into each capsule. 

In the digital capsule layer, we set the vector length of each capsule to 12; the number 

of capsules is C, which represents the number of sample categories in the data set. Each 

capsule represents a type of feature, and each dimension of the vector represents a cate-

gory of the feature. For example, posture, texture and edge information are each fully 

connected with all capsules in the initial capsule layer, and the vector in the digital capsule 

is updated through the dynamic routing algorithm. The number of dynamic routing iter-

ations is 3. 
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The network proposed in this paper uses Margin loss as the loss function. Since the 

vector modulus in the capsule of the digital capsule layer represents the probability of 

being classified into the corresponding class, if the feature is classified as category k in the 

digital capsule layer, then the k-th capsule vector modulus will be the largest. The loss 

function is defined as follows: 

   
2

max 0, (1 ) max 0,k k k kLoss T m v T v m          (9)

where kT  is the indicator function, and it is 1 when the samples belong to the category 

k ; otherwise, it is 0. m
 represents the upper bound, and m

 represents the lower 

bound, with values of 0.9 and 0.1, respectively. 

The pseudo-code of the proposed EMAP–Cubic-Caps network for hyperspectral im-

age classification is shown in Algorithm 2. 

Algorithm 2. The pseudo code of EMAP–Cubic Caps network 

1. Input: Hyperspectral data X and corresponding label Y, the number of iterations 

1k  0, 2k  0, total number of iterations 1T  = 100, 2T  = 3, learning rate   = 

0.0003. 

2. Obtain hyperspectral data EMAPX  after EMAP feature extraction. 

3. Divide EMAPX  into training set, verification set and test set, and input the training 

set and verification set into the cubic convolutional network. The sampling rate is shown 

in Tables 1–3. 

4. While 1k < 1T , 

5. Perform cubic convolution network. 

6. 1k  1k  + 1, algorithm 

7. End 

8. Input the feature map into the initial capsule layer. 

9. Connect the initialized capsule to the digital capsule layer and use dynamic rout-

ing to update the parameters; see Algorithm 1 for specific steps. 

10. Use the trained model to predict the test set. 

11. Calculate OA, AA and Kappa. 
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Table 1. Labels of Indian Pines data set and the number of training, verification and test samples (each color in the first 

column stands for one land-cover). 

Category Class Name 
Number of Training Sam-

ples 

Number of Verification 

Samples 

Number of Test Sam-

ples 

1 Alfalfa 2 1 43 

2 Corn-notill 71 36 1321 

3 Corn-mintill 41 21 768 

4 Corn 11 6 220 

5 Grass-pasture 24 12 447 

6 Grass-trees 36 18 676 

7 Grass-pasture-mowed 1 1 26 

8 Hay-windrowed 23 12 443 

9 Oats 1 1 18 

10 Soybean-notill 48 24 900 

11 Soybean-mintill 122 61 2272 

12 Soybean-clean 29 15 549 

13 Wheat 10 5 190 

14 Woods 63 32 1170 

15 
Buildings-grass-trees-

drive 
19 10 357 

16 Store-steel-towers 4 2 87 

total  505 257 9487 

Table 2. Labels of University of Pavia data set and the number of training, verification and test samples (each color in the 

first column stands for one land-cover). 

Category Class Name 
Number of Training 

Samples 

Number of Verifica-

tion Samples 

Number of Test Sam-

ples 

1 Asphalt 30 15 6586 

2 Meadows 30 15 18,604 

3 Gravel 30 15 2054 

4 Trees 30 15 3019 

5 Painted metal sheets 30 15 1300 

6 Bare Soil 30 15 4984 

7 Bitumen 30 15 1285 

8 Self-Blocking Bricks 30 15 3637 

9 Shadows 30 15 902 

total  270 135 42,371 

Table 3. Labels of Salinas data set and the number of training, verification and test samples (each color in the first column 

stands for one land-cover). 

