
remote sensing

Article

DGANet: A Dilated Graph Attention-Based Network for Local
Feature Extraction on 3D Point Clouds

Jie Wan 1 , Zhong Xie 2,3, Yongyang Xu 2,3 , Ziyin Zeng 2, Ding Yuan 2 and Qinjun Qiu 3,*

����������
�������

Citation: Wan, J.; Xie, Z.; Xu, Y.;

Zeng, Z.; Yuan, D.; Qiu, Q. DGANet:

A Dilated Graph Attention-Based

Network for Local Feature Extraction

on 3D Point Clouds. Remote Sens.

2021, 13, 3484. https://doi.org/

10.3390/rs13173484

Academic Editors: Hossein M. Rizeei

and Peter Hofmann

Received: 1 August 2021

Accepted: 1 September 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Geological and Evaluation of Ministry of Education, China University of Geosciences,
Wuhan 430074, China; wanjie@cug.edu.cn

2 Department of Geography and Information Engineering, China University of Geosciences,
Wuhan 430074, China; xiezhong@cug.edu.cn (Z.X.); yongyangxu@cug.edu.cn (Y.X.);
zengziyin@cug.edu.cn (Z.Z.); yuanding@cug.edu.cn (D.Y.)

3 National Engineering Research Center of Geographic Information System, Wuhan 430074, China
* Correspondence: qiuqinjun@cug.edu.cn

Abstract: Feature extraction on point clouds is an essential task when analyzing and processing point
clouds of 3D scenes. However, there still remains a challenge to adequately exploit local fine-grained
features on point cloud data due to its irregular and unordered structure in a 3D space. To alleviate
this problem, a Dilated Graph Attention-based Network (DGANet) with a certain feature for learning
ability is proposed. Specifically, we first build a local dilated graph-like region for each input point
to establish the long-range spatial correlation towards its corresponding neighbors, which allows
the proposed network to access a wider range of geometric information of local points with their
long-range dependencies. Moreover, by integrating the dilated graph attention module (DGAM)
implemented by a novel offset–attention mechanism, the proposed network promises to highlight the
differing ability of each edge of the constructed local graph to uniquely learn the discrepancy feature
of geometric attributes between the connected point pairs. Finally, all the learned edge attention
features are further aggregated, allowing the most significant geometric feature representation of
local regions by the graph–attention pooling to fully extract local detailed features for each point.
The validation experiments using two challenging benchmark datasets demonstrate the effectiveness
and powerful generation ability of our proposed DGANet in both 3D object classification and
segmentation tasks.

Keywords: 3D point clouds; local feature extraction; deep learning; graph attention mechanism

1. Introduction

Accurate and real-time geographic information plays a critical role in the research of
remote sensing. With the rapid development of remote sensing technology and equipment
upgrades, the classical 2D spatial data represented by maps and images has failed to meet
the needs of people’s cognition of realistic 3D space and geological research. In particular,
the representative active 3D acquisition system, such as mobile laser scanning (MLS), has
the advantages of quickly acquiring real-time and high-precision ground information [1]
and modeling the geometric structure of terrestrial objects in the form of 3D lidar point
cloud data. It is noteworthy that 3D point cloud data provides a simple and intuitive
geometric representation of 3D objects, which has become one of the most common data
sources in the field of remote sensing and has been increasingly applied in a wide variety
of real-world applications [2], such as 3D city modeling [3], forestry monitoring [4], and
land cover and land use mapping [5]. Currently, due to the insufficient automatic potential
mining of 3D point cloud data, the practical application of 3D point cloud data is immature
and lacks corresponding theory and methods. Thus, many researchers are granting more
attention to 3D point cloud analysis and processing; the local feature extraction on 3D
point clouds has become the key and difficult point in this field. Since it is expensive and

Remote Sens. 2021, 13, 3484. https://doi.org/10.3390/rs13173484 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-3048-1496
https://orcid.org/0000-0001-7421-4915
https://doi.org/10.3390/rs13173484
https://doi.org/10.3390/rs13173484
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13173484
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13173484?type=check_update&version=1

Remote Sens. 2021, 13, 3484 2 of 21

laborious to interpret point clouds of 3D scenes based on handcrafted features extracted by
manually designed algorithms, there has been a promising way to automatically extract
features on point clouds by using deep-learning-based methods. However, point clouds
are sparsely and unevenly distributed in 3D scenes, and different scanned objects in the
same scene are usually irregular in shape and size and may suffer serious incompletion
caused by the scanning angles or occlusion. As such, these objective factors will complicate
the local feature extraction of point clouds. Therefore, it is still a challenge to extract local,
high-quality features from 3D point cloud data.

In recent years, deep-learning-based methods have achieved automatic and efficient
feature extraction on point clouds with their advances in feature learning and the capacity
for parameter sharing [6], which have shown extraordinary performance in various tasks
such as 3D object classification [7–9] and segmentation [10–12]. Unlike the regular pixels
in 2D images, 3D point clouds are composed of a series of unorganized points in a non-
Euclidean space. Typical 2D convolution is unable to be directly operated on 3D point
clouds due to its irregular and sparse structure [13]. To this end, PointNet [14] takes
the lead work in directly processing original point clouds. It applies the Multi-Layer
Perceptron (MLP) and the simple symmetric function on each point to extract global
features, but it neglects to capture the local structural features to enhance the local feature
representation of point clouds. The following PointNet++ [15] improved the architecture
of PointNet by constructing a hierarchical neural network with a series of sampling and
grouping operations on point clouds to extract both global and local features. However,
whether it is PointNet++ or other later PointNet-based networks, it is noteworthy that
the feature aggregation, which aims to capture the global feature on the local region, is
normally implemented by the max-pooling operation as shown in Figure 1a. This only
focuses on capturing the most important features among neighbors and fails to consider
the other geometric local correlations between the central point and its neighbors in the
local region. With the successful application of deep learning to non-Euclidean data
processing, graph convolution network (GCN) [16] has attracted much more attention
in recent years. Motivated by the design of the graph-based structure, Dynamic Graph
CNN (DGCNN) [17] constructs a graph-like region for each point and introduces a new
point convolution module dubbed EdgeConv to aggregate neighboring features in local
graphs. It does this by concatenating the features of the central node with its corresponding
edge features, followed by the max-pooling operation as shown in Figure 1b. Although
the DGCNN realizes the utilization of the relationship between the central point and its
neighbors and guarantees each corresponding neighborhood point associated with the
central point, the final feature aggregation on a local graph is also achieved by a simple
max-pooling operation. This aggregates the detailed information on a relatively small
range of local regions, thus limiting the network to access more fine-grained local features.

In addition, as we know, adjacent points belonging to the same category possess simi-
lar characteristics in the local region of point clouds, and such similarity between them will
become closer as their spatial distance shrinks. This kind of geometric peculiarity is one of
the most distinguishable characteristics of point clouds. Hence, researching how to expand
the range of the receptive information of each point by considering its spatial–geometric
relation towards neighbors is key to helping the network model capture more local features
of each point in the local region. However, most deep-learning-based methods [14–17]
mentioned above are unable to efficiently leverage the spatial dependencies between points
making the network to conduct the local feature extraction with a larger receptive field.
Moreover, the differences of spatial–geometric features between each point and its corre-
sponding neighbors also need to be taken into account when extracting the local detailed
feature on point clouds.

Remote Sens. 2021, 13, 3484 3 of 21Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 21

Figure 1. The 3D illustration of the local feature extraction with different methods: (a) With PointNet
++; (b) With DGCNN; (c) With our proposed DGANet.

To address the above problems, we propose a Dilated Graph Attention-based Net-
work (DGANet) for local feature extraction on point clouds. The key idea of DGANet is
using a designed dilated graph-like structure to construct a local region for each point and
applying a novel offset–attention mechanism to the local feature extraction on point
clouds. Specifically, we construct a local dilated graph for each point and design a dilated
graph attention module (DGAM). By embedding a novel offset–attention mechanism, the
DGAM is able to learn more local features of point clouds with their long-range depend-
ency and capture the most useful local geometric details of each point across other long-
range neighbors by using the attention pooling as shown in Figure 1c. These strategies
enlarge the range of the receptive information of each point and enrich the local feature
information, thus allowing the final aggregated features to better represent the local re-
gion of point clouds. In our experiments, the proposed DGANet achieves state-of-the-art
performance on two challenging point cloud datasets, including ModelNet40 [7] for 3D
object classification and ShapeNet part [18] for part segmentation. The key contributions
of our work are summarized as follows:
1. We utilize an improved k-nearest neighbor (K-NN) search algorithm to construct a

local dilated graph for each point, which models the long-range geometric correlation
between each point and its neighbors to help the point neural network learn more
local features of each point with a larger receptive field when conducting the convo-
lution operation.

2. We embed an offset–attention mechanism into a designed module called dilated
graph attention module (DGAM), which can dynamically learn local discriminative
attention features on the constructed dilated graph-like data, and employ a graph
attention pooling to aggregate the most significant features and better capture the
local geometric details of each point.

3. We propose a novel DGANet for local feature extraction on point clouds and carry
out extensive experiments on two competitive benchmark datasets. The experimental
results demonstrate that our method achieves considerable performance and outper-
forms several existing state-of-the-art methods in both 3D object classification and
segmentation tasks.
The remainder of this paper is organized as follows: Section 2 describes previous re-

lated works. Section 3 introduces an overview of the proposed method and illustrates the

Figure 1. The 3D illustration of the local feature extraction with different methods: (a) With PointNet ++; (b) With DGCNN;
(c) With our proposed DGANet.

