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Abstract: The CO2 efflux from forest soil (FCO2) is one of the largest components of the global carbon
cycle. Accurate estimation of FCO2 can help us better understand the carbon cycle in forested areas
and precisely predict future climate change. However, the scarcity of field-measured FCO2 data in
the subtropical forested area greatly limits our understanding of FCO2 dynamics at regional and
global scales. This study used an automatic cavity ring-down spectrophotometer (CRDS) analyzer
to measure FCO2 in a typical subtropical forest of southern China in the dry season. We found
that the measured FCO2 at two experimental areas experienced similar temporal trends in the dry
season and reached the minima around December, whereas the mean FCO2 differed apparently
across the two areas (9.05 vs. 5.03 g C m−2 day−1) during the dry season. Moreover, we found
that both abiotic (soil temperature and moisture) and biotic (vegetation productivity) factors are
significantly and positively correlated, respectively, with the FCO2 variation during the study period.
Furthermore, a machine-learning random forest model (RF model) that incorporates remote sensing
data is developed and used to predict the FCO2 pattern in the subtropical forest, and the topographic
effects on spatiotemporal patterns of FCO2 were further investigated. The model evaluation indicated
that the proposed model illustrated high prediction accuracy for the training and testing dataset.
Based on the proposed model, the spatiotemporal patterns of FCO2 in the forested watershed that
encloses the two monitoring sites were mapped. Results showed that the spatial distribution of FCO2

is obviously affected by topography: the high FCO2 values mainly occur in relatively high altitudinal
areas, in slopes of 10–25◦, and in sunny slopes. The results emphasized that future studies should
consider topographical effects when simulating FCO2 in subtropical forests. Overall, our study
unraveled the spatiotemporal variations of FCO2 and their driving factors in a subtropical forest of
southern China in the dry season, and demonstrated that the proposed RF model in combination
with remote sensing data can be a useful tool for predicting FCO2 in forested areas, particularly in
subtropical and tropical forest ecosystems.

Keywords: forest soil CO2 flux; satellite remote sensing data; random forest algorithm; subtropical
forest ecosystem
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1. Introduction

The increasing trend of greenhouse gases (GHGs) in the atmosphere over the past
100 years has been reported by the Intergovernmental Panel on Climate Change (IPCC) [1].
As one of the largest sources of GHGs between the terrestrial ecosystems and the atmo-
sphere [2], the soil CO2 efflux (FCO2), composed of belowground autotrophic respiration
(i.e., plant roots and rhizosphere microbial respiration) and heterotrophic respiration
(including soil microbial and animal respiration), is the major carbon source to the at-
mosphere [3–5] and plays a vital role in the global carbon cycle and biogeochemical
processes [6,7]. Previous studies suggested that FCO2 accounted for nearly 10% of annual
atmospheric CO2 and constitutes about 45–80% of the total ecosystem respiration, which is
considered as the second-largest carbon flux pathway in the terrestrial carbon cycle with
magnitude next to gross primary productivity [8–10]. Since the influence of FCO2 is critical
in the global carbon cycle, a small change in FCO2 may severely affect the atmospheric
CO2 concentration and the terrestrial carbon balance, leading to crucial positive or neg-
ative feedbacks to the global climate system [11,12]. Therefore, accurately assessing the
spatiotemporal variations of FCO2 will make a great contribution to the global carbon
budgets, the mitigation of global warming, and the precise prediction of future climate
change [5,13,14].

Several methods have been developed and applied to estimate the FCO2 from forest
ecosystems. Traditionally, FCO2 is obtained through in-situ measurement methods, such
as the automated closed chamber method is the most popular pathway to measure the
carbon flux in forests, and has been proved to be effective in capturing the high-temporal
resolution of FCO2 [8,15]. However, in-situ measurement is time-consuming and costly,
and extremely hard in remote areas or harsh environments such as the subtropical and
tropical forests. In addition, the topographic effects of subtropical forest soil CO2 flux over
large scales can not be well explored based on the in-situ studies [16]. To compensate for
these disadvantages, based on the nature of the study site, empirical models are widely
developed and used to estimate the FCO2 [8]. The parameterization of empirical models is
often based on site-based observations; parameters in models, however, are characterized
by non-linear changes over time and space, and thus the initial parameters are spatially
constrained. Accordingly, both the chamber methods and empirical models are limited in
providing sufficient information about FCO2 and thus in capturing the spatial variations of
FCO2 at a large spatial scale.

Although hundreds of worldwide CO2 observation networks can help overcome the
limitations of spatial information to a certain extent, the in-situ measurements of CO2 are
mainly distributed in middle- and high-latitude regions such as Europe and North America.
For the low-latitude regions such as the tropical and subtropical forested areas of Africa and
China, they are quite scarce. This not only resulted in large uncertainties in global carbon
budgets [15,17] but also hinder us to accurately estimate the contribution of FCO2 from
low-latitude regions [5,18]. Recently, although some studies dedicated to investigating
the temporal variations of FCO2 and its driving forces in subtropical and tropical forested
regions based on the field measurements [19–21], they are mostly plot-level studies. The
spatiotemporal variations of FCO2 at large-spatial scales (e.g., the watershed scale) in dry
seasons are rarely explored [22–24]. Moreover, studies have indicated that the FCO2 in the
dry season may offset most of the carbon fixed during the growing season. It accounts for
3–50% of annual carbon emissions and thus is crucial for determining the annual carbon
cycle [22,25–27]. Therefore, it is necessary to accurately assess the spatial and temporal
changes of FCO2 in subtropical and tropical forested areas, especially in the dry season.
Such studies can contribute to better understand the principal components of the annual
carbon cycle and to reduce uncertainties in global carbon budgets [28,29].