Category Class Name 
Number of Train-

ing Samples 

Number of Verifi-

cation Samples 

Number of Test Sam-

ples 

1 Brocoli_green_weeds_1 20 10 1979 

2 Brocoli_green_weeds_2 20 10 3696 

3 Fallow 20 10 1946 

4 Fallow_rough_plow 20 10 1364 

5 Fallow_smooth 20 10 2648 

6 Stubble 20 10 3929 

7 Celery 20 10 3549 

8 Grapes_untrained 20 10 11,241 
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9 Soil_vineyard_develop 20 10 6173 

10 
Corn_senesced_green_ 

weeds 
20 10 3248 

11 Lettuce_romaine_4wk 20 10 1038 

12 Lettuce_romaine_5wk 20 10 1897 

13 Lettuce_romaine_6wk 20 10 886 

14 Lettuce_romaine_7wk 20 10 1040 

15 Vineyard_untrained 20 10 7238 

16 Vineyard_vertical_trellis 20 10 1777 

total  320 160 53,649 

4. Experiment and Analysis 

4.1. Experimental Data Set 

In order to validate the effectiveness and generalization of the proposed method, 

three current well-known hyperspectral data sets, namely the Indian Pines, University of 

Pavia and Salinas, were employed. 

4.1.1. Indian Pines 

The Indiana Farm Data Set is a hyperspectral image of a farm in Indiana, USA, taken 

by the Airborne Visual Infrared Imaging Spectrometer (AVIRIS) in 1992. It has a spatial 

size of 145 × 145 with a resolution of 20 m per pixel and includes 16 different features and 

220 spectral bands with wavelengths ranging from 0.2 micron to 2.4 micron, 20 of which 

were removed due to the influence of water vapor. Experiments were conducted on the 

remaining 200 bands. Figure 5a,b are the pseudo-color image and the real label map of the 

Indian Pines dataset, respectively. Table 1 shows the labels of each class and the number 

of training, verification and test samples of Indian Pines dataset in the experiment. 

  

    

(a) (b) (c) (d) (e) (f) 

Figure 5. False color maps and ground-truth maps of three data sets. (a,b) Indian Pines, (c,d) University of Pavia, (e,f) Salinas. 

4.1.2. University of Pavia 

The data set of the University of Pavia is a hyperspectral image taken by the airborne 

reflection optical spectral imager (ROSIS-03) at the University of Pavia in Pavia, Italy, in 

2003. Its size is 610 × 340, and the spatial resolution is 1.3 m per pixel, including 9 different 

features, and 115 bands with wavelengths from 0.43 microns to 0.86 microns. Twelve 

bands were removed due to the influence of noise. Experiments were conducted on the 

remaining 103 bands. Figure 5c,d are the pseudo-color image and label map of the Uni-

versity of Pavia data set, respectively. Table 2 shows the labels of each class of the Univer-

sity of Pavia data set in the experiment, as well as the training, verification and test sam-

ples. 
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4.1.3. Salinas 

The Salinas Valley dataset is a hyperspectral image of the Salinas Valley, California, 

USA, taken by the Airborne Visual Infrared Imaging Spectrometer (AVIRIS). It has a size 

of 512 × 217 and a spatial resolution of 3.7 m/pixel. It contains 16 different ground features, 

including 224 bands. Twenty bands are excluded because of the influence of water vapor. 

Experiments were conducted on the remaining 204 bands. Figure 5d,e are pseudo-color 

images and label maps of the Salinas dataset, respectively. Table 3 shows the labels of each 

class of the Salinas dataset in the experiment and the number of training, verification and 

test samples. 

4.2. Experimental Setup 

To verify the superiority of the EMAP–Cubic-Caps network designed in this paper, 

we tested it on Indian Pines, University of Pavia and Salinas datasets. The number of 

training, verification and test samples is shown in Tables 1–3. The training samples of the 

Indian Pines data set extract a patch with a size of 15 × 15 × 108 centered on the pixel to be 

classified, and the University of Pavia and Salinas data sets extract a patch with a size of 

23 × 23 × 108 centered at the pixel to be classified. The experiments run on Windows 10, 

and the deep learning platform is Python3.5+ tensorflow1.14.0+ keras2.1.5. The CUP is 

Intel i7-4790 k with a memory of 24G and the graphics processor of NVIDIA GeForce GTX 

1080Ti. Moreover, the overall accuracy (OA), average accuracy (AA) and Kappa coeffi-

cient (kappa) are employed as the quantitative indicators to assess the classification per-

formance. 