To address the above problems, we propose a Dilated Graph Attention-based Network
(DGANet) for local feature extraction on point clouds. The key idea of DGANet is using
a designed dilated graph-like structure to construct a local region for each point and
applying a novel offset–attention mechanism to the local feature extraction on point clouds.
Specifically, we construct a local dilated graph for each point and design a dilated graph
attention module (DGAM). By embedding a novel offset–attention mechanism, the DGAM
is able to learn more local features of point clouds with their long-range dependency
and capture the most useful local geometric details of each point across other long-range
neighbors by using the attention pooling as shown in Figure 1c. These strategies enlarge the
range of the receptive information of each point and enrich the local feature information,
thus allowing the final aggregated features to better represent the local region of point
clouds. In our experiments, the proposed DGANet achieves state-of-the-art performance on
two challenging point cloud datasets, including ModelNet40 [7] for 3D object classification
and ShapeNet part [18] for part segmentation. The key contributions of our work are
summarized as follows:

1. We utilize an improved k-nearest neighbor (K-NN) search algorithm to construct a
local dilated graph for each point, which models the long-range geometric correlation
between each point and its neighbors to help the point neural network learn more local
features of each point with a larger receptive field when conducting the convolution
operation.

2. We embed an offset–attention mechanism into a designed module called dilated
graph attention module (DGAM), which can dynamically learn local discriminative
attention features on the constructed dilated graph-like data, and employ a graph
attention pooling to aggregate the most significant features and better capture the
local geometric details of each point.

3. We propose a novel DGANet for local feature extraction on point clouds and carry
out extensive experiments on two competitive benchmark datasets. The experimental
results demonstrate that our method achieves considerable performance and outper-

Remote Sens. 2021, 13, 3484 4 of 21

forms several existing state-of-the-art methods in both 3D object classification and
segmentation tasks.

The remainder of this paper is organized as follows: Section 2 describes previous
related works. Section 3 introduces an overview of the proposed method and illustrates
the difference between our method and other existing methods. Section 4 presents the
experiments and the comprehensive discussion of results, as well as the corresponding
ablation studies. Section 5 draws the conclusion.

2. Related Work

Recent deep-learning-based methods for extracting features from point clouds can be
roughly divided into the following five categories: projection-based methods, voxel-based
methods, point-based methods, graph-based methods, and attention-based methods.

2.1. Projection-Based Methods

Projection-based methods [19–21] project or flatten 3D point clouds into a collection
of 2D views so that the standard convolution used in 2D CNNs can be applied to the
converted data for feature extraction. Kalogerakis et al. propose a deep network for part
segmentation of 3D shapes by employing a novel projective layer to aggregate output
features from multiple views [22]. Le et al. introduce a view pooling procedure to aggregate
the extracted features generated by the CNNs across each view for 3D mesh segmenta-
tion [23]. Nevertheless, these methods inevitably cause geometric information loss during
the projection.

2.2. Voxel-Based Methods

Alternatively, point clouds can be presented as regular 3D volumetric grids [24,25]
so that the 3D convolution can be utilized as the same as 2D convolution. VoxNet [12]
convert the point clouds into volumetric occupancy grids which can be processed by
the 3D CNNs to predict categories of objects. However, it usually consumes a large
amount of memory and requires high computational resources to apply the 3D convolution
on such sparely-occupied volumetric grids for a high-resolution output. To reduce the
computational consumption of sparse voxel grids, Hůlková et al. ingeniously transform 3D
point clouds into 2D raster images to efficiently reduce the computational time of the 3D
point clouds classification for highway documentation [26]. Kd-Tree [27] and Octree [28]
are used, respectively, to construct two efficient partition structures for the alternative
representations of point clouds but they rely on the subdivisions of volumetric grids rather
than the geometric structure of point clouds.

2.3. Point-Based Methods

Encouraged by the PointNet [14] and PointNet++ [15], many recent approaches con-
struct powerful reasoning modules for the feature extraction of each point. PointCNN [29]
introduces a X-convolution to weight and permutes the input point clouds for local feature
learning. PointConv [30] applies a kernelized density estimation to the 3D convolution on
point clouds. It is worth noting that the above point-based methods often use the simple
max-pooling operation to capture the most critical part of local features. Although this
kind of symmetric operation guarantees the permutation–invariance of point clouds, the
geometric correlation between the reference point and its neighbors within the local region
are ignored.

2.4. Graph-Based Methods

Unlike the point-based methods, instead of directly utilizing a discrete point as input,
graph-based methods construct a graph-like local region for each point and then feed the
graph data into a designed network. PointGCN [31] builds a local graph for each point
based on its k nearest neighbors and utilizes global pooling and multi-resolution pooling
to exploit global and local features. RGCNN [32] constructs the graph for each point by

Remote Sens. 2021, 13, 3484 5 of 21

concentrating all nearby points and integrating a graph–signal smoothness into the loss
function to regularize the feature learning process. DGCNN [17] designs a graph-based
convolution, namely EdgeCov, which allows the network to learn the geometric informa-
tion for local feature extraction by dynamically updating the graph. In the constructed
graph, the edges between the points are calculated for building the topology of the graph.
However, it is still challenging to efficiently extract local features on the diverse graph
topologies of point cloud data.

2.5. Attention-Based Methods

Recently, the attention mechanism has drawn much attention in deep learning, es-
pecially in computer vision, as it allows the neural network to focus on the important
parts of input data and facilitates critical feature learning to improve the performance of
networks. Thus, some researchers are attempting to apply the attention mechanism in
point cloud analysis and processing tasks. Liang et al. [33] propose an attention-based
K-NN module to aggregate neighboring information for each point. Wang et al. [34] design
an attention-based convolution kernel to adapt to the various structures of local graphs
for feature extraction on point clouds. Feng et al. [35] introduce a local attention–edge
convolution (LAE-Conv) to learn the neighboring features on the local graph which then
feeds the learned edge features to a point-wise spatial attention module to capture global
dependencies in the feature dimension. Although the attention mechanism has been
proved efficient in the above attention-based methods, they fail to consider the geometric
discrepancy between each point and its long-range neighbors in the feature dimension for
capturing local detailed features.

The aforementioned methods have a common limitation in that they are unable
to exploit local, fine-grained features by utilizing the long-range geometric information
between points and inherent discrepancies between point features. To fill this gap, we
propose a novel point neural network (DGANet) that sufficiently captures local detailed
features by embedding a novel offset–attention mechanism into the designed DGAM that
considers the long-range dependency and geometric difference between each connected
point pair within the constructed local dilated graph.

3. Methods

In this section, we first present the general framework of our proposed network
model for the 3D object classification and segmentation tasks. Next, we introduce the
spatial transformation embedding used to solve the transformation–invariance problem
by applying a learnable 3 × 3 transformation matrix to the 3D coordinates of each input
point. Then, we show the details of the local dilated graph which establishes the long-
range geometric correlations between each point and its neighborhood points. Finally, we
illustrate the designed DGAM aimed at efficiently learning fine-grained features of the
constructed local dilated graph built from the transformed point cloud set.

3.1. Network Architecture

Our proposed DGANet network can be applied to various point cloud analysis and
processing tasks, including 3D object classification and segmentation. As shown in Figure 2,
the architecture of DGANet incorporates the encoder part, the classification part, and the
segmentation part, respectively. Each block in the figure represents a feature with size of
N × C, where N represents the number of the output points and C represents the number
of output feature channels of each point, and different colors represent different kinds of
point features.

Remote Sens. 2021, 13, 3484 6 of 21
Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 21

Figure 2. The general framework of the proposed DGANet.

The encoder part aims to realize the semantic encoding of point features by trans-
forming input points into a higher dimensional feature space, which enables the network
to learn the local features on point clouds for the subsequent classification and segmenta-
tion tasks. The encoder part starts by transforming the input point coordinates (x, y, z) into
the point feature (N × 3), where N is the number of input points and 3 is the number of
feature dimensions, and then the input points are successively fed into a spatial transfor-
mation embedding and three stacked, dilated graph attention modules, each of which
produces an DGAM feature (N × C). This is followed by a shared multilayer perceptron
(MLP) layer which concatenates all preceding DGAM features as inputs to generate the
final output feature (N × 1024).

The classification part presented in the middle of the whole architecture is utilized to
classify the input points (N × 3) into NC object categories at object-level. Firstly, the point
feature (N × 1024) generated by the encoder is processed by the max-pooling operation to
achieve a global feature (1 × 1024). Next, the global feature is successively fed into two
shared multi-layer perceptron (MLP) layers to predict the classification score of the point
cloud belonging to NC object categories. The convolutional kernel size of the two shared
MLP layers are 512 and 256, respectively, and the final classification result is determined
by the category with the maximal score.

The task of the segmentation part is to segment each input point into Ns object cate-
gories at the point-level, which includes the semantic segmentation and part segmenta-
tion. The repeated global feature (N × 1024) and the three combined DGAMs feature are
concatenated and then fed into two shared multilayer perceptron (MLP) layers to predict
the pointwise segmentation score belonging to Ns object categories. The convolutional
kernel size of the two shared MLP layers are 512 and 256, respectively, and the final seg-
mentation result is also determined by the category with the maximal score.

3.2. Spatial Transformation Embedding
The spatial transformation embedding presented in Figure 2 aims to help the net-

work align the input point set in a normative space, which guarantees a vantage spatial
position posture for the local feature learning. Figure 3 shows the details of the spatial
transformation embedding. We first use a dilated graph module (DGAM) followed by
shared MLP layers to process the input point cloud set to generate a point feature (N ×
1024). We then utilize a max-pooling operation and two shared MLP layers to achieve the
global feature. Finally, we employ a 3 × 3 initial weight matrix to learn the transform co-
efficient from the extracted global feature and multiply this with the input point set to
generate the final transformed point feature (N × 3).

Figure 2. The general framework of the proposed DGANet.

The encoder part aims to realize the semantic encoding of point features by transform-
ing input points into a higher dimensional feature space, which enables the network to
learn the local features on point clouds for the subsequent classification and segmentation
tasks. The encoder part starts by transforming the input point coordinates (x, y, z) into the
point feature (N × 3), where N is the number of input points and 3 is the number of feature
dimensions, and then the input points are successively fed into a spatial transformation
embedding and three stacked, dilated graph attention modules, each of which produces an
DGAM feature (N × C). This is followed by a shared multilayer perceptron (MLP) layer
which concatenates all preceding DGAM features as inputs to generate the final output
feature (N × 1024).