With the increasing demand for mapping the global and regional FCO2 at the moderate
or high spatiotemporal resolution, the earth observation techniques with low-cost and long-
term observation data can be used to capture the interannual and intraseasonal variation
of FCO2 at the local or regional scale. For example, microwave and optical remote sensing
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(RS) technologies are widely used to monitor the FCO2 in forest ecosystems. Despite the
application of the microwave RS technique to detect the FCO2 is not subject to weather
conditions [30,31], the coarse spatial resolution of products inhibits its development. The
commonly used optical RS such as the Landsat is also widely used in studying forest
carbon flux. Despite the merits of the high spatial resolution of Landsat imagery, the
coarse temporal resolution and lack of images for subtropical and tropical zones challenge
its application in estimating FCO2 in these regions. In contrast, the Moderate-resolution
Imaging Spectroradiometer (MODIS) sensor generates ideal data with suitable spatial
(250 m, 500 m, and 1 km) and high temporal (daily) resolution to measure the FCO2.
Moreover, the rich bands (36 bands) of the MODIS sensor can retrieve different biophysical
and environmental parameters in relation to the FCO2, and thus reduce parameter errors
due to the inconsistency of sensors [32].

Given that the FCO2 in terrestrial ecosystems is mainly controlled by biotic (e.g.,
plant productivity and leaf area index) and abiotic factors (e.g., soil temperature and soil
moisture) [5,33], and RS can retrieve important information about factors that control
the dynamics of FCO2, many studies used RS data to build models to extrapolate field-
measured FCO2 to global and regional scales [34–36]. For instance, FCO2 was found to be
strongly correlated with a MODIS-derived land surface temperature (LST) in the boreal
and temperate forests [8,37,38]. By integrating the MODIS LST and vegetation indices (VIs),
Wu, et al. [39] established a linear model to monitor FCO2 and map its spatial pattern in
a Canadian temperate forest. Huang, et al. [13,34] argued that remotely sensed VIs, LST,
and soil moisture can significantly enhance the model’s accuracy in quantifying FCO2 at
different temperate forest sites. Although RS products are useful for monitoring FCO2
in combination with in-situ measured data [13,34], related studies targeted mainly the
temperate and high-latitude forest ecosystems instead of subtropical and tropical forested
areas. Therefore, the potential of remote sensing-based methods needs to be further
explored in subtropical and tropical forest areas. Recently, the machine-learning Random
Forest (RF) algorithm was increasingly used to build the nonlinear relationships between
the carbon flux and the satellite-derived variables [5,14,15,40,41]. As a non-parametric
machine learning method without requirements of complicated assumptions and large
numbers of parameters, the RF algorithm has the advantages of high-precision prediction
and less sensitivity to outliers and noise [42,43]. It thus offers the ability to establish the
nonlinear relationships between the spatial covariates and target variables and to bridge the
gaps between local and regional scale studies [44]. Thus, the RF model has great potential
for FCO2 retrieval by combining with the RS data and field measurements at the site and
large scales [15].

Therefore, against the above-mentioned background, the objectives of this study are
to (1) explore the temporal changes of FCO2 in a subtropical forest during the dry season,
(2) analyze how biotic and abiotic factors affect FCO2 during the study period, (3) use
RS data to build an RF model and test its ability to estimate FCO2 at the local scale, and
(4) apply the optimum RF model to map the spatiotemporal variation of FCO2 at a large
forested watershed and to investigate how the topographical factors regulate the spatial
variation of FCO2. Toward these ends, we first conducted field measurements of FCO2 in a
typical subtropical forest located in Guangdong province of southern China. In specific,
we quantified the spatial-temporal dynamics of the FCO2 in the dry season of September
to January of the next year. Further, an RF model based on in-situ FCO2 measurements and
RS data was developed, evaluated and eventually used to estimate forest FCO2 in the dry
season. The results from this study can improve our understanding of soil CO2 flux in the
subtropical forests and the proposed RF method coupling with RS data is a useful tool for
monitoring FCO2 in subtropical forested regions.
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2. Materials and Methods
2.1. Study Site Description

The Liuxihe (LXH) reservoir basin is selected as the study area. This headwater
catchment is located in Guangdong Province of China within the latitudinal range of
23.67–23.96◦N and the longitudinal range of 114.03–113.75◦E (Figure 1). The climate is
dominated by a typical subtropical monsoon, plenty of sunshine, and abundant precipi-
tation. The annual mean temperature is about 20.3 ◦C. The mean annual precipitation is
nearly 2100 mm and the rainfall is concentrated in March to September. Between these
two rainy seasons are the dry season spanning from October to February [45]. The total
area is about 456.7 km2 and the elevation is between 154.3–1135.1 m (Figure 1). As one
of the first ten national forest parks in China, this area provides the essential source of
drinking water and key ecological service for the Pearl River Delta (PRD) which includes
the big cities of Guangzhou, Hong Kong, Macau, Shenzhen, etc. [45]. Broad-leaved and
needle-leaved evergreen forests are the main vegetation types and account for more than
80% (365.4 km2) of the total area (Figure 1). We conducted 10 independent measurements
of the FCO2 at Chenhe Dong (CHD) nature reserve and the Guoyuan (GY) within the LXH
National Forest Park (Figure 1). The information on the environmental characteristics for
these two areas is shown in Table 1.
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Figure 1. Location of the Guo Yuan (GY) and Chenhe Dong (CHD) within the LXH national forest
park. The purple points in the Google Earth images represent the independent measurement sites of
the FCO2. The grey background represents the topography, which is obtained from the Shuttle Radar
Topography Mission Digital Elevation Model (SRTM DEM, 30 m) (http://www.gscloud.cn (accessed
on 21 October 2020)).
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Table 1. The information of the environmental characteristics for these two regions.

Sites Guo Yuan (GY) Chenhe Dong (CHD)

Location 23.776◦N, 113.851◦E 23.772◦N, 113.937◦E
Aspect Shady slope Sunny slope
Plant functional type Coniferous mixed forest Coniferous mixed forest
Dominant species Pinus massoniana Lamb. Pinus massoniana Lamb.
Soil types 1 FRh-Haplic Ferralsols FRh-Haplic Ferralsols
Soil organic C (% weight), PH 0.98, 5.2 1.42, 4.8
Soil bulk density (kg/dm3) 1.4 1.25
Drainage class Moderately well Moderately well
Tree height (m) 20.50 21.33
DBH 2 (cm) 58.75 62.17

1 The soil types in this study refer to the World Reference Base for Soil Resources (WRB) classification [46]; 2 DBH:
diameter at breast height.