4.3. Experiment and Analysis 

This section shows the comparison results between the proposed EMAP–Cubic-Caps 

network and several representative hyperspectral image classification methods to vali-

date the effectiveness. The selected four comparison methods are the support vector ma-

chine with EMAP features (EMAP–SVM) [21], the diverse region-based CNN (DR–CNN) 

[34], the spatial–spectral residual convolutional network (SSRN) [40] and three-dimen-

sional convolutional capsule network based on EMAP preprocessing (3D–Caps) [43]. 

Among them, for the EMAP–SVM classifier, the hyperspectral data is first preprocessed 

by PCA, and the first three components are used to extract the EMAP features via three 

morphological attributes for classification. The DR–CNN method uses a convolutional 

neural network to extract local features in the upper, lower, left and right directions of the 

training samples, and merge them with global features for classification. For the SSRN 

method, a residual network is constructed using 3D convolution kernels with the size of 

3 × 3 × 128 to extract the spatial and spectral information of hyperspectral images. For the 

3D–Caps method, the EMAP features extracted from the first three principal components 

are used as the input to the network. 3D–Caps contains two three-dimensional convolu-

tional layers and three capsule layers. The first layer is the initial capsule layer, the last 

layer is the digital capsule layer and the vectors in the latter two layers of capsules are 

updated using dynamic routing algorithms. For our proposed method, we named the net-

work without EMAP feature extraction on the original hyperspectral image as Cubic-

Caps. It first performs PCA and one-dimensional convolution of the original hyperspec-

tral image to reduce the dimensionality and then uses the cubic convolution network to 

extract the spectral features and spatial–spectral features, finally sending them to the cap-

sule network for classification. 

Table 4 lists the classification accuracies of six algorithms on the Indian Pines dataset. 

Among them, the result of EMAP–SVM is lower than the accuracy of the neural network-

based methods, and the OA is lower than the EMAP–Cubic-Caps proposed in this paper 

by more than 20%. Compared with the two algorithms DR–CNN and SSRN, the OA of 

the proposed EMAP–Cubic-Caps also increased up to 98.20%, 2.55% and 8% higher than 

DR–CNN and SSRN, respectively. Due to the relatively simple part of its convolutional 
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network, the 3D–Caps method has insufficient ability to extract features of hyperspectral 

images, resulting in its classification accuracy lower than DR–CNN and SSRN methods, 

but its classification accuracy on the 5th, 12th and 13th categories was higher than other 

methods, which proves that it has certain advantages. In terms of the average accuracies, 

the proposed EMAP–Cubic-Caps method obtained the highest AA values, which proves 

that the classification results of each class obtained by EMAP–Cubic-Caps are satisfactory. 

Specifically, in the Indian Pines data set, the samples of the 1st, 7th, 9th and 16th categories 

were extremely unbalanced, which is a big challenge for the classifiers. In the 1st and 7th 

unbalanced categories with small samples (for both categories, only one sample is selected 

for training), the proposed EMAP–Cubic-Caps achieved the best class accuracies. In the 

9th and 16th categories, the performance of EMAP–Cubic-Caps classifier was relatively 

general, and its class accuracies of those two categories were only higher than those of the 

EMAP–SVM method. The reason may be that, in the process of EMAP feature extraction, 

for very few unbalanced and unevenly distributed samples, the patch-wise-based extrac-

tion may weaken the distinguishability of these samples, thus decreasing the class accu-

racies of those categories. In addition, the Kappa coefficient of the proposed EMAP–Cu-

bic-Caps method was also increased to the highest 0.9765. The algorithm Cubic-Caps 

without EMAP feature extraction also obtained good classification results, and its OA ex-

ceeded CNN-based method by more than 1%. It is slightly inferior to the proposed 

EMAP–Cubic-Caps method, which indicates that the capsule network based on cubic con-

volutional network still has good performance, but the EMAP feature can promote the 

network to extract richer discriminative features, thereby making the classification accu-

racy higher. Moreover, among the results of a single class, the proposed EMAP–Cubic-

Caps method achieved the highest classification accuracy in the 1st, 4th, 7th, 8th and 13th 

categories. To summarize, the proposed EMAP–Cubic-CAPs has the best performance 

among all competitors. 