The classification part presented in the middle of the whole architecture is utilized to
classify the input points (N × 3) into NC object categories at object-level. Firstly, the point
feature (N × 1024) generated by the encoder is processed by the max-pooling operation to
achieve a global feature (1 × 1024). Next, the global feature is successively fed into two
shared multi-layer perceptron (MLP) layers to predict the classification score of the point
cloud belonging to NC object categories. The convolutional kernel size of the two shared
MLP layers are 512 and 256, respectively, and the final classification result is determined by
the category with the maximal score.

The task of the segmentation part is to segment each input point into Ns object cate-
gories at the point-level, which includes the semantic segmentation and part segmentation.
The repeated global feature (N × 1024) and the three combined DGAMs feature are con-
catenated and then fed into two shared multilayer perceptron (MLP) layers to predict the
pointwise segmentation score belonging to Ns object categories. The convolutional kernel
size of the two shared MLP layers are 512 and 256, respectively, and the final segmentation
result is also determined by the category with the maximal score.

3.2. Spatial Transformation Embedding

The spatial transformation embedding presented in Figure 2 aims to help the network
align the input point set in a normative space, which guarantees a vantage spatial position
posture for the local feature learning. Figure 3 shows the details of the spatial transforma-
tion embedding. We first use a dilated graph module (DGAM) followed by shared MLP
layers to process the input point cloud set to generate a point feature (N × 1024). We then
utilize a max-pooling operation and two shared MLP layers to achieve the global feature.
Finally, we employ a 3 × 3 initial weight matrix to learn the transform coefficient from
the extracted global feature and multiply this with the input point set to generate the final
transformed point feature (N × 3).

Remote Sens. 2021, 13, 3484 7 of 21Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 21

Figure 3. The details of the spatial transformation embedding.

3.3. Local Dilated Graph Construction
The local dilated graph is an efficient geometric representation of 3D point clouds. It

incorporates the idea of dilation convolution [33] on the local graph to robustly utilize the
long-range points for the neighboring feature embedding of each point. As shown in Fig-
ure 4, it is different from the construction of the local graph (left) as a dilated scope rate d
is introduced into the construction of the local dilated graph (right) to allow the central
point to connect with its long-range neighbors. This enables the network to capture local
features of each point with the long-range dependency towards its neighbors. The colored
circles with labels inside represent different point clouds and each neighboring point is
sorted by its distance from the central point in the graph. The construction of the local
dilated graph mainly includes the following two major steps: dilated K-NN search and
edge calculation.

Figure 4. The schematic illustration of the local graph construction: (a) The construction of the local graph using normal
K-NN; (b) The construction of the local graph using our dilated K-NN.

3.3.1. Dilated K-NN Search
In most graph-based methods [17,31–33], the K-NN is often used to search for the k-

nearest neighborhood points around the central point at a limited scope for the construc-
tion of the local graph. It is incapable of integrating long-range geometric correlations in
a restricted space, thus limiting the geometric representation of the local points and help-
ing the point network capture more local features. To this end, we design a dilated K-NN
search based on the K-NN and explain it in Figure 5. As shown in Figure 5, suppose the
input points h = {p0, p1, ..., pn} with piϵRC, where n represents the number of points and C
represents the feature dimension of each point. The point pi = {xi, yi, zi} is represented by
its 3D coordinates, hence the C = 3. The goal is to select k dilated points mi = {pi1[d], pi2[d], …,
pik[d]} in the dilated scope d to calculate the edges of the next step.

Figure 3. The details of the spatial transformation embedding.

3.3. Local Dilated Graph Construction

The local dilated graph is an efficient geometric representation of 3D point clouds.
It incorporates the idea of dilation convolution [33] on the local graph to robustly utilize
the long-range points for the neighboring feature embedding of each point. As shown in
Figure 4, it is different from the construction of the local graph (left) as a dilated scope rate
d is introduced into the construction of the local dilated graph (right) to allow the central
point to connect with its long-range neighbors. This enables the network to capture local
features of each point with the long-range dependency towards its neighbors. The colored
circles with labels inside represent different point clouds and each neighboring point is
sorted by its distance from the central point in the graph. The construction of the local
dilated graph mainly includes the following two major steps: dilated K-NN search and
edge calculation.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 21

Figure 3. The details of the spatial transformation embedding.

3.3. Local Dilated Graph Construction
The local dilated graph is an efficient geometric representation of 3D point clouds. It

incorporates the idea of dilation convolution [33] on the local graph to robustly utilize the
long-range points for the neighboring feature embedding of each point. As shown in Fig-
ure 4, it is different from the construction of the local graph (left) as a dilated scope rate d
is introduced into the construction of the local dilated graph (right) to allow the central
point to connect with its long-range neighbors. This enables the network to capture local
features of each point with the long-range dependency towards its neighbors. The colored
circles with labels inside represent different point clouds and each neighboring point is
sorted by its distance from the central point in the graph. The construction of the local
dilated graph mainly includes the following two major steps: dilated K-NN search and
edge calculation.

Figure 4. The schematic illustration of the local graph construction: (a) The construction of the local graph using normal
K-NN; (b) The construction of the local graph using our dilated K-NN.

3.3.1. Dilated K-NN Search
In most graph-based methods [17,31–33], the K-NN is often used to search for the k-

nearest neighborhood points around the central point at a limited scope for the construc-
tion of the local graph. It is incapable of integrating long-range geometric correlations in
a restricted space, thus limiting the geometric representation of the local points and help-
ing the point network capture more local features. To this end, we design a dilated K-NN
search based on the K-NN and explain it in Figure 5. As shown in Figure 5, suppose the
input points h = {p0, p1, ..., pn} with piϵRC, where n represents the number of points and C
represents the feature dimension of each point. The point pi = {xi, yi, zi} is represented by
its 3D coordinates, hence the C = 3. The goal is to select k dilated points mi = {pi1[d], pi2[d], …,
pik[d]} in the dilated scope d to calculate the edges of the next step.

Figure 4. The schematic illustration of the local graph construction: (a) The construction of the local graph using normal
K-NN; (b) The construction of the local graph using our dilated K-NN.

3.3.1. Dilated K-NN Search

In most graph-based methods [17,31–33], the K-NN is often used to search for the k-
nearest neighborhood points around the central point at a limited scope for the construction
of the local graph. It is incapable of integrating long-range geometric correlations in a
restricted space, thus limiting the geometric representation of the local points and helping
the point network capture more local features. To this end, we design a dilated K-NN
search based on the K-NN and explain it in Figure 5. As shown in Figure 5, suppose the
input points h = {p0, p1, ..., pn} with pi ε RC, where n represents the number of points and C

Remote Sens. 2021, 13, 3484 8 of 21

represents the feature dimension of each point. The point pi = {xi, yi, zi} is represented by
its 3D coordinates, hence the C = 3. The goal is to select k dilated points mi = {pi1

[d], pi2
[d],

. . . , pik
[d]} in the dilated scope d to calculate the edges of the next step.

Remote Sens. 2021, 13, x FOR PEER REVIEW 8 of 21

Figure 5. The workflow of the designed dilated K-NN search.

3.3.2. Edge Calculation
Each point pi and its dilated points mi denote a local dilated graph Gd = (Vd, Ed), where

Vd = {pi, mi} and Ed = {ei1[d], ei2[d], …, eik[d]}. The Vd and Ed represent a set of vertices and edges,
respectively. We endeavor to construct the local dilated graph Gd of each point pi with its
multi-scope neighboring points mi for the representation of geometric correlations be-
tween local point clouds. The edges of the local dilated graph can be formulated using the
general mathematical operation between the central point and its dilated points in a 3D
local coordinate space. Each edge in the dilated graph Gd can be calculated as follows: 𝑒 = (𝑝 [] − 𝑝) || 𝑝 (1)

where || denotes the concatenation operation, pij[d] denotes the j-th dilated point of the
central point pi in the dilated scope d, and k denotes the selected number of the dilated
neighborhood points. To make the edge features efficiently learnable and avoid gradient
vanishing during the edge convolution, we utilize the concatenation operation to fuse the
central point with the edge in feature dimension to enhance the edge feature. This inspi-
ration comes from DGCNN [17].

3.4. Dilated Graph Attention Module
The designed DGAM is constructed to capture the local feature of the central point

on the local dilated graph by attending to its neighboring points. By building the local

Figure 5. The workflow of the designed dilated K-NN search.

3.3.2. Edge Calculation

Each point pi and its dilated points mi denote a local dilated graph Gd = (Vd, Ed), where
Vd = {pi, mi} and Ed = {ei1

[d], ei2
[d], . . . , eik

[d]}. The Vd and Ed represent a set of vertices and
edges, respectively. We endeavor to construct the local dilated graph Gd of each point pi
with its multi-scope neighboring points mi for the representation of geometric correlations
between local point clouds. The edges of the local dilated graph can be formulated using
the general mathematical operation between the central point and its dilated points in a 3D
local coordinate space. Each edge in the dilated graph Gd can be calculated as follows:

eij = (pij
[d] − pi) || pi (1)

where || denotes the concatenation operation, pij
[d] denotes the j-th dilated point of the

central point pi in the dilated scope d, and k denotes the selected number of the dilated
neighborhood points. To make the edge features efficiently learnable and avoid gradient
vanishing during the edge convolution, we utilize the concatenation operation to fuse

Remote Sens. 2021, 13, 3484 9 of 21

the central point with the edge in feature dimension to enhance the edge feature. This
inspiration comes from DGCNN [17].