2.2. Data Acquisition and Preprocessing
2.2.1. Forest Soil CO2 Efflux (FCO2) Measurements

The automatic cavity ring-down spectrophotometer (CRDS) analyzer (Picarro G2508
Greenhouse Gas Analyzer: Picarro Inc., Santa Clara, CA, USA) with a thick-walled stainless
steel chamber (the internal diameter: 19.5 cm and height: 15 cm) is used to measure the
FCO2. This instrument can simultaneously and accurately measure multiple fluxes (e.g.,
CO2, CH4, N2O, NH3, and H2O). Moreover, the unique Picarro algorithm can automatically
correct the error of the CO2 concentration caused by the water vapor [47]. Therefore, the
Piccaro analyzer has been widely used for measuring soil carbon efflux as reported by
many studies [29,48–50].

This study measured the FCO2 in the dry season starting from 28 September 2019 to
4 January 2020 at CHD and GY (Figure 1), respectively. For each area, the measurements
were performed two times each month. The default company settings were considered in
this study throughout the whole field measurements [47], and we referred to the previous
studies [29,51] for the detailed method of FCO2 measurements in the present study. To
minimize the daily variation in FCO2 and to better represent the daily mean FCO2 over a
24-h cycle, we carried out the measurements of FCO2 between 10:00 h and 15:00 h (local
time) [52–56]. One week before each measurement, the aboveground plants were removed,
and the chamber was inserted directly into the soil to a depth of about 1–3 cm. The FCO2
concentrations were recorded with intervals of 1-s, and the measuring process at each
sampling site lasted for 2–5 min with five repetitions [49]. The final FCO2 concentration of
each spot was obtained by the repeated measurements, and the soil efflux is calculated by
the slope of the linear regression of CO2 concentration with time. It is worth noting that
when the R2 value of the slope of the CO2 concentration gradient with time is less than
0.85, the data is not included in our study [53]. The final FCO2 was calculated using the
following equation [57].

FCO2 = ρ·V
A
·∆C
∆T

(1)

where the FCO2 represents the forest soil CO2 efflux (g C·m−2 ·day−1); ρ is the density
of CO2; A and V denote the footprint area (m2) and volume (m3) of the chamber, respec-
tively; ∆C

∆T represents the slope of the linear regression of soil CO2 concentration gradient
over time.

In this study, 70% and 30% of the collected FCO2 data were randomly used for model
training and model validation, respectively.

2.2.2. Auxiliary Measurements

The soil temperature (ST) (◦C) and moisture (SM) (%) at depths of 5–10 cm around
the chamber at the three spots were measured using the thermal dissipation probe (TDP,
Dynamax Inc., Houston, TX, USA). The mean of the ST and SM is obtained by averaging
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the repeated measurements at each site. The automatic climate recording systems (PC-
4, Sunshine Technology Co., Ltd., Jinzhou, China) were utilized to collect simultaneous
microclimate variables including the air temperature, precipitation, etc.

2.2.3. Satellite Remote Sensing Data

The spatiotemporal variation of FCO2 is strongly affected by both biotic (vegetation
productivity) and abiotic (soil temperature and soil moisture) factors [5,13,14,34,39,58,59].
Given this, 10 explanatory variables representing plant productivity, soil temperature, and
soil moisture were derived from the RS products and used for predicting FCO2 (Table 2).
These data sets were obtained from the MODIS products and the Soil Moisture Active
Passive (SMAP) root-zone soil moisture [5,34]. All the products are continuously updated
and can be obtained from the the NASA’s Land Processes Distributed Active Archive
Center (LP DAAC) (https://lpdaac.usgs.gov/data/ (accessed on 7 October 2020)) and
EARTHDATA (https://search.earthdata.nasa.gov/ (accessed on 26 October 2020)).

Table 2. Summary of all remote sensing indices used in this study.

Types Fullname Indices Data Source

Plant productivity

Normalized Difference Vegetation Index NDVI Calculated from MOD09A1
Enhanced Vegetation Index EVI Calculated from MOD09A1
Leaf Area Index LAI MCD15A3H
Gross Primary Production GPP MOD17A2H

Soil temperature Terra MODIS Land Surface Temperature LSTtd MOD11A1
Aqua MODIS Land Surface Temperature LSTad MYD11A1

Soil moisture

Evapotranspiration ET MOD16A2
Soil Moisture SM SMAP Level 4 Global EASE-Grid root zone SM
Land Surface Water Index LSWI Calculated from MOD09A1
Surface Water Capacity Index SWCI Calculated from MOD09A1

The first MODIS data is the 8-day Terra MODIS surface reflectance product (MOD09A1,
V6), which has spatial resolutions of 500 m and provides 7 wavelength bands. Each pixel
value of the MOD09A1 data is produced by selecting all the acquisitions within the 8-day
composite based on high observation coverage, low view angle, the absence of clouds,
and aerosol loading [39,60]. The MOD09A1 surface reflectance products in this study
are used to calculate the VIs (Normalized Difference Vegetation Index (NDVI) [61] and
Enhanced Vegetation Index (EVI) [62] that representing vegetation productivity as shown
in Equations (2) and (3).

NDVI =
ρ2 − ρ1

ρ2 + ρ1
(2)

EVI = 2.5 × ρ2 − ρ1

ρ2 + (6 × ρ1 − 7.5 × ρ3) + 1
(3)

where ρ1, ρ2 and ρ3 are the red band, near-infrared (NIR) band, and blue band (centered at
645, 858, and 469 nm, respectively) in the MODIS surface reflectance products, respectively.