Table 4. Classification accuracies of the competing six methods on Indian Pines dataset (the optimal results are shown in 

bold). 

Category EMAP–SVM DR–CNN SSRN 3D–Caps 
Proposed Methods 

Cubic-Caps EMAP–Cubic-Caps 

1 66.04 83.33 100 97.30 95.35 100 

2 75.30 96.15 96.91 95.00 95.48 98.83 

3 40.86 96.16 95.79 93.88 96.89 98.47 

4 51.38 98.98 98.99 99.47 98.56 99.49 

5 90.42 95.80 95.35 96.47 96.03 96.19 

6 97.42 95.87 96.15 99.11 95.89 97.92 

7 66.67 92.59 96.29 73.91 65.38 100 

8 97.11 89.98 89.78 98.25 99.34 100 

9 20.83 89.47 94.74 88.89 100 75.00 

10 71.40 92.39 92.52 89.18 93.58 97.58 

11 98.13 98.38 98.02 74.35 98.70 98.94 

12 80.26 92.65 92.50 98.97 95.46 94.48 

13 88.53 100 100 100 100 100 

14 93.61 93.88 93.73 93.72 94.72 98.71 

15 76.05 98.40 98.09 96.87 97.21 96.67 

16 70.34 100 100 92.55 98.85 95.35 

OA (%) 76.52 95.70 95.75 90.20 96.47 98.20 

AA (%) 74.02 94.62 96.18 92.995 95.08 96.72 

Kappa 0.7383 0.9436 0.9569 0.9015 0.9598 0.9795 
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Figure 6 shows classification maps of the six algorithms mentioned in this article. It 

is obvious that the classification map of EMAP–SVM is the most unsatisfactory, and the 

image has the most noise, because it only uses the combination of EMAP and SVM, and 

only the shallow features are fused for classification. Two algorithms based on convolu-

tional neural network, i.e., DR–CNN and SSRN, achieved relatively satisfactory results, 

but there is still some noise in their classification maps. Due to the relatively simple part 

of the 3D–Caps convolutional network, the classification map obtained by it is poorer than 

DR–CNN and SSRN methods. The proposed Cubic-Caps and EMAP–Cubic-Caps have 

the least noise on the whole maps and get the highest degree of consistency with the dis-

tribution of land-covers, especially for the proposed EMAP–Cubic-Caps method. 

(a) (b) (c) (d) (e) (f) 

Figure 6. Classification maps of six algorithms on Indian pines dataset. (a) EMAP–SVM, (b) DR–CNN, (c) SSRN, (d) 3D–

Caps, (e) Cubic-Caps, (f) EMAP–Cubic-Caps. 

Benefitting from the spatial geometric features of EMAP, the results of EMAP–Cubic-

Caps on the Alfalfa and Buildings-grass-trees-drive classes are significantly better than 

other methods, which proves that the features of the vector encapsulated into capsules 

better represent the information of the land cover, so the classification results are better 

than other competitors. It can be drawn from the above that the conclusions obtained from 

the classification result maps are highly consistent with the results of the quantitative eval-

uation. 

Table 5 shows the classification accuracies of six algorithms on the University of Pa-

via dataset. Among them, the results of EMAP–SVM are not satisfactory, and the OA is 

lower than the methods based on the convolutional neural network by about 20% and 

lower than the proposed EMAP–Cubic-Caps method by 22.36%. Compared with the two 

convolutional neural network methods, i.e., DR–CNN and SSRN methods, the OAs of our 

EMAP–Cubic-Caps method increased from 94.40% and 95.15% to 98.81%, an increase of 

more than 3%. The 3D–Caps algorithm based on the three-dimensional convolutional cap-

sule network had only two convolutional layers because of its convolutional network part. 