3.4. Dilated Graph Attention Module

The designed DGAM is constructed to capture the local feature of the central point
on the local dilated graph by attending to its neighboring points. By building the local
dilated graph and embedding the offset–attention mechanism, the DGAM enables the net-
work to establish long-range geometric correlations between each point and its neighbors
and preserve more geometric information to enrich local feature representation, which is
conducive to the local fine-grained feature extraction. As shown in Figure 6, each DGAM
contains two shared MLP layers with output size of C’. The DGAM processes the input
point feature (N × C) to generate the output aggregated feature (N × C’) through the
following three major steps: the local dilated graph construction mentioned above, the
dilated edge attention convolution (DEACov), and graph attention pooling (GAP).

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 21

dilated graph and embedding the offset–attention mechanism, the DGAM enables the net-
work to establish long-range geometric correlations between each point and its neighbors
and preserve more geometric information to enrich local feature representation, which is
conducive to the local fine-grained feature extraction. As shown in Figure 6, each DGAM
contains two shared MLP layers with output size of C’. The DGAM processes the input
point feature (N × C) to generate the output aggregated feature (N × C’) through the fol-
lowing three major steps: the local dilated graph construction mentioned above, the di-
lated edge attention convolution (DEACov), and graph attention pooling (GAP).

Figure 6. The designed dilated graph attention module (DGAM).

3.4.1. Dilated Edge Attention Convolution
Given an input set of local points h = {pi, pi1, pi2, …, pik}, hϵRC, where pi is the central

point, and other points {pi1, pi2, …, pik} are its k dilated neighbors. We consider a constructed
local dilated graph Gd = (Vd, Ed) and its directed edges Ed = {ei1[d], ei2[d], …, eik[d]}. Denote F =
{f1, f2, …, fn} as a set of input–edge features and each feature fiϵRC is associated with a cor-
responding graph edge, where C is the number of feature dimensions. The designed DEA-
Cov aims to learn a function g: RC→RK to transform the input–edge features into a new set
of edge features F’ ={f’1, f’2, …, f’n} with f’iϵRK.

In order to capture fine-grained features in the local dilated graph, we embed a novel
offset–attention mechanism into the DEACov to help the network focus on learning the
discriminative feature between the attentional and inattentional edges.

Firstly, we calculate the attention–weight feature of each edge as follows: 𝛼 = 𝑎(𝑒 []) ∈(, ,…,) = 𝑎({(𝑝 [] − 𝑝) || 𝑝 }) ∈(, ,…,) (2)

where αi = {αi1, αi2, …, αik}ϵRK represents the attention–weight feature vector of k con-
structed edges of the central point, eij[d]ϵRC represents the j-th edge of the central point, and
d represents the dilated scope rate which is used to adjust the receptive field of the con-
structed dilated graph. ||, eij[d], pij[d] and pi are the same as mentioned above, and the mech-
anism a can be implemented by using a single multilayer perceptron (MLP), which can be
formulated as follows: 𝑎(𝑒 []) ∈(, ,…,) = 𝑀 (𝑒 []) ∈(, ,…,) (3)

where Ma: RC→RK represents the shared multilayer perceptron (shared MLP) layer which
realizes the mapping of input–edge features into higher-level features. Eij[d] is same as
mentioned above.

Figure 6. The designed dilated graph attention module (DGAM).

3.4.1. Dilated Edge Attention Convolution

Given an input set of local points h = {pi, pi1, pi2, . . . , pik}, h ε RC, where pi is the
central point, and other points {pi1, pi2, . . . , pik} are its k dilated neighbors. We consider a
constructed local dilated graph Gd = (Vd, Ed) and its directed edges Ed = {ei1

[d], ei2
[d], . . . ,

eik
[d]}. Denote F = {f 1, f 2, . . . , fn} as a set of input–edge features and each feature fi ε RC is

associated with a corresponding graph edge, where C is the number of feature dimensions.
The designed DEACov aims to learn a function g: RC → RK to transform the input–edge
features into a new set of edge features F’ = {f’1, f’2, . . . , f’n} with f’i ε RK.

In order to capture fine-grained features in the local dilated graph, we embed a novel
offset–attention mechanism into the DEACov to help the network focus on learning the
discriminative feature between the attentional and inattentional edges.

Firstly, we calculate the attention–weight feature of each edge as follows:

αi = a(eij
[d]) j∈(1,2,..., k) = a({(pij

[d] − pi) || pi})j∈(1,2,..., k) (2)

where αi = {αi1, αi2, . . . , αik} ε RK represents the attention–weight feature vector of k
constructed edges of the central point, eij

[d] ε RC represents the j-th edge of the central
point, and d represents the dilated scope rate which is used to adjust the receptive field
of the constructed dilated graph. ||, eij

[d], pij
[d] and pi are the same as mentioned above,

Remote Sens. 2021, 13, 3484 10 of 21

and the mechanism a can be implemented by using a single multilayer perceptron (MLP),
which can be formulated as follows:

a(eij
[d]) j∈(1,2,..., k) = Ma(eij

[d]) j∈(1,2,..., k) (3)

where Ma: RC→ RK represents the shared multilayer perceptron (shared MLP) layer which
realizes the mapping of input–edge features into higher-level features. Eij

[d] is same as
mentioned above.

Then, to properly assign the attention weight to each edge of central point pi, we
utilize the Softmax function to normalize the obtained edge attention coefficients. Each
edge attention score can be normalized as follows:

α′ iu =
exp (αiu)

∑k
j=1 exp

(
αij

) (4)

where α′iu represents the attention score of each edge and αiu represents the u-th unnormal-
ized edge–attention weight of the attentional weight vector αi.

Finally, we introduce the offset operation to calculate the offset (difference) between
the attentional and inattentional edge by way of the element-wise subtraction in the feature
dimension, followed by a shared MLP layer and fused with inattentional edge, the offset–
attention edge can be formulated as follows:

e′ iu = Ma(αiu − αiu ∗ α′ iu) + αiu (5)

where + and − represent the element-wise addition and subtraction in the feature di-
mension, respectively, and αiu and α’iu represent the attention–weight feature of the edge
eiu

[d] and its corresponding attention score, respectively. Ma and * are the same as men-
tioned above.

3.4.2. Graph Attention Pooling

To improve the efficiency of local feature aggregation, we utilize a max-pooling op-
eration on all edge–attention features of the constructed local dilated graph as our graph
attention pooling (GAP), which identifies and aggregates the most important geometric
features across all corresponding neighbors at the central point for the local feature ex-
traction. This aggregation operation not only guarantees the permutation invariance of
the unordered points, but also captures the most important geometric features with the
long-range dependency between each point and its neighbors.

Therefore, the final output of our designed DEACov can be formulated as follows:

S =
N

∏
i=1

Si =
N

∏
i=1

Max(e′ ij)j∈{1,2,...,k} (6)

where S and Si represent the significant features of input local points and reference point
pi, respectively, and e’ij represents the j-th enhanced edge of pi.

To further illustrate the capability of our designed DGAM, we visualize its process of
local feature extraction. In Figure 7, colored points represent the different point features
and the dotted circles represent the receptive field of each point in the local region. As seen
from Figure 7, the DGAM is able to significantly increase the receptive field of each input
point for capturing the wider range of neighboring information.

Remote Sens. 2021, 13, 3484 11 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 21

Then, to properly assign the attention weight to each edge of central point pi, we uti-
lize the Softmax function to normalize the obtained edge attention coefficients. Each edge
attention score can be normalized as follows: 𝛼 = 𝑒𝑥𝑝 (𝛼)∑ 𝑒𝑥𝑝 (𝛼) (4)

where α’iu represents the attention score of each edge and αiu represents the u-th unnor-
malized edge–attention weight of the attentional weight vector αi.

Finally, we introduce the offset operation to calculate the offset (difference) between
the attentional and inattentional edge by way of the element-wise subtraction in the fea-
ture dimension, followed by a shared MLP layer and fused with inattentional edge, the
offset–attention edge can be formulated as follows: 𝑒 = 𝑀 (𝛼 − 𝛼 ∗ 𝛼) + 𝛼 (5)

Where + and – represent the element-wise addition and subtraction in the feature dimen-
sion, respectively, and αiu and α’iu represent the attention–weight feature of the edge eiu[d]
and its corresponding attention score, respectively. Ma and * are the same as mentioned
above.

3.4.2. Graph Attention Pooling
To improve the efficiency of local feature aggregation, we utilize a max-pooling op-

eration on all edge–attention features of the constructed local dilated graph as our graph
attention pooling (GAP), which identifies and aggregates the most important geometric
features across all corresponding neighbors at the central point for the local feature ex-
traction. This aggregation operation not only guarantees the permutation invariance of
the unordered points, but also captures the most important geometric features with the
long-range dependency between each point and its neighbors.

Therefore, the final output of our designed DEACov can be formulated as follows:

𝑆 = 𝑆 = 𝑀𝑎𝑥(𝑒) ∈{ , ,..., } (6)

where S and Si represent the significant features of input local points and reference point
pi, respectively, and e’ij represents the j-th enhanced edge of pi.

To further illustrate the capability of our designed DGAM, we visualize its process
of local feature extraction. In Figure 7, colored points represent the different point features
and the dotted circles represent the receptive field of each point in the local region. As
seen from Figure 7, the DGAM is able to significantly increase the receptive field of each
input point for capturing the wider range of neighboring information.

Figure 7. The illustration of the dilated graph attention module (DGAM).

Figure 7. The illustration of the dilated graph attention module (DGAM).

3.5. Comparison with Existing Methods

In this section, we theoretically illustrate the details of our proposed method and
compare our attention point network to other state-of-the-art networks. We firstly explain
how the point network extracts the local feature for the representation of local regions and
then we discuss the difference between the existing methods and our proposed method.

Given an input point pi which selects k local points near it, we define the local feature
function of the reference point pi as follows:

f (pi) = g(
{

h
(

pi, pij)
}

j∈(1,2,...,k)) (7)

where g(.) is a symmetric function, h(.) is a non-linear function, and pij is the j-th corre-
sponding neighboring point of reference point pi.