Besides, the MODIS leaf area index (LAI) (MCD15A3H, 500 m, 4 days) and gross
primary production (GPP) (MOD17A2H, 500 m, 8 days) products are also considered in our
study, because they are the two robust indicators of vegetation productivity [34,39]. Finally,
the MOD09A1, MOD17A2H, and MCD15A3H products were processed and acquired to
match the timing of FCO2 measurements.

The daily 1-km Terra and Aqua MODIS Land Surface Temperature (LST) (MOD11A1
and MYD11A1) products are also obtained, which are produced by the generalized split-
window algorithm [63]. Both Terra and Aqua MODIS LST have two data layers of daytime
and nighttime, respectively. In this study, two LST temperature variables (LSTtd and
LSTad) were adopted. Among them, the LSTtd and LSTad represent the Terra MODIS LST

https://lpdaac.usgs.gov/data/
https://search.earthdata.nasa.gov/
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and Aqua MODIS LST with daytime overpasses at approximately 10:30 a.m. and 1:30 p.m.
local time, respectively.

The moisture-related indicators, including evapotranspiration (ET), the root-zone soil
moisture (SM), the land surface water index (LSWI), and the surface water capacity index
(SWCI), were used as an alternative to soil moisture status. The ET data used in this study
is derived from the MOD16A2 V6 product, which is the sum of an 8-day composite, has
a 500-m pixel resolution, and is produced by the logic of the Penman-Monteith equation
algorithm. The accumulative 8-day MOD16A2 ET products were averaged into daily ET to
be consistent with the acquisition time of FCO2 [64,65]. We also obtained the SMAP root
zone soil moisture (SM) product to represent the SM, which has the global coverage at
a spatiotemporal resolution of 9 km and 3-h intervals. In this study, the mean of SMAP
SM data at 10:30 AM and 1:30 PM was collected to match the measurement time of FCO2.
Besides, the LSWI and SWCI here are calculated from the above-mentioned MOD09A1
products. The calculation formulas of LSWI and SWCI are shown in Equations (4) and (5).

LSWI =
ρ2 − ρ6

ρ2 + ρ6
(4)

SWCI =
ρ6 − ρ7

ρ6 + ρ7
(5)

where ρ6 and ρ7 are the MODIS shortwave infrared (SWIR1) and (SWIR2) bands (centered
at 1640 and 2130 nm, respectively).

In this study, the quality assurance files included in these remote sensing products
(e.g., MODIS products) were also obtained for excluding contaminated and low-quality
pixels [66]. We employed these quality assurance files to eliminate the poor quality data
and then used the linear interpolation to replace the missing values [8,64,65,67]. All the
RS data sets were multiplied by their corresponding scale factor and converted to the
commonly used units such as converting the Kelvin to Celsius of LST (Please refer to the
MODIS and SMAP User Guide). Furthermore, all the RS data were resampled to 500 m
using the nearest interpolation method. Based on the geographic coordinates (i.e., latitude
and longitude) of each site, we then extracted all the RS variables using a 3 × 3 pixel buffer
around each site. Eventually, all the RS variables in this study were used as the model (see
below) inputs for modeling the FCO2.

2.3. Methods for FCO2 Prediction
2.3.1. Random Forest Regression for Modeling FCO2

The machine-learning Random Forest (RF) regression is used to model and upscale
the FCO2 from local scale to regional scale based on the RS data in this study. The RF
is an ensemble learning method developed by Breiman [68], which aims to enhance the
classification and regression tree (CART) method by combining a large number of decision
trees. Firstly, a deterministic algorithm was utilized to generate Ni bootstrap samples
(i = bootstrap iteration) from the training data set (N) through replacement in the RF
regression. Each selection is close to two-thirds of the training set (N). The remaining one-
third of the data are used as out-of-bag data (OOB). The OOB is employed for estimating
the prediction error (OOB error) and evaluating the importance of variables [69]. Secondly,
many single regression trees were built in parallel by the bootstrap samples and every
single tree was tested by the OOB data. Finally, the RF predicted results can be obtained
by averaging the predicted results of all single regression trees [68]. The RF model can
overcome multicollinearity and overfitting issues, especially for the high-dimensional
datasets [42]. Therefore, the RF model has been reported as a suitable and robust algorithm
for RS applications in complex earth systems such as ecology, environment, hydrology,
etc. [70,71].

We implemented the RF model in the “RandomForest” package [72] within R program-
ming software [73]. In specific, we randomly split the measured FCO2 (n = 70) into two
groups including 70% of samples for training (n = 49) and 30% of samples for independent
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validation (n = 21). Before using the RF model, two important user-defined parameters
need to be set in the model, namely, the number of trees (Ntree) and the number of variables
(Mtry); the other parameters of this model take their default values [72]. To obtain the
optimal parameters of the Ntree and Mtry for precise prediction of the FCO2, the two
parameters in the RF model were optimized based on the OOB error [72,74]. The values of
Ntree from 200 to 10,000 and the values of Mtry from 1 to 10 were tested, respectively [75].

The variable importance is also provided within the RF regression, which represents
the relative importance of an explanatory variable to the target variable (FCO2). Initially,
the two parameters optimized above were used to generate the variable importance based
on all input variables (n = 10), and the percentage increase in mean square error (%IncMSE)
derived from the RF regression was adopted to measure the variable importance of each in-
dependent variable. The larger the % IncMSE, the more important it is relative to the target
variable. After ranking the variable importance from a permutation, the fewest number
of variables that can help create the final RF model for best prediction was selected [76].
For the present study, we based on the model input variables to build the RF model by
the combination of the variable important ranking and a backward feature elimination
method [75,77], which itself is based on the 10-fold cross-validation with the minimized
root mean square error (RMSE) on the training data [42,75,78].

Moreover, the multivariate linear regression model was established using the final
selected model inputs, as well as the RF model with 10 original variables was also used
to compare against the performance of our optimal RF model constructed using the final
selected variables.