The ability to extract low-level features of HSI is poor, so the OA of it was only 88.30%. In 

terms of the average accuracy (AA), the proposed EMAP–Cubic-Caps method achieved 

the highest value of 98.49%, which validates that the algorithm in this paper has great 

discrimination in classifying most of the instances. In addition, for class-accuracies, the 

EMAP–Cubic-Caps method basically achieved the best performance. In particular, in the 

University of Pavia dataset, the 1st, 2nd, 3rd, 5th, 6th, and 8th category, the proposed 

EMAP–Cubic-Caps method achieved the highest accuracy. Moreover, the Kappa coeffi-

cient of EMAP–Cubic-Caps method increased from the other highest 0.9364 (SSRN 

method) to 0.9842. It indicates that the proposed classifier has better performance in inner-

class consistency. Even though the proposed Cubic-Caps method does not perform EMAP 

feature extraction, it also obtained good results, which are slightly inferior to the results 

of EMAP–Cubic-Caps classifier. Again, it further illustrates the advantages of EMAP–Cu-

bic-Caps method in processing hyperspectral image classification tasks. 
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Table 5. Classification accuracies of the competing six methods on University of Pavia dataset (the optimal results are 

shown in bold). 

Category EMAP–SVM DR–CNN SSRN 3D–Caps 
Proposed Methods 

Cubic-Caps EMAP–Cubic-Caps 

1 71.29 98.63 98.70 98.41 98.86 99.63 

2 75.75 98.34 98.46 97.49 99.75 99.76 

3 72.97 99.30 98.96 79.20 99.10 99.85 

4 91.80 90.73 91.68 99.86 98.24 98.98 

5 99.33 99.32 99.39 99.77 99.92 100 

6 71.55 74.53 78.33 58.82 93.57 95.15 

7 87.60 99.61 99.45 90.60 93.92 95.73 

8 67.29 97.15 97.55 87.11 95.57 97.59 

9 99.31 100 100 100 99.45 99.77 

OA (%) 76.45 94.30 95.15 88.30 98.15 98.81 

AA (%) 81.88 95.29 95.84 90.14 97.60 98.49 

Kappa 0.6985 0.9254 0.9364 0.8493 0.9755 0.9842 

Figure 7 illustrates the classification maps of six algorithms on the University of Pavia 

dataset. Among them, the classification results of the EMAP–SVM algorithm still contain 

a lot of noise. The other five algorithms based on neural networks have results in classify-

ing the corresponding land-covers. Among those five network-based classifiers, the per-

formance of 3D–Caps is slightly worse. Many pixels belonging to the Meadows category 

are classified into the Bare Soil category. The classification map of the proposed EMAP–

Cubic-Caps method has the least noise and better restores the distribution of correspond-

ing land-covers. In addition, the results of EMAP–Cubic-Caps on the Self-Blocking Bricks 

and Bare Soil classes are significantly better than other methods. It proves that the ability 

of vector-encapsulated capsules to represent land cover information is stronger than that 

of scalar neurons, which further illustrates the advantages of the capsule network. 

(a) (b) (c) (d) (e) (f) 

Figure 7. Classification maps of six algorithms on University of Pavia dataset. (a) EMAP–SVM, (b) DR–CNN, (c) SSRN, 

(d) 3D–Caps, (e) Cubic-Caps, (f) EMAP–Cubic-Caps. 