PointNet [12] has not achieved the local feature extraction; it operates on the input
points individually and captures the most significant point features by using the max-
pooling operation. Hence, the local feature function can be described as follows:

f (pi) = max({mlp(pi)}j∈(1,2,...,k)) (8)

where max(.) represents the max-pooling operation and mlp(.) represents the multilayer
perceptron used to learn the point feature.

Extended from the PointNet, PointNet++ [13] conducts the local feature extraction by
associating each reference point pi and its corresponding neighboring point pij. Thus, the
local feature function in PointNet++ can be denoted as follows:

f (pi) = max(
{

mlp
(

pi, pij
)}

j∈(1,2,...,k) (9)

where max(.), mlp(.), pi, and pij are the same as mentioned above.
DGCNN [15] employs K-NN to construct an efficient graph-like region for repre-

senting the local points and processes by concatenating each reference point pi and its
corresponding edge (pij − pi). The local feature function can be defined as follow:

f (pi) = max(
{

mlp
(

pi, pij − pi
)}

j∈(1,2,...,k)) (10)

where max(.), mlp(.), pi, and pij are the same as mentioned above.
Significantly, in the local graph constructed by the DGCNN, the contribution coeffi-

cient of each edge to the reference point is equal to 1. LAE-Cov [33] introduces the attention
mechanism to properly assign neighboring edges contribution coefficients according to the
spatial distance of neighbors from the reference point. The local feature function can be
defined as follows:

f (pi) = sum(
{

α′ ij ∗mlp
(

pij
)}

j∈(1,2,...,k)) (11)

Remote Sens. 2021, 13, 3484 12 of 21

where sum(.) represents a pointwise summation operation, α’ij represents the attentional
score of j-th edge (pij − pi) of the reference point pi, and mlp(.) and pij are the same as
mentioned above.

Our proposed DGANet is different from the aforementioned existing methods. The
main characteristic of our proposed DGANet is reflected on two aspects. Firstly, rather than
using the normal K-NN search algorithm to build the local region fed into the network,
we utilize an improved dilated K-NN search algorithm to construct a local dilated graph
with the consideration of long-range dependency between the reference point and its
corresponding neighbors. Secondly, we introduce a novel offset–attention mechanism
embedded into the designed DGAM to conduct the edge feature learning on the constructed
dilated graph by considering the difference between the attentional and the inattentional
edge features. Subsequently, the graph attention pooling is leveraged to aggregate all the
learned edge features. This is the most important geometric feature to achieve the local
fine-grained feature extraction on point clouds. Thus, the local feature function of the
reference point pi in our DGANet can be defined as follows:

f (pi) = max(
{

mlp2
(
mlp1

(
pij − pi

)
− α′ ij ∗mlp1

(
pij − pi

))
+ mlp1

(
pij − pi

)}
j∈(1,2,...,k)) (12)

where max(.), mlp(.), pi, and pij are the same as mentioned above.
In summary, the key differences of our method from previous works lie in the dilated

K-NN search used to establish the long-range correlation between each point and its neigh-
bors and the offset–attention mechanism introduced to focus on the geometric difference
between two connected points and their long-range dependency.

4. Experiments

In this section, we carry out extensive experiments to evaluate the proposed DGANet
on two challenging benchmark datasets for various tasks, including 3D object classification
and part segmentation. We then discuss the results and conduct ablation studies of network
variations and different hyper-parameter settings as well as compare the performance of
our network with respect to existing state-of-the-art methods.

4.1. Classification on the ModelNet40 Dataset
4.1.1. Dataset

The ModelNet40 [7] dataset is a classical point benchmark which contains 12,311 meshed
CAD models manually annotated with semantic point labels from 40 categories including
airplane, car, desk, and so on. The dataset was divided into 9843 models used for training
and 2468 models used for testing. To keep the consistency of the input data for the network
training, each model was normalized in a unit sphere space and uniformly sampled into
1024 points from the mesh surface. It is worth noting that we only use the coordinates (x,
y, z) of input points; other original point attributes are abandoned. During the stage of
network training, we augmented the input data by randomly rotating and scaling, as well
as jittering, the point location.

4.1.2. Task and Metrics

To verify the effectiveness of our proposed DGANet on the ModelNet40 dataset for
the 3D object classification task, we select the classification part of the DGANet as a classi-
fication sub-network to carry out the extensive experiments in a consistent environment
and we choose several classical point classification methods to compare with our proposed
method. The classification performance of tested methods is quantitatively evaluated with
the following metrics: mean per-class accuracy (mA) and overall accuracy (OA). Further-
more, the number of network parameters and the floating-point operations (FLOPs) are
typically selected to quantify the space complexity and time complexity of our method

Remote Sens. 2021, 13, 3484 13 of 21

with other compared methods. The metrics of mean per-class accuracy (mA) and overall
accuracy (OA) can be calculated as follows:

mA =
∑c

i=1 mAi

Nc
, mAi =

N(TP)i
Ni

(13)

OA =
∑n

i=1 N(TP)i
NT

(14)

where mAi represents the mean accuracy of the category i, N(TP)i and Ni represent the
number of 3D meshed models that correctly classified into category i and the number of 3D
meshed models belonging to category i, respectively, and Nc and NT represent the number
of categories and number of total 3D meshed models, respectively.

4.1.3. Implementation Details

Our proposed network was implemented on the open Tensorflow framework and
trained on the NVIDIA GTX2080Ti GPU. During the training stage, we used the classifica-
tion part of our proposed framework as illustrated in Figure 7. The model was optimized
by the Adam [36] algorithm with the momentum set to 0.9, the batch size set to 16, and the
learning rate initially set to 0.001 and decayed every 200 k steps with a decay rate of 0.7. It
took 250 epochs to train our classification sub-network and we chose the trained model
with the best score of overall accuracy.

4.1.4. Results and Discussion

The quantitative evaluations of the ModelNet40 dataset are shown in Table 1. Our pro-
posed DGANet with the powerful ability for local feature learning obtains the considerable
score in mA (89.4%) and OA (92.3%), which are 3.7% and 3.5% improvements, respectively,
compared with that of the PointNet. It demonstrates higher overall accuracy for tested
CAD models, with approximately half of the parameters of the PointNet, and outperforms
the DGCNN by 0.4% for overall accuracy with fewer computational costs. It also outper-
formed most of the compared methods as well, demonstrating that our proposed method
has achieved the best overall performance in the classification task considering accuracy
and complexity among the compared state-of-the art methods.

Table 1. Classification results on the ModelNet40 dataset.

Method Input Points mA (%) OA (%) Params (Million) FLOPs (108)

3DShapeNets [7] C 1 k 77.3 84.7 - -
VoxNet [12] C 1 k 83 85.9 0.77 -

PointNet [14] C 1 k 86.2 89.2 3.48 1.88
Kc-Net [37] C 1 k - 91 0.9 -
Kd-Net [27] C 32 k 88.5 91.8 2 -

PointNet++ (ssg) [15] C 1 k - 90.7 1.47 1.37
PointNet++ (msg) [15] C, N 5 k - 91.9 1.74 6.41

PointCNN [29] C 1 k 88.1 92.2 0.45 -
SpiderCNN [38] C, N 1 k - 92.4 - -

DGCNN [17] C 1 k 89.5 91.9 1.84 4.63
PointCov [23] C, N 1 k - 92.2 1.96 1.87

Ours C 1 k 89.4 92.3 1.72 4.31

C and N stand for coordinates and normals, respectively.

We can observe from Table 1 that the compared 3DShapeNet obtains a relatively
worse result. This is due to the limitation of the voxel grid method which loses detailed
information when representing 3D models. Meanwhile, the voxel-based methods like
VoxNet, Kc-Net, and Kd-Net also suffer the same problem and will also consume extra
computational resources when conducting the convolution calculation on the empty voxel
grid. It is noteworthy that the SpiderCNN achieves the highest score in OA (92.4%)

Remote Sens. 2021, 13, 3484 14 of 21

due to its multi-scale hierarchical architecture and designed SpiderConv operation. The
satisfying results that our network has achieved mainly owe to the following factors.
To begin with, we use an improved K-NN search algorithm to expand the construction
range of the local graph for each point. Compared with the normal K-NN employed by
the DGCNN, the dilated K-NN enables the network to learn more local discriminative
geometric features of each point with a larger receipt field on the constructed graph-like
local region. Additionally, the designed dilated graph attention module (DGAM) is efficient
in attaching different importance to the discrepancy features between each point and its
neighboring points. Specifically, we use a novel offset–attention mechanism to explore the
geometric feature difference between the central point and its corresponding edges on the
local dilated graph, thus allowing the network to distinguish the category of each point
with the help of the learned edge attention features. Finally, we utilize graph attention
pooling to aggregate the most significant learned edge features from neighboring points
to better exploit the details of local regions of point clouds. In fact, our graph attention
pooling considers all the local neighborhood features by aggregating the attention-weighted
features of neighbors as the most significant local feature for each input point. As a result,
our network shows a powerful ability to fully extract local fine-grained features and yields
a considerable classification result compared to other developed state-of-the-art methods.

4.1.5. Ablation Studies and Analysis

To further investigate the effectiveness of our proposed method, we conduct supple-
mental ablation experiments with different hyper-parameter settings on our classification
sub-network on the ModelNet40 dataset.

Firstly, we experiment with different numbers of nearest neighbors, k, and dilated
scope rates, d. Limited by the GPU memory, we do not experiment with all possible k and
d. During the training model, we uniformly set the number of input points to 1024 and set
the batch size to 16 when k is 20 and 8 when k is 30. The other training parameter settings
are consistent with the above experiment.

Table 2 shows the quantitative evaluation of the classification results. We can observe
that the score of the OA presents a trend of increasing first and then decreasing with the
increase in k and d. Our proposed classification sub-network achieves the highest score of
89.4% on mA and 92.3% on OA, respectively, when k = 20 and d = 2. Thus, we set the k to
20 and d to 2 in the following ablation experiments.