2.3.2. Evaluation Approaches

To evaluate the performance and accuracy of the RF model, we used the 10-fold
cross-validation method for independent validation. The data was equally split into ten
folds. Nine folds were used for training and the remaining one set was used for model
validation. Meanwhile, three statistical metrics, the root mean square error (RMSE), mean
absolute prediction error (MAE), and coefficient of determination (R2) were employed. As
we expected, the smaller of RMSE and MAE, the higher accuracy of the RF model. On the
contrary, the larger R2, the higher accuracy of the RF model. The three statistical metrics
were calculated as follows:

RMSE =

√√√√∑n
i=1

(
FCOmea

2 (i)− FCOpre
2 (i)

)2

n
(6)

MAE =
1
n

n

∑
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∣∣∣FCOmea
2 (i)− FCOpre

2 (i)
∣∣∣ (7)

R2 = 1 −
∑n

i=1

(
FCOmea

2 (i)− FCOpre
2 (i)

)2

∑n
i=1

(
FCOmea

2 (i)− FCOmea
2

)2 (8)

where the FCOpre
2 and FCOmea

2 respectively represent the ith predicted and measured values
of FCO2; FCOmea

2 is the mean measured values; n is the total number of samples.

3. Results
3.1. Temporal Variations of FCO2 and the Corresponding Environmental Variables during the
Dry Season

The obvious seasonal variations and similar temporal trends of the FCO2 are observed
at the CHD and GY study areas (Figure 2). The FCO2 in CHD ranged from 6.04 to
13.76 g C m−2 day−1 with a mean of 9.05 g C m−2 day−1 during the dry season. The
FCO2 in GY ranged from 2.07 to 9.80 g C m−2 day−1, with a mean of 5.03 g C m−2 day−1

(Figure 2). Seasonally, the autumn FCO2 averages 10.96 g C m−2 day−1 in CHD and
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5.68 g C m−2 day−1 in GY, which are greater respectively than the winter-time FCO2 of
6.50 g C m−2 day−1 in CHD and 3.40 g C m−2 day−1 in GY. Spatially, the FCO2 values in
CHD are higher than that in the GY area, suggesting that changes in FCO2 are associated
with the temporal and spatial difference of environmental conditions.
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Figure 2. Temporal variations of the FCO2 in (a) CHD (n = 35) and (b) GY (n = 35) area. The
embedded figures are based on summarized values of the FCO2 for the whole dry season, autumn,
and winter, respectively. The green quadrilateral represents the average, the gray line in the boxplot
is the median, and the black circles are outliers.

The results show that the mean values of SM and ST for different months varied from
15.77 to 22.93%, and 16.96 to 28.61 ◦C in the CHD area, respectively (Figure 3a,b). The
overall average values of SM and ST for the whole dry season are 18.10% and 20.64 ◦C,
individually (Figure 3a,b). In the GY area, the mean values of SM and ST for different
months ranged from 17.95 to 26.31%, and 15.77 to 25.67 ◦C, respectively (Figure 3c,d). The
overall average values of SM and ST throughout the entire dry season are 20.99% and
20.49 ◦C, individually (Figure 3c,d). Similarly, the mean values of ST and SM in winter are
lower than those in autumn. When the times went from autumn to winter, the mean values
of ST decreased from 22.33 ◦C to 18.37 ◦C in CHD area and from 21.44 ◦C to 18.11 ◦C in GY
area, respectively (Figure 3b,d).

3.2. Relationships between the FCO2 and Environmental Variables and VIs

The relationships between FCO2 and ST and between FCO2 and SM are further
explored. The results indicate that FCO2 is positively correlated to the ST and SM at
the two study areas (Figure 4). The coefficient of determination (R2) between FCO2 and
ST is 0.61 (p < 0.001) and 0.63 (p < 0.001) in CHD and GY area, individually. The R2

between FCO2 and SM is 0.64 (p < 0.001) and 0.75 (p < 0.001) in CHD and GY areas,
respectively. The significant relationships of the FCO2 with ST and SM illustrate that
abiotic variables are the crucial driving factors to affect the dynamics of the FCO2 in the
subtropical forests during the dry season. In addition to the abiotic factors, the biotic factors
(e.g., the vegetation indices (VIs) related to plant productivity) also show a significant
and positive correlation with FCO2 (Table 3), suggesting that the biotic factors are other
determinants of the variations of the FCO2 in the subtropical forests. Therefore, based
on the relationships between the FCO2 and environmental variables and VIs, the indices
representing the temperature, moisture availability, and vegetation productivity derived
from remotely sensed data are considered to modeling the spatial and temporal variability
of FCO2 in this study.
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Table 3. Pearson correlation coefficients between the FCO2 (n = 35) and the different VIs in the CHD
and GY area, individually.

VIs
CHD (FCO2) GY (FCO2)

R2 p-Value R2 p-Value

EVI 0.71 p < 0.001 0.35 p < 0.001
GPP 0.64 p < 0.001 0.49 p < 0.001
LAI 0.64 p < 0.001 0.41 p < 0.001
NDVI 0.49 p < 0.001 0.52 p < 0.001

3.3. Establishing the Model for Estimating FCO2
3.3.1. Optimization of Parameters and Selection of Explanatory Variables for
FCO2 Estimation

The parameters (Mtry and Ntree) in the RF model that are optimized based on the
OOB error using the training dataset are shown in Figure 5. Results clearly indicate that
the combination of the two parameters (Ntree and Mtry) influences the performance of the
RF model. The small number of Ntree with different Mtry could result in a high error and
unstable prediction of the RF model. For example, when the Ntree is 200, the prediction
results varied greatly. However, when the number of Ntree is greater or equal to 500
(the default setting for the RF model), the OOB errors among different RF models with
different combination of the Ntree and Mtry numbers becomes relatively stable and are
similar, indicating that the performance of RF model can not be significantly improved
by increasing the number of Ntrees. However, under the different number of Ntrees,
increasing the number of Mtrys can improve the RF model’s performance (Figure 5).
Overall, the results show that the 500 Ntree with 4 Mtry produces the optimal result and
the high prediction accuracy with the lowest OOB error of 1.47 g C m−2 day−1 (Figure 5).
Therefore, the Ntree 500 and Mtry 4 are selected for further analysis.