Table 6 shows the quantitative classification accuracies of six algorithms on the Sa-

linas dataset. Similarly, the results of EMAP–SVM are far from those neural network-

based algorithms, especially in the categories of Grapes_untrained and Vineyard_un-

trained. The performance of EMAP–SVM was poor, and the overall accuracy (OA) was 

the lowest. Compared with the two algorithms based on CNN, i.e., DR–CNN and SSRN 

methods, the proposed EMAP–Cubic-Caps classifier improved OA indicators by 5.4% and 

3.11%, respectively, and increased by 2.6% and 2.1% on AA indicators, respectively. Based 
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on the 3D–Caps method of the 3D convolutional capsule network, the OA of EMAP–Cu-

bic-Caps increased by nearly 10%, and the AA increased by nearly 5%. Moreover, the 

Kappa coefficient was also improved. It verifies that the proposed EMAP–Cubic-Caps 

method can achieve stable classification results with more categories and has better gen-

eralization performance in the classification of multi-category land cover. The experi-

mental results of the proposed Cubic-Caps method are slightly worse than the proposed 

EMAP–Cubic-Caps classifier, which again validates that, with the help of EMAP features, 

the accuracy of classification can be effectively improved. Through comparison, it is obvi-

ous that the proposed Cubic-Caps and EMAP–Cubic-Caps method have superior ad-

vantages. 

Figure 8 shows the classification maps of the above-competing methods on the Sa-

linas data set. Among them, the classification result map based on the EMAP–SVM algo-

rithm has the worst performance. There is also some noise in the DR–CNN and SSRN 

methods. In the classification results of the Fallow and Grapes_untrained classes, there is 

more noise, and the classification maps of other classes perform better. 3D–Caps performs 

a little bit worse than DR–CNN and SSRN methods, and the noise is more than other 

neural-network-based algorithms. The classification map of the proposed EMAP–Cubic-

Caps method has the least noise and better restores the real distribution of land-covers. 

The results on the two classes of Fallow and Grapes_untrained are significantly better 

than other methods. It again validates that the ability of using vector-encapsulated cap-

sules to represent land cover information is stronger than that of scalar neurons. It also 

once again proves the advantages of the proposed algorithm. 

Table 6. Classification accuracies of the competing six methods on Salinas dataset (the optimal results are shown in 

bold). 

Category EMAP–SVM DR–CNN SSRN 3D–Caps 
Proposed Methods 

Cubic-Caps EMAP–Cubic-Caps 

1 92.90 100 100 100 100 100 

2 92.77 96.89 100 100 100 100 

3 93.49 98.78 97.55 94.98 100 100 

4 87.87 95.84 94.86 95.34 98.60 99.34 

5 90.61 99.92 99.49 98.43 99.96 99.96 

6 85.51 99.85 99.90 100 100 100 

7 89.12 100 100 99.58 100 99.97 

8 51.43 93.24 93.73 83.76 99.66 98.90 

9 93.61 98.68 99.50 99.36 99.77 99.91 

10 66.20 88.68 95.38 91.76 97.00 98.44 

11 87.70 100 93.97 94.26 99.07 99.89 

12 82.91 99.95 100 99.89 100 100 

13 77.19 98.22 100 99.53 100 100 

14 71.08 99.71 94.32 97.79 99.69 98.68 

15 64.01 73.81 83.06 60.50 86.57 99.34 

16 94.78 99.94 100 94.47 99.88 96.88 

OA (%) 76.74 93.15 95.44 88.95 97.39 98.55 

AA (%) 82.57 96.47 96.98 94.35 98.70 99.08 

Kappa 0.7539 0.9239 0.9493 0.8774 0.9709 0.9838 
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(a) (b) (c) (d) (e) (f) 

Figure 8. Classification maps of six algorithms on Salinas dataset. (a) EMAP–SVM, (b) DR–CNN, (c) SSRN, (d) 3D–Caps, 

(e) Cubic-Caps, (f) EMAP–Cubic-Caps. 

5. Discussion 

Table 7 shows the comparison of the time complexity of training and testing of dif-

ferent algorithms on the three data sets. Among them, the DR–CNN based on two-dimen-

sional convolutional network has a more complex network structure and consumes the 

most training and testing time. The SSRN of the residual network has a good performance 

in time complexity. The 3D–Caps based on the 3D convolutional capsule network is rela-

tively simple because of its convolutional network part, so it consumes the shortest train-

ing and testing time. Although the time complexity of Cubic-Caps is higher than that of 

3D–Caps, it has a better performance on classification accuracy than the latter. 