Table 2. Results of our network with different hyper-parameter settings on the ModelNet40 dataset.

Number of Neighbors
(k)

Search Method of Local
Graph Construction mA (%) OA (%)

10 normal K-NN (d = 1) 87.6 91.2
10 dilated K-NN (d = 3) 88.7 91.9
10 dilated K-NN (d = 5) 87.2 90.7

20 normal K-NN (d = 1) 88.6 91.9
20 dilated K-NN (d = 2) 89.4 92.3
20 dilated K-NN (d = 3) 88.4 91.1

30 normal K-NN (d = 1) 88.2 91.6
30 dilated K-NN (d = 2) 89.3 91.8
30 dilated K-NN (d = 3) 88.1 90.9

The d stands for dilated scope rate used to expend the search range when constructing the local dilated graph.

We note that when constructing a local graph of point clouds with a small number of
neighbors (k of 10) and a dilated scope rate (d of 1), our proposed network fails to extract
sufficient local detailed point features from a small receptive field of convolution operation
on the constructed graph-like data. In addition, setting k to 10 and d to 5 makes learning
useful local features from a large receptive field difficult for the network, thus causing a
lower score on mA and OA. Furthermore, compared with the normal K-NN search method,

Remote Sens. 2021, 13, 3484 15 of 21

when the number of neighbors is set to 10, we also observe that the dilated K-NN, which
establishes the long-range correction between the reference point and its dilated neighbors,
enlarges the receptive field of the network and promotes the local feature learning on
a certain range of local regions. This therefore helps the network capture more useful,
detailed information and achieve higher scores of mA and OA. Significantly, excessive k or
d values will lead to a decrease in the performance of the network due to the introduction of
redundant, useless point features when constructing the local graph for each point. Hence,
an appropriate setting of k and d is particularly important in the performance of the point
neural network.

In addition, we further verify the robustness of our classification sub-network by
changing the number of input points during testing. Our network was trained on 1024 points
with the number of neighbors, k, at 20. After model training, we used the trained network
model to predict test samples with random input dropout.

As illustrated in Figure 8, within 1024 input points, we can observe that the denser
the input points, the better the performance of our network. Even with half of the input
points, our network still performs stably and robustly. When the number of input points
are reduced to less than 512, the performance of our network degenerates dramatically
due to the lack of neighboring feature embedding for each input point. Simultaneously,
our network obtains considerable overall performance. This is because of the dilated
graph-like region we construct for each input point and the novel attention mechanism we
embed that our network uses to capture more significant features of local points to boost
the performance of the network as the input points decrease. In addition, with respect to
the other hyper-parameter setting of the network architecture, such as the dimensionality
of the output feature vectors, we set the number of the output feature dimension of our
graph attention pooling operation to 1024, which is actually a symmetrical function like the
max-pooling operation used in the compared PointNet [14] and DGCNN [17]. This aims
to preserve more point features from the unordered input point set and thus efficiently
overcome the permutation invariance problem of 3D point cloud data and improve the
performance of network.

Remote Sens. 2021, 13, x FOR PEER REVIEW 15 of 21

Table 2. Results of our network with different hyper-parameter settings on the ModelNet40 dataset.

Number of Neighbors
(k)

Search Method of Local Graph
Construction mA (%) OA (%)

10 normal K-NN (d = 1) 87.6 91.2
10 dilated K-NN (d = 3) 88.7 91.9
10 dilated K-NN (d = 5) 87.2 90.7
20 normal K-NN (d = 1) 88.6 91.9
20 dilated K-NN (d = 2) 89.4 92.3
20 dilated K-NN (d = 3) 88.4 91.1
30 normal K-NN (d = 1) 88.2 91.6
30 dilated K-NN (d = 2) 89.3 91.8
30 dilated K-NN (d = 3) 88.1 90.9

The d stands for dilated scope rate used to expend the search range when constructing the local
dilated graph.

In addition, we further verify the robustness of our classification sub-network by
changing the number of input points during testing. Our network was trained on 1024
points with the number of neighbors, k, at 20. After model training, we used the trained
network model to predict test samples with random input dropout.

As illustrated in Figure 8, within 1024 input points, we can observe that the denser
the input points, the better the performance of our network. Even with half of the input
points, our network still performs stably and robustly. When the number of input points
are reduced to less than 512, the performance of our network degenerates dramatically
due to the lack of neighboring feature embedding for each input point. Simultaneously,
our network obtains considerable overall performance. This is because of the dilated
graph-like region we construct for each input point and the novel attention mechanism
we embed that our network uses to capture more significant features of local points to
boost the performance of the network as the input points decrease. In addition, with re-
spect to the other hyper-parameter setting of the network architecture, such as the dimen-
sionality of the output feature vectors, we set the number of the output feature dimension
of our graph attention pooling operation to 1024, which is actually a symmetrical function
like the max-pooling operation used in the compared PointNet [14] and DGCNN [17].
This aims to preserve more point features from the unordered input point set and thus
efficiently overcome the permutation invariance problem of 3D point cloud data and im-
prove the performance of network.

Figure 8. The illustration of random input dropout in point cloud: (a) Results of our network with random input dropout;
(b) Test samples with different numbers of points.

4.2. Part Segmentation on the ShapeNet Part Dataset
4.2.1. Dataset

The ShapeNet part [18] dataset is a richly annotated, large-scale dataset of 3D shapes
collected by Stanford University et al. It provides semantic category labels for the parts of

Remote Sens. 2021, 13, 3484 16 of 21

models, index number of each model, as well as other planned annotations. The dataset
is composed of 16,881 CAD models from 16 categories. Each shaped model is annotated
with 50-part classes and labeled with less than 6 parts. We divided the dataset into 14,007
models used for training and 2847 models for testing, and uniformly sampled 2048 points
from each training model.

4.2.2. Task and Metrics

To validate the impact of our proposed DGANet on the ShapeNet part dataset for
the part segmentation task, we take the segmentation part of the DGANet as a segmen-
tation sub-network to conduct the experiments in a consistent environment. Several
mainstream segmentation methods are typically selected to make a comparison with
our proposed method. The part segmentation performance is evaluated with the part-
average Intersection-over-Union (pIoU) and overall accuracy (OA). The metric of the
overall accuracy (OA) is calculated the same as mentioned above, and the part-average
Intersection-over-Union (pIoU) can be calculated as follows:

pIoU =
∑c

i=1 IoUi

Nc
, IoUi =

N(TP)i
N(TP)i + N(FP)i + N(FN)i

(15)

where IoUi represents the averaged IoUs for all parts that fall into the same category I,
N(TP)i represents the number of 3D models belonging to the category i and the parts of
each 3D model that are correctly classified into their corresponding part categories, N(FP)i
represents the number of 3D models belonging to category i and the wrong parts of each
3D model that are wrongly classified into correct part categories, N(FN)i represents the
number of 3D models belonging to category i and the correct parts of each 3D model
that are wrongly classified into wrong part categories, and Nc represents the number of
categories for all 3D models.

4.2.3. Implementation Details

For the part segmentation task, the training process of our semantic segmentation
sub-network is similar to the process in the above classification task except for the network
used for the semantic segmentation. The number of neighbors is set to 20 and the dilated d
set to 2, the learning rate decays every 300 k with a decay rate of 0.7, and the batch size is
set to 8 due to GPU memory-size limitations. Finally, it took approximately 150 epochs to
cover our semantic segmentation network.

4.2.4. Results and Discussion

Table 3 shows the quantitative comparisons of different part segmentation networks.
As seen in Table 3, our network obtains a considerable score in pIoU (85.2%), which
reaches the approximate performance of other compared state-of-the-art methods. The
experimental results demonstrate that our proposed method has the capacity to fully
capture the local fine-grained features for the part segmentation of 3D objects. In fact,
our network and the SPGN obtain the best scores in most of the categories for part–
segmentation compared to the PointNet and DGCNN. SpiderCNN has no best score in any
category, although the part–average IoU is slightly higher than our network. It is also worth
mentioning that SPGN obtains the best performance in part segmentation tasks due to the
introduction of the similarity matrix which represents the similarity of each pair of points
in the embedded feature space to improve the performance of point cloud segmentation.

Figure 9 shows the representative visual part segmentation results of the tested meth-
ods. Some detailed areas are marked by red oval circles. We can observe from the first
row that the compared PointNet fails to discriminate the circled local points of support
bars of the chair and misclassifies them as the support feet of the chair. The compared
DGCNN also suffers misclassification and insufficient performance when segmenting the
circled points of support bars of the chair. In contrast, our network is able to accurately
segment the support bars of the chair on both sides and the part segmentation result is

Remote Sens. 2021, 13, 3484 17 of 21

more consistent with the ground truth label. From the second and third rows, with respect
to the part segmentation of the motorcycle and the fighter aircraft, we also note that our
network achieves relatively accurate and smooth boundaries, especially at the body of the
motorcycle and the wing of the fighter aircraft as shown in the marked areas which high-
light the detailed segmentation results of some local points of tested 3D objects. Specifically,
when segmenting the parts of the motorcycle, the compared PointNet and DGCNN fail to
segment the boundary points between the body and head of the motorcycle and achieve a
blurry boundary. Simultaneously, when segmenting the parts of the fighter aircraft, the
compared PointNet and DGCNN also fail to distinguish the boundary point between the
body and wing of the fighter aircraft and achieve a coarse boundary. Therefore, seen from
the visual-part segmentation results, it is obvious that our proposed method works better
in the feature extraction of the local points and can better segment the parts of 3D objects
than the compared methods.

Table 3. Part segmentation results on the ShapeNet part dataset.

Method pIoU Air Bag Cap Car Cha. Ear Gua. Kin. Lam. Lap Mot. Mug Pis. Roc. Ska. Tab.