Using the selected parameters in the RF model, the importance of all the input vari-
ables is measured using the percentage increase in mean square error (% IncMSE) (Figure 6),
which represents the contribution of each predictor to the target variable (FCO2). The larger
the % IncMSE is, the more important FCO2 estimation is. Some explanatory variables that
represent temperature, plant productivity, and moisture availability contribute significantly
to the estimation of FCO2. These variables include NDVI, LSTtd, EVI, and SWCI (Figure 6a).
Further, we select the smallest number of variables that have the best prediction ability
based on the variable importance ranking (Figure 6a) and the RMSE derived from the CV
method (Figure 6b). The RMSE shows that the performance of the RF model first decreases
as the number of variables increases. It reaches a minimum of 4 variables and then starts
to increase. Therefore, the RF can produce the lowest error (RMSE: 1.055 g C m−2 day−1)
when using the top 4 variables. As a result, NDVI, LSTtd, EVI, and SWCI as the input
predictors of the RF model are used to predict FCO2 (Figure 6).

3.3.2. Predicting FCO2 on the Account of RF Model and Model Accuracy

Three models, including the optimal RF model with the top 4 selected variables, the RF
model with the 10 original variables, and the multivariate linear regression (MLR) model
constructed using the same variables as in the optimal RF model, are applied to estimate
the FCO2. We calculated the R2, MAE, and RMSE between the measured and predicted
FCO2 for the training and testing data to measure the performance of the three models.
The two RF models have higher accuracy in predicting FCO2 (Figure 7a–d), confirming
that the machine learning method has better performance in predicting FCO2 compared
with the MLR method (Figure 7e,f). For the optimal RF model, it has the greatest R2

value but the lowest MAE and RMSE values in predicting FCO2 when against both the
training and testing dataset (Figure 7a,b). For the training dataset, the optimized RF model
(Figure 7a) used in this study has a slight improvement in predicating FCO2 compared
with the original RF model (Figure 7c), while the optimized RF model performs better on
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the independent testing dataset (Figure 7b vs. Figure 7d). As a whole, the results indicate
that the optimal RF model in combination with the RS indices illustrated a good predictive
ability to estimate forest FCO2 in our study area.
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Figure 7. Scatter plots showing the relationship between measured and predicated FCO2 for the training datasets (n = 49)
in the left column and the testing datasets (n = 21) in the right column. (a,b) The results are computed using the optimal
RF model with the 4 selected features. (c,d) The results are derived from the RF model developed using the 10 original
variables. (e,f) The results are calculated based on the MLR model that also constructed using the best 4 selected variables
and field-measured FCO2 as the model input data. The color bar and circle represent the absolute residuals between the
measured and predicated FCO2.
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3.4. Mapping the Spatiotemporal Patterns of FCO2 and Exploring Their Topographical Effects

Based on the optimal RF, we finally map the spatiotemporal patterns of FCO2 with
500 m pixel size. We further calculated the mean of FCO2 during the dry season, autumn,
and winter to understand the spatial patterns of the FCO2 across the forested watershed
as shown in Figure 8. Generally, the distribution of FCO2 shows a similar spatial pattern
among different periods, while the FCO2 varied across the watershed. Like what we ob-
served at the two monitoring areas, the regional mean FCO2 in autumn (8.7 g C m−2 day−1)
is higher than that in winter (7.2 g C m−2 day−1) (Figure 8b,c). In autumn, most areas
are occupied by the high FCO2 values (>8 g C m−2 day−1) and these areas are mainly
distributed in the northwest and center of the watershed (Figure 8b). In contrast, the
simulated FCO2 values are comparatively low in winter (<6 g C m−2 day−1) in most areas
of the watershed (Figure 8c).
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The spatial distribution of the FCO2 map is based on the mean values obtained from the two areas.

Moreover, the FCO2 maps show that the topography has a clear effect on the spatial
distribution of FCO2 values. To demonstrate it, we further counted the FCO2 of different
elevations, slopes, and aspects to investigate how topography influences the spatial distri-
bution of FCO2. The elevations were divided into 10 levels with 100 intervals (Figure 9a),
the slopes were divided into 9 grades at 5-degree intervals (Figure 9b), as well as the aspects
were separated as the shady slope (0–45◦ and 315–360◦), semi-shady slope (225–315◦), semi-
sunny slope (45–135◦), and sunny slope (135–225◦) (Figure 9c). It obviously shows that the
pattern of topographic effects on FCO2 is similar when measured at different periods (i.e.,
dry season, autumn, and winter) (Figure 9a–c). However, the effect of a specific topographic
factor on FCO2 varies distinctly. For example, a large number of the FCO2, higher than
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9 g C m−2 day−1, are mainly occurred in the relatively high altitude areas, while the low
values (<8 g C m−2 day−1) are found below 300 m (Figure 9a). In other words, the FCO2
in high-altitude areas is higher than that in low-altitude areas. For slopes, the high FCO2
values are mainly concentrated on slopes of 10–25 degrees (Figure 9b). Besides, no matter
what season, the value of FCO2 on the sunny slope is always higher than that on the shady
slope, and the order of FCO2 value in different aspects is: sunny slope > semi-sunny slope
> semi-shady slope > shady slope (Figure 9c).
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4. Discussion
4.1. Spatiotemporal Variations in FCO2 and Its Driving Factors

We conducted the field FCO2 measurements at two study areas in a typical subtropical
forest system during the dry season for investigating the temporal and spatial variations
of FCO2. Our results found that FCO2 showed a decreasing trend in the dry season
(Figure 2), which is consistent with the previous studies in the similar subtropical forests
of Guangdong province, southern China [20,24,79]. Moreover, our findings indicated that
the FCO2 in the dry season is significantly and positively correlated with soil temperature
(ST) in the subtropical forest (p < 0.001), and the ST decline decreased the FCO2 over the
study period (Figures 2 and 3). Many convincible and agreeable conclusions from previous
studies have confirmed that the ST is the dominant driving force in controlling FCO2
variation at the different time and space scales [5,8,20,39,67].