Table 7. Training and testing time complexity of each algorithm on different data sets. 

Competing Methods IN UP Salinas 

DR–CNN [34] 
Train. (min) 7.86 7.62 7.74 

Test.(s) 55.71 97.19 281.25 

SSRN [40] 
Train. (min) 2.62 1.41 2.06 

Test.(s) 4.49 12.24 25.91 

3D–Caps [43] 
Train. (min) 1.52 1.15 1.38 

Test.(s) 4.44 11.46 17.56 

Cubic-Caps 
Train. (min) 1.94 1.22 1.84 

Test. (s) 5.43 14.36 27.64 

EMAP–Cubic-Caps 
Train. (min) 1.76 1.29 1.50 

Test.(s) 4.21 13.33 25.47 

By the ablation experiment (that is, experiments of Cubic-Caps and EMAP–Cubic-

Caps methods), Cubic-Caps has high time complexity due to the use of raw data for train-

ing. In contrast, the proposed EMAP–Cubic-Caps method can obtain satisfactory accuracy 

under good time complexity, which fully proves the superiority of the EMAP–Cubic- 

Caps method. 

Figure 9a shows the comparison of the classification overall accuracy over the num-

ber of convolutional kernels in each layer of the Cubic Network part of the EMAP–Cubic-

Caps method. It is clear that, when the number of convolution kernels is 3, the result is 
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not satisfactory, and the network′s ability to extract image information is insufficient. 

When the number of convolution kernels is selected as 6 and 12, the classification accuracy 

continuously improves. When the number of convolution kernels is selected as 24, the 

classification accuracy tends to converge. Therefore, we used 12 in each convolution layer 

to learn the characteristics of the image and it results in optimal results. 

  

(a) (b) 

Figure 9. (a) Comparison of classification average accuracy over the number of convolutional kernels in each layer of the 

cubic convolutional network. (b) Comparison of classification average accuracy over the vector modulus of the digital 

capsule. 

Figure 9b shows the comparison of the OA over the length of vector of each digital 

capsule in the digital capsule layer. It can be observed that, when the length of the vector 

is set to 6 and 9, the classification OA continuously rises. When the length is set to 12 and 

15, the classification accuracy changes from rising to converging. In order to ensure the 

efficiency of the algorithm proposed in this chapter, we chose 12 as the length of the vector 

in the digital capsule layer. 

6. Conclusions 

In the paper, a cubic capsule network with EMAP features (EMAP–Cubic-Caps) is 

proposed to classify hyperspectral images, which can effectively alleviate the defect of 

insufficient spatial–spectral feature extraction of hyperspectral images by most convolu-

tional neural networks. The EMAP–Cubic-Caps network is composed of EMAP feature 

extraction, a cubic convolutional network, an initial capsule layer and a digital capsule 

layer. EMAP first extracts three geometric structural features from the three principal 

components of the original hyperspectral image. The function of the cubic convolutional 

network is to extract the spatial–spectral features of the image from three planes of the 

cube. The two capsule layers further use vector-encapsulated capsules to extract richer 

and more accurate deep features, thereby improving the classification accuracy of HSIs. 

Through experimental comparison, it is verified that the performance of the proposed 

EMAP–Cubic-Caps method is better than several state-of-the-art CNN-based methods. In 

addition, compared with 3D–Caps, the proposed EMAP–Cubic-Caps method has im-

proved significantly in all terms of accuracies. Specifically, the advantage of the proposed 

EMAP–Cubic-Caps method is that it can fully extract geometric morphological features 

and integrate them into the capsule network to better express the features of the ground 

cover. It has a good performance in classification for the scenes with fewer samples and 

rich geometric details (for example, a local area with rich detailed information and diverse 

shapes). In the ablation experiment, that is, in comparison with the 3D–Caps method, the 

proposed EMAP–Cubic-Caps network fully extracted the low-level features of the 
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hyperspectral image before the capsule layer, which verifies that the performance of the 

model trained using EMAP features is better than the original data. 
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