Kd-Net [27] 82.3 80.1 74.6 74.3 70.3 88.6 73.5 90.2 87.2 81.0 94.9 57.4 86.7 78.1 51.8 69.9 80.3
Kc-Net [37] 83.7 82.8 81.5 86.4 77.6 90.3 76.8 91.0 87.2 84.5 95.5 69.2 94.4 81.6 60.1 75.2 81.3

PointNet [14] 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
3DmFV [39] 84.3 82.0 84.3 86.0 76.9 89.9 73.9 90.8 85.7 82.6 95.2 66.0 94.0 82.6 51.5 73.5 81.8
PCNNet [40] 85.1 82.4 80.1 85.5 79.5 90.8 73.2 91.3 86.0 85.0 95.7 73.2 94.8 83.3 51.0 75.0 81.8
DGCNN [17] 85.1 84.2 83.7 84.4 77.1 90.9 78.5 91.5 87.3 82.9 96.0 67.0 93.3 82.6 59.7 75.5 82.0

SpiderCNN [38] 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.8
SGPN [41] 85.8 80.4 78.6 78.8 71.5 88.6 78.0 90.9 83.0 78.8 95.8 77.8 93.8 87.4 60.1 92.3 89.4

Ours 85.2 84.6 85.7 87.8 78.5 91.0 77.3 91.2 87.9 82.4 95.8 67.8 94.2 81.1 59.7 75.7 82.0
Remote Sens. 2021, 13, x FOR PEER REVIEW 51 of 54

(a) (b) (c) (d) (e)

Figure 9. Visual comparison of part segmentation results on ShapeNet part dataset: (a) Input point clouds; (b) Ground

truth labels; (c) Results of PointNet; (d) Results of DGCNN; (e) Results of our DGANet. Red circles in this figure represent

the local detailed segmentation results of the tested 3D models.

4.2.5. Ablation Studies and Analysis

We perform an ablation study on the different components of the proposed DGANet

to explore the influence of various component choices made in the DGANet. We choose

the ShapeNet part dataset as a test benchmark to compare different options.

In order to investigate the effect of the designed spatial transformation embedding

(STE) and dilated graph attention module (DGAM) on the point cloud segmentation’s

overall accuracy, the STE and DGAM were selectively removed in the proposed DGANet

to conduct the ablation experiment. According to the different component choices, we de-

signed four kinds of comparative networks, namely, network A (not using STE and

DGAM), network B (only using STE), network C (only using DGAM), and our proposed

network (using both STE and DGAM). In addition, we set the number of neighbors, k, to

20 and dilated scope, d, to 2 when training the network model. Instead of the DGAM, we

use the normal K-NN and the shared MLP layer to construct the network and make the

contrast experiments. The STE is an embedding block which can be removed from the

network without any effect on the network training.

The quantitative evaluation of the part segmentation results of our network with dif-

ferent components is shown in Table 4. We can observe that when both the STE and

DGAM are removed from our network, network A achieves the lowest pIoU score

(83.7%), while network B, which only uses STE, and network C, which only uses DGAM,

both achieve higher pIoU scores than the compared network A. It is worth noting that our

proposed network obtains the best performance and shows a considerable increase in

pIoU (1.8%) compared to network A.

Compared to the segmentation results of network A, which does not use both STE

and DGAM, network B, network C, and our proposed network have achieved better per-

formance in the part segmentation task. It is obvious that both the designed STE and

DGAM have improved performances compared to the proposed network. The main ad-

vantage of the STE lies in its powerful ability to deal with the transformation–invariance

Figure 9. Visual comparison of part segmentation results on ShapeNet part dataset: (a) Input point clouds; (b) Ground
truth labels; (c) Results of PointNet; (d) Results of DGCNN; (e) Results of our DGANet. Red circles in this figure represent
the local detailed segmentation results of the tested 3D models.

The main reason for the considerable part segmentation results achieved by our
network relates to how deep neural networks directly work on point clouds. Their way of
constructing local regions and conducting the convolution operation on local points are
critical steps that directly impact the local feature extraction of point clouds and, therefore,
the segmentation results. By using the designed dilated K-NN search method, we can
construct a dilated graph-like local region for each input point by utilizing the long-range
geometric dependency between the reference point and its neighbors, thus allowing the

Remote Sens. 2021, 13, 3484 18 of 21

proposed network to extract more local, detailed information to better segment small
objects. Furthermore, the geometric difference between each point and its corresponding
neighbors can be considered by embedding a novel offset–attention mechanism into the
designed dilated graph attention module (DGAM). Our network is able to capture the
discriminative geometric features on local points to further improve the identification
ability of boundary points. Therefore, our proposed network can obtain better performance
in the part segmentation task.

4.2.5. Ablation Studies and Analysis

We perform an ablation study on the different components of the proposed DGANet
to explore the influence of various component choices made in the DGANet. We choose
the ShapeNet part dataset as a test benchmark to compare different options.

In order to investigate the effect of the designed spatial transformation embedding
(STE) and dilated graph attention module (DGAM) on the point cloud segmentation’s
overall accuracy, the STE and DGAM were selectively removed in the proposed DGANet
to conduct the ablation experiment. According to the different component choices, we
designed four kinds of comparative networks, namely, network A (not using STE and
DGAM), network B (only using STE), network C (only using DGAM), and our proposed
network (using both STE and DGAM). In addition, we set the number of neighbors, k, to
20 and dilated scope, d, to 2 when training the network model. Instead of the DGAM, we
use the normal K-NN and the shared MLP layer to construct the network and make the
contrast experiments. The STE is an embedding block which can be removed from the
network without any effect on the network training.

The quantitative evaluation of the part segmentation results of our network with
different components is shown in Table 4. We can observe that when both the STE and
DGAM are removed from our network, network A achieves the lowest pIoU score (83.7%),
while network B, which only uses STE, and network C, which only uses DGAM, both
achieve higher pIoU scores than the compared network A. It is worth noting that our
proposed network obtains the best performance and shows a considerable increase in pIoU
(1.8%) compared to network A.

Table 4. Results of our network with different components on the ShapeNet part dataset.

Method STE DGAM pIoU (%) OA (%)

Network A × × 83.7 93.6
Network B

√
× 84.1 93.8

Network C ×
√

84.7 94.0
Ours

√ √
85.2 94.3

STE stands for spatial transformation embedding illustrated in Figure 3.

Compared to the segmentation results of network A, which does not use both STE and
DGAM, network B, network C, and our proposed network have achieved better perfor-
mance in the part segmentation task. It is obvious that both the designed STE and DGAM
have improved performances compared to the proposed network. The main advantage of
the STE lies in its powerful ability to deal with the transformation–invariance problem of
the input points, thus better helping the network to efficiently learn the significant point
features. Furthermore, the DGAM is able to capture the most significant features in the
local region. As a result, our network takes full advantage of combining them together
to extract more local, fine-grained features for each input point and obtains robust and
considerable overall performance.

5. Conclusions

In this paper, we proposed a novel point network (DGANet) for local feature extraction
on 3D point clouds. The proposed DGANet is built on the stacked dilated graph attention
modules (DGAM) which enable the network to efficiently learn the local neighboring

Remote Sens. 2021, 13, 3484 19 of 21

representation by utilizing the long-range dependencies provided by the constructed local
dilated graph-like region for each input point. In the designed DGAM, the offset–attention
mechanism is integrated to help the network focus on significant fine-grained features.
It is therefore capable of tackling the deficient local geometric representation and lack of
details found in other methods. In addition, by using graph attention pooling, the DGAM
is able to preserve more local discriminative features and enhance the network’s robustness.
The proposed DGANet has been evaluated on two challenging point cloud datasets and
achieved a considerable performance in both 3D object classification and segmentation
tasks. In particular, the proposed DGANet shows a considerable 92.3% overall accuracy
in the classification task of the ModelNet40 dataset and 94.3% overall accuracy in the
part segmentation task of the ShapeNet part dataset. Our proposed network can be
used on many other lidar point cloud datasets as well, which shows the great potential
in information extraction of 3D lidar point clouds for many applications in the field of
remote sensing, such as land cover classification and urban infrastructure mapping. The
experimental results demonstrate that our proposed DGANet not only has the capability to
fully extract local features on point clouds with consideration of the important long-range
relations in the local regions, especially when extracting detailed geometric features, but
also shows the efficiency in the graph computation of local points and the understanding
of their geometric relationship. Moreover, extensive ablation experiments using two
challenging benchmarks further verify the effectiveness and powerful generation ability of
the proposed DGANet.

In the future, we will continue to focus on the refinement of the network architecture
for local feature extraction on point clouds. Research on how to further enhance the feature
representation of local points by fusing 2D image features with 3D point features will
also be pursued. Moreover, when training the network model on different point cloud
benchmarks, the refinement of the loss function has the potential to improve the quality of
local feature extraction for 3D object classification and segmentation tasks. Therefore, in
future research, we will design and realize a 2D feature integrated point network with an
improved loss function to yield more accurate and complete local feature extraction results
on point clouds.

Author Contributions: J.W. and Q.Q. proposed the network architecture design and the framework
of extracting local features on point clouds. J.W., Z.Z. and D.Y. performed the experiments and
analyzed the data. J.W. wrote and revised the paper. Q.Q., Y.X. and Z.X. provided valuable advice
for the experiments and writing. All authors have read and agreed to the published version of
the manuscript.

Funding: This study is funded by National Natural Science Foundation of China (42001340 U1711267,
41671400), Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, and
Ministry of Natural Resources (KF-2020-05-068).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. The datasets
can be found here: http://modelnet.cs.princeton.edu/ and https://www.shapenet.org/.

Acknowledgments: The authors thank the Stanford University for providing the experimental
datasets. The authors also thank all editors and reviewers for their helpful comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Han, X.; Dong, Z.; Yang, B. A Point-Based Deep Learning Network for Semantic Segmentation of MLS Point Clouds. ISPRS J.