Moreover, our study observed that soil moisture (SM) experienced a downward trend
in the dry season (Figure 3a,c), and was significantly positively correlated with FCO2
(p < 0.001) (Figure 4b) as reported in similar subtropical forests [20,79,80]. Although SM
is the key driving factor for determining the variation of FCO2 during the dry season in
the subtropical forest, the relationship between FCO2 and SM is more complex compared
with ST [67]. For example, Crabbe, et al. [8] reported that the FCO2 increases as the water
stress condition decreases. Nevertheless, oversaturated soil can result in low FCO2 values
in the same forest ecosystem because excessive SM will limit the diffusion of O2 in the soil,
resulting in the weakening of the activity of plant roots and aerobic microorganisms and
ultimately the reduction of the soil CO2 production [81]. In more detail, previous studies
focusing on similar subtropical forested areas reported a significant positive correlation
between FCO2 and SM when SM is below 50% [79,82,83]. In this study, SM averages
18.10% and 20.99% in the CHD and GY areas during the dry season (Figure 2a,c), which
is suitable for soil respiration as demonstrated in Yi, et al. [79]. This is why the FCO2
is positively correlated with SM and explains around 60% of variations of FCO2 in our
two areas (Figure 4b).

In this study, the mean values of FCO2 in CHD and GY areas are 9.05 g C m−2 day−1

and 5.03 g C m−2 day−1, individually, during the dry season. Moreover, for the whole
forested basin, the regional average value is about 8.19 g C m−2 day−1. Zeng, et al. [84]
found that the FCO2 of a temperate forest in northern China was nearly 1.88 g C m−2 day−1.
As expected, our results showed that the FCO2 in the subtropical forest is higher than that
in the temperate forest. For subtropical forests that are similar to our study area. Jiang,
et al. [20] reported that the FCO2 was about 14.10 g C m−2 day−1. Yi, et al. [79] showed that
the mean value of FCO2 for three different forests was approximately 9.30 g C m−2 day−1.
Han, et al. [85] also found that the average FCO2 of the three subtropical forests was
approximately 9.36 g C m−2 day−1 and 16.41 g C m−2 day−1 in 2009 and 2010, respectively.
However, the magnitude of FCO2 that we measured during the dry season is relatively
lower than those reported in similar forest ecosystems characterized by the relatively
humid dry seasons with higher precipitation. During our study period, there was almost
no precipitation during the entire study period (i.e., 2019–2020) (Figure 10), which caused
the season to be drier than normal. The continuous decline in SM without precipitation
replenishment can intensify soil hydrological drought and thus diminish the FCO2 emission
during the dry season [8,86]. Xiao, et al. [24] indicated the FCO2 emissions during the
dry season in the subtropical forests of southern China are determined by precipitation
amount. Because the precipitation in the dry season can be the major determinant of
SM, and changes in SM caused by precipitation will directly influence FCO2 emissions.
Similarly, Jiang et al. [86] also indicated that precipitation strongly affects the SM and thus
determines the FCO2 release from three subtropical forests in southern China during the
dry season. Nevertheless, further research is needed to consider the effects of interaction
between precipitation and temperature on the FCO2 emissions in subtropical forests.
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The abiotic factors play a crucial role in regulating the FCO2 variations in the sub-
tropical forest areas. However, changes in ST and SM may not fully explain the variation
of the FCO2 we observed in this study (Figure 4) and the previous study [43]. Many
previous studies reported that biotic factors such as plant productivity can significantly
affect the variations of FCO2 [5,8,14,34,37,59], especially for the subtropical forests [20,24].
Our further analysis suggested that the growth of vegetation can also affect the FCO2
variation as demonstrated by the significant and positive relationships between the FCO2
and vegetation-related indices (Table 3). The reasons are that plant productivity determines
the production of litter and fine root biomass, which in turn affects soil respiration [24]. The
positive relationship between plant productivity and the FCO2 changes also coincides with
many previous studies in the subtropical and temperate forests [5,20,24,39,58]. Moreover,
the variable importance ranking derived from the optimal RF model also indicated that
both abiotic (ST and SM) and biotic factors (VIs) significantly affect the soil CO2 emissions
in subtropical forests in this study (Figure 6) and as indicated in other studies [13,24].

The FCO2 varies across space (Figures 8 and 9) and is also subject to topographic
factors (Figure 10). Warner, et al. [40] highlighted the significant effect of topography on
the FCO2 in a forested watershed. Previous studies reported that the higher soil CO2 flux
was found in the bottomlands with abundant soil moisture in the subalpine watershed [87]
and semiarid Loess Plateaus [88]. However, the opposite phenomenon occurred in tropical
rainforest areas [89], which showed that higher soil CO2 flux emissions were located in
higher altitude areas. In this study, we also observed that the high values of FCO2 mainly
occurred in the high altitudinal areas and the slopes of 10–25◦ of the subtropical forested
watershed. Similar results were reported in other studies [16,20]. One of the reasons is
that these areas, with high elevations and 10–25◦ slopes, are the key regions under the
construction and protection of the Chinese government’s ecological project [90] and are
less disturbed by human activities. Moreover, the absolute altitude of this study area is not
very high, and the higher vegetation coverage, species richness, and plant productivity are
mainly located in these areas. Therefore, the higher vegetation cover and plant productivity,
which is links with fine roots biomass and the litterfall, can significantly induce higher
soil CO2 flux emission in the higher subtropical forest areas [16,20]. Besides, the FCO2
emission is subject to aspects, and the FCO2 emission in sunny slopes is higher than in
the shady slopes (Figure 9c). This is due to the suitable hydrothermal resources in sunny
slopes are more conducive to the activity of plant roots and aerobic microorganisms in the
soil. Overall, future studies are necessary to consider the effects of topographic factors in
modeling the FCO2 emission over time and space.
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4.2. Monitoring and Estimation of the FCO2 Based on Remote Sensing Data

In recent decades, the field measurement of FCO2, such as chamber-based measure-
ments, has been widely used for exploring its spatiotemporal characteristics. Meanwhile,
the in-situ measurements of soil CO2 flux databases have been made openly available [91].
However, there is still a big challenge for monitoring and estimating soil CO2 flux at a
large spatial scale because of the sparse spatial coverage and uncertainties associated with
the limited observations of FCO2, especially in subtropical and tropical regions [15]. The
utilization of RS data for estimating and upscaling the FCO2 efflux from local to regional
scale becomes increasingly important [8], and many studies have proved the potential and
advantage of using RS data to monitor and map the FCO2 emission in boreal and temperate
forests [8,13,39,92]. However, the use of RS to monitor the FCO2 emission in subtropical
and tropical forest ecosystems is still at the exploratory stage.

In this study, we combined RS data combined with the in-situ observations of FCO2 to
estimate the FCO2 emission in the dry season. The results demonstrated that RS data has a
great potential for estimating the FCO2 emission in subtropical forests like in boreal and
temperate forests (Figure 7). Based on RS data, previous studies have established statistical
approaches, such as the linear and exponential models, to estimate the FCO2 emission in
forested areas. These studies, however, mainly focused on the site-scale FCO2 study, and
few upscaled the in-situ measurement of FCO2 to a larger spatial scale in combination with
RS data. Moreover, at a certain region, a previous study suggested that the exponential
model is only suitable for the estimation of FCO2 in the upper slope but the linear model
can only be used to the lower slope [93], suggesting the limitation of these models in
estimating FCO2 over the space scale. Bond-Lamberty [15] also argued that the traditional
statistical methods have a weak explanatory ability (only about 30–40%), and the use of new
techniques, such as the machine-learning algorithm, becomes necessary for understanding
soil CO2 efflux.

Therefore, the machine-learning RF algorithm in this study is used to model the
FCO2 and map its spatiotemporal pattern in the subtropical forested watershed. Based
on RS data with a combination of in-situ measurements, the RF model illustrated a high
performance (training dataset: R2 = 0.88 and testing dataset: R2 = 0.74) in capturing the
spatiotemporal variation of FCO2 in the study area (Figure 8). One of the reasons is that the
RF algorithm takes into account the linear or nonlinear relationship with input variables
so that it can fully mine the potential information between the target variable and the
feature variables in different time and space [14], particularly in the subtropical forest
areas with complex terrain and environmental conditions. For example, the RF model
highlighted that VIs (NDVI and EVI) also have a stronger effect in simulating the FCO2
change like the abiotic factors in the subtropical forests (Figure 6). This is because the RF
model may fully dig out the nonlinear phenological processes (e.g., changes in NDVI) and
plant productivity variation (e.g., changes in EVI) of VIs that determine the FCO2 emission
from the subtropical forests [64].

4.3. Advantages, Limitations, and Future Work

The RF model coupled with RS data for estimating FCO2 has been proved in this
study. Compared to traditional methods, the proposed RF model can quantify the nonlin-
ear relationship between the target variable and the independent variables. It also over-
comes the influences of multicollinearity that might be encountered in high-dimensional
datasets [14,42]. Therefore, it provides a huge opportunity to utilize massive amounts of
current or future RS data to monitor the carbon flux of ecosystems, especially for the harsh
and remote tropical-subtropical forest ecosystems.

Although the RF model driven by RS data performed well in estimating the FCO2,
there are still some limitations. Firstly, this study only focused on the dry season, the
performance of the proposed model in the wet season is still needed to be tested because
of the short length of FCO2 observation and the different driving mechanisms of FCO2
during different phenological periods. Besides, the contribution of the FCO2 in the dry
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season to the annual total FCO2 needs to be further explored. Secondly, the moderate
spatial resolution of the MODIS and soil moisture products may introduce uncertainties
in model prediction. Nevertheless, using these RS datasets to estimate the soil CO2 efflux
at the global and regional scales is increasingly attracting researcher’s interests [5,37,39],
which not only contributes to the prediction accuracy of FCO2 but also offers the possibility
of mapping FCO2 at high spatial and temporal resolution [8,37]. Finally, other factors such
as soil properties, land-cover change that may affect the FCO2 emission should be included
in future studies.

5. Conclusions

Understanding the spatiotemporal patterns of FCO2 and the underlying mechanisms
are conducive to global carbon budgets and the accurate prediction of future climate change.
In this study, we measured the FCO2 emission in a typical subtropical forest ecosystem of
southern China during the dry season. The measured FCO2 showed that it has distinct
variations over time and space. Our results further revealed that the variation of FCO2
during the dry season was driven by the changes of abiotic (ST and SM) and biotic factors
(vegetation productivity). In particular, precipitation in the dry season may affect soil
moisture, which may directly determine the soil CO2 flux in the subtropical forests.

Moreover, we developed a machine-learning random forest (RF) model based on
remote sensing data to model the FCO2 in two areas, and the proposed RF model shows
high performance in predicting the FCO2 dynamic in the study areas. Based on the RF
model, we mapped the spatio-temporal patterns of FCO2 in a large forested watershed and
further examined how the topographic factors affect the FCO2 emission in the watershed.
The results indicate that the FCO2 is higher in high-altitude areas, as well as in slopes
of 10–25 degrees and sunny slopes. We emphasize that future studies are necessary to
consider different effects of topographic factors in modeling the FCO2 of subtropical forests.

Although the proposed RF model demonstrates that the machine-learning method
combined with RS data has high potential in predicting and estimating the FCO2 emission
in subtropical forest ecosystems, the use of RS to monitor FCO2 emissions from subtropical
and tropical forest ecosystems is still at the exploratory stage and thus our study provides
some preliminary reference and evaluation results. More field observations are still needed
for model calibration and validation in the future. Furthermore, the fusion of the high
spatial (e.g., Landsat and Sentinel) and temporal (e.g., MODIS) resolution data of satellite
remote sensing may provide new ideas for improving the monitoring accuracy of FCO2 in
subtropical and tropical forest ecosystems.
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