Photogramm. Remote Sens. 2021, 175, 199–214. [CrossRef]
2. Bello, S.A.; Yu, S.; Wang, C.; Adam, J.M.; Li, J. Review: Deep Learning on 3D Point Clouds. Remote Sens. 2020, 12, 1729. [CrossRef]
3. Niemeyer, J.; Rottensteiner, F.; Soergel, U. Contextual Classification of Lidar Data and Building Object Detection in Urban Areas.

ISPRS J. Photogramm. Remote Sens. 2014, 87, 152–165. [CrossRef]

http://modelnet.cs.princeton.edu/
https://www.shapenet.org/
http://doi.org/10.1016/j.isprsjprs.2021.03.001
http://doi.org/10.3390/rs12111729
http://doi.org/10.1016/j.isprsjprs.2013.11.001

Remote Sens. 2021, 13, 3484 20 of 21

4. Reitberger, J.; Schnörr, C.; Krzystek, P.; Stilla, U. 3D Segmentation of Single Trees Exploiting Full Waveform LIDAR Data. ISPRS J.
Photogramm. Remote Sens. 2009, 64, 561–574. [CrossRef]

5. Yan, W.Y.; Shaker, A.; El-Ashmawy, N. Urban Land Cover Classification Using Airborne LiDAR Data: A Review. Remote Sens.
Environ. 2015, 158, 295–310. [CrossRef]

6. Xu, Y.; Xie, Z.; Chen, Z.; Xie, M. Measuring the similarity between multipolygons using convex hulls and position graphs. Int. J.
Geogr. Inf. Sci. 2021, 35, 847–868. [CrossRef]

7. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A Deep Representation for Volumetric Shapes. In
Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June
2015; pp. 1912–1920.

8. Chang, A.X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.; Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su, H.; et al. ShapeNet:
An Information-Rich 3D Model Repository. arXiv 2015, arXiv:1512.03012.

9. Dai, A.; Chang, A.X.; Savva, M.; Halber, M.; Funkhouser, T.; Nießner, M. ScanNet: Richly-Annotated 3D Reconstructions of
Indoor Scenes. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 2432–2443.

10. Su, H.; Maji, S.; Kalogerakis, E.; Learned-Miller, E. Multi-View Convolutional Neural Networks for 3D Shape Recognition.
In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 945–953.

11. Hu, Q.; Yang, B.; Xie, L.; Rosa, S.; Guo, Y.; Wang, Z.; Trigoni, N.; Markham, A. RandLA-Net: Efficient Semantic Segmentation of
Large-Scale Point Clouds. arXiv 2020, arXiv:1911.11236.

12. Maturana, D.; Scherer, S. VoxNet: A 3D Convolutional Neural Network for Real-Time Object Recognition. In Proceedings of the
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October
2015; pp. 922–928.

13. Lyu, Y.; Huang, X.; Zhang, Z. Learning to Segment 3D Point Clouds in 2D Image Space. arXiv 2020, arXiv:2003.05593.
14. Charles, R.Q.; Su, H.; Kaichun, M.; Guibas, L.J. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In

Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 77–85.

15. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a MetricSpace. In Proceedings
of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, Long Beach, CA, USA, 4–9 December 2017; pp. 5099–5108.

16. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907.
17. Wang, Y.; Sun, Y.; Liu, Z.; Sarma, S.E.; Bronstein, M.M.; Solomon, J.M. Dynamic Graph CNN for Learning on Point Clouds. arXiv

2018, arXiv:1801.07829. [CrossRef]
18. Armeni, I.; Sener, O.; Zamir, A.R.; Jiang, H.; Brilakis, I.; Fischer, M.; Savarese, S. 3D Semantic Parsing of Large-Scale Indoor Spaces.

In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30
June 2016; pp. 1534–1543.

19. Lawin, F.J.; Danelljan, M.; Tosteberg, P.; Bhat, G.; Khan, F.S.; Felsberg, M. Deep Projective 3D Semantic Segmentation. In
Proceedings of the Computer Analysis of Images and Patterns; Felsberg, M., Heyden, A., Krüger, N., Eds.; Springer International
Publishing: Basel, Germany, 2017; pp. 95–107.

20. Yu, T.; Meng, J.; Yuan, J. Multi-View Harmonized Bilinear Network for 3D Object Recognition. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 186–194.

21. Zhang, L.; Sun, J.; Zheng, Q. 3D Point Cloud Recognition Based on a Multi-View Convolutional Neural Network. Sensors 2018,
18, 3681. [CrossRef]

22. Kalogerakis, E.; Averkiou, M.; Maji, S.; Chaudhuri, S. 3D Shape Segmentation with Projective Convolutional Networks. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July
2017; pp. 6630–6639.

23. Le, T.; Bui, G.; Duan, Y. A Multi-View Recurrent Neural Network for 3D Mesh Segmentation. Comput. Graph. 2017, 66, 103–112.
[CrossRef]

24. Tang, H.; Liu, Z.; Zhao, S.; Lin, Y.; Lin, J.; Wang, H.; Han, S. Searching Efficient 3D Architectures with Sparse Point-Voxel
Convolution. In ECCV 2020, Proceedings of the Computer Vision, Glasgow, UK, 23–28 August 2020; Vedaldi, A., Bischof, H., Brox, T.,
Frahm, J.-M., Eds.; Springer International Publishing: Basel, Germany, 2020; pp. 685–702.

25. Deng, J.; Shi, S.; Li, P.; Zhou, W.; Zhang, Y.; Li, H. Voxel R-CNN: Towards High Performance Voxel-Based 3D Object Detection.
arXiv 2021, arXiv:2012.15712.

26. Hůlková, M.; Pavelka, K.; Matouskova, E. Automatic Classification of Point Clouds for Highway Documentation. Acta Polytech.
2018, 58, 165. [CrossRef]

27. Klokov, R.; Lempitsky, V. Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models. In Proceedings of
the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 863–872.

28. Tatarchenko, M.; Dosovitskiy, A.; Brox, T. Octree Generating Networks: Efficient Convolutional Architectures for High-Resolution
3D Outputs. arXiv 2017, arXiv:1703.09438.

http://doi.org/10.1016/j.isprsjprs.2009.04.002
http://doi.org/10.1016/j.rse.2014.11.001
http://doi.org/10.1080/13658816.2020.1800016
http://doi.org/10.1145/3326362
http://doi.org/10.3390/s18113681
http://doi.org/10.1016/j.cag.2017.05.011
http://doi.org/10.14311/AP.2018.58.0165

Remote Sens. 2021, 13, 3484 21 of 21

29. Li, Y.; Bu, R.; Sun, M.; Wu, W.; Di, X.; Chen, B. PointCNN: Convolution On X-Transformed Points. In Proceedings of the Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018 (NeurIPS
2018), Montréal, QC, Canada, 3–8 December 2018; pp. 828–838.

30. Wu, W.; Qi, Z.; Fuxin, L. PointConv: Deep Convolutional Networks on 3D Point Clouds. In Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 9613–9622.

31. Zhang, Y.; Rabbat, M. A Graph-CNN for 3D Point Cloud Classification. arXiv 2018, arXiv:1812.01711.
32. Te, G.; Hu, W.; Guo, Z.; Zheng, A. RGCNN: Regularized Graph CNN for Point Cloud Segmentation. arXiv 2018, arXiv:1806.02952.
33. Liang, Z.; Yang, M.; Wang, C. 3D Graph Embedding Learning with a Structure-Aware Loss Function for Point Cloud Semantic

Instance Segmentation. IEEE Robot. Autom. Lett. 2020, 5, 4915–4922. [CrossRef]
34. Wang, L.; Huang, Y.; Hou, Y.; Zhang, S.; Shan, J. Graph Attention Convolution for Point Cloud Semantic Segmentation. In

Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
16–20 June 2019; pp. 10288–10297.

35. Feng, M.; Zhang, L.; Lin, X.; Gilani, S.Z.; Mian, A. Point Attention Network for Semantic Segmentation of 3D Point Clouds. arXiv
2019, arXiv:1909.12663.

36. Tatarchenko, M.; Park, J.; Koltun, V.; Zhou, Q.-Y. Tangent Convolutions for Dense Prediction in 3D. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3887–3896.

37. Shen, Y.; Feng, C.; Yang, Y.; Tian, D. Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp.
4548–4557.

38. Xu, Y.; Fan, T.; Xu, M.; Zeng, L.; Qiao, Y. SpiderCNN: Deep Learning on Point Sets with Parameterized Convolutional Filters. In
Proceedings of the Computer Vision-ECCV 2018—15th European Conference, Munich, Germany, 8–14 September 2018; Volume
11212, pp. 90–105.

39. Li, J.; Chen, B.M.; Lee, G.H. SO-Net: Self-Organizing Network for Point Cloud Analysis. In Proceedings of the 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9397–9406.

40. Atzmon, M.; Maron, H.; Lipman, Y. Point Convolutional Neural Networks by Extension Operators. ACM Trans. Graph. 2018, 37,
71:1–71:12. [CrossRef]

41. Wang, W.; Yu, R.; Huang, Q.; Neumann, U. SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23
June 2018; pp. 2569–2578.

http://doi.org/10.1109/LRA.2020.3004802
http://doi.org/10.1145/3197517.3201301

	Introduction
	Related Work
	Projection-Based Methods
	Voxel-Based Methods
	Point-Based Methods
	Graph-Based Methods
	Attention-Based Methods

	Methods
	Network Architecture
	Spatial Transformation Embedding
	Local Dilated Graph Construction
	Dilated K-NN Search
	Edge Calculation

	Dilated Graph Attention Module
	Dilated Edge Attention Convolution
	Graph Attention Pooling

	Comparison with Existing Methods

	Experiments
	Classification on the ModelNet40 Dataset
	Dataset
	Task and Metrics
	Implementation Details
	Results and Discussion
	Ablation Studies and Analysis

	Part Segmentation on the ShapeNet Part Dataset
	Dataset
	Task and Metrics
	Implementation Details
	Results and Discussion
	Ablation Studies and Analysis

	Conclusions
	References

