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Abstract: As an important and fundamental step in 3D reconstruction, point cloud registration
aims to find rigid transformations that register two point sets. The major challenge in point cloud
registration techniques is finding correct correspondences in the scenes that may contain many
repetitive structures and noise. This paper is primarily concerned with improving registration using
a priori semantic information in the search for correspondences. In particular, we present a new point
cloud registration pipeline for large, outdoor scenes that takes advantage of semantic segmentation.
Our method consisted of extracting semantic segments from point clouds using an efficient deep
neural network, then detecting the key points of the point cloud and using a feature descriptor to
get the initial correspondence set, and, finally, applying a Random Sample Consensus (RANSAC)
strategy to estimate the transformations that align segments with the same labels. Instead of using all
points to estimate a global alignment, our method aligned two point clouds using transformations
calculated by each segment with the highest inlier ratio. We evaluated our method on the publicly
available Whu-TLS registration data set. These experiments demonstrate how a priori semantic
information improves registration in terms of precision and speed.

Keywords: terrestrial laser scanning; point cloud registration; deep learning; semantic segmentation;
feature extraction

1. Introduction

Point clouds are important data structures that represent the three-dimensional, real
world. Because point clouds have no topological structure and are also easy to store
and transmit, they are widely used in 3D reconstruction, autonomous driving, intelligent
robots, and many other applications [1–3]. However, the point cloud for an object is usually
obtained using two or more scans from different reference frames because of the limitation
of the geometric shape of the measured object and the scanning angle. Therefore, it is
necessary to align all scans to obtain one point cloud for a complete scene in the common
point cloud reference system, which is called point cloud registration.

Point cloud registration of large, outdoor scenes faces many challenges, such as the
registration of symmetrical objects in large scenes, incomplete data, noise, artefacts caused
by temporary or moving objects, and cross-source point clouds captured by different types
of sensors. To address these challenges, many studies have proposed different methods
for registering point clouds in large, outdoor scenes [4–7]. The classic registration pipeline
usually extracts the feature elements of the point cloud, then uses the designed feature
descriptor to establish the correspondence between the points through a nearest neighbor
search, and, finally, the registration result is produced. This method is widely used in
engineering and has achieved good results. However, it is computationally expensive, and
the cost significantly increases as the number of points increases. Moreover, the handcrafted
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feature descriptor is usually based on low-level features such as curvature, normal vector,
color, and reflection intensity. As a result, it may generate incorrect correspondence, which
affects registration accuracy when a large-scene point cloud contains many repetitive
and symmetrical structures. Recently, with the development of deep learning in point
cloud semantic segmentation [8], a point cloud’s high-level semantic information can
be quickly obtained. Inspired by this development, we considered incorporating high-
level semantic features into point cloud registration to solve the problems in the classic
registration pipeline.

In this work, we present a complete point cloud registration pipeline for large, outdoor
scenes using semantic segmentation. Our method used an efficient deep neural network
to perform semantic segmentation on two point clouds that needed to be registered. For
each segment of the source point cloud, we detected the key points of the point cloud and
used a feature descriptor to generate the correspondence set in the respective segment of
the target point cloud. Using the alignment of each segment, our algorithm extracted the
transformation that can best align the initial point cloud. We performed tests on different
scenes from Whu-TLS [9] to verify the effectiveness of the algorithm. The algorithm’s
parameter settings will also be discussed.

The rest of paper is organized as follows. Section 2 reviews some relevant works on
point cloud registration and semantic segmentation. Section 3 describes the detail of the
segmentation model and registration algorithm. Experiments and results of the proposed
method are presented in Section 4, followed by the conclusions in Section 5.

2. Related Work
2.1. Point Cloud Registration

In engineering, a target is usually used for point cloud registration [10]. During
registration, three or more targets are placed in the common area between scanning sta-
tions. After scanning the target area from different stations, the fixed targets are scanned
accurately at each station and then used for registration. This method achieves a high reg-
istration accuracy in engineering applications, but it is time consuming and labor intensive
and requires the scanning target to have an overlap and obvious geometric characteristics.
To overcome these problems, many automatic registration methods that do not require
manual intervention were proposed, and we will introduce them in the following content.

Iterative Closest Point (ICP) algorithm is a classic automatic algorithm used to solve
the problem of point cloud registration [11]. It establishes the relationship between point
pairs through the Euclidean distance, uses the least square method to minimize the objective
loss function, and obtains the rotation parameters and translation matrix. Although the
ICP algorithm is simple and practical, it is sensitive to noise and requires a good initial pose
between the two point clouds; otherwise, it easily falls into a local optimal solution. To
solve these problems, many scholars have improved the ICP algorithm, focusing primarily
on the selection of matching points [12,13], the calculation of the initial value of the
registration [14], and the design and optimization of the objective function [15,16], among
other aspects.

Another type of point cloud registration method is based on feature element matching.
In this method, the key points [17], line [18], surface [19], or other elements from the
scanned point cloud are first extracted. Then, key elements are matched using their feature
descriptions to calculate transformation parameters. This type of method does not need
to provide an initial value, but it cannot achieve good results when the target point cloud
data are missing.

Methods based on mathematical statistics, such as Normal Distribution Transform
(NDT) [20] and Gaussian Mixture Models (GMM) [21], describe the point cloud’s distri-
bution characteristics by establishing a probability model so that after registration, the
probability distribution between the two point clouds is the most similar. This registration
method has strong robustness to noise and a lack of point cloud data, but the precise
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mathematical description of complex point clouds is too complicated and it also easily falls
into the local optimal solution in the absence of an initial solution.

Deep learning methods for point cloud registration have recently developed rapidly.
Some methods, such as 3DMatch [22], PPFNet [23], and Fully Convolutional Geometric
Features (FCGF) [24], use deep neural networks to train point cloud feature descriptors.
Because deep neural networks are capable of powerful feature extraction when trained on
large data sets, they have excellent performance in point cloud registration tasks. There
are also some end-to-end methods, such as PointNetLK [25], AlignNet-3D [26], and Deep
Closest Point (DCP) [27]. These methods can directly output the transformation matrix
for two point clouds that need to be registered even if they do not explicitly calculate
the correspondence between the points. However, while these methods are simple and
efficient, they do not consider the point cloud’s local neighborhood information. Therefore,
they are usually not used for large-scene registration tasks.

2.2. Point Cloud Semantic Segmentation

Efficiently obtaining accurate semantic information is an important part of our regis-
tration pipeline. Therefore, it is necessary to discuss some of the progress that has been
made in the field of point cloud semantic segmentation. Traditionally, many point cloud
semantic segmentation methods project 3D point clouds into 2D images and use more
mature image segmentation technology to obtain results [7]. However, these methods
are easily affected by image resolution and viewing angle selection. PointNet [28] is the
first network to directly work on irregular point clouds, and it learns per-point features
using shared multilayer perceptron (MLP) and global features using symmetrical pooling
functions. It is a lightweight network and has been widely employed in many fields that
utilize point clouds, but it lacks consideration of a point cloud’s local information. To solve
this problem, there are many methods for improving point cloud registration using point
convolution or graphs. PointConv [29] uses a shared multilayer perceptron network to
learn continuous weight functions for neighborhood points to define point convolution.
KPConv [30] uses the kernel point as a reference and calculates the weight of these kernel
points to update each point so that the point cloud’s neighborhood information can be
extracted. DGCNN [31] constructs a graph in the feature space, defined as EdgeConv, and
dynamically updates that graph in each layer. However, using a convolution operation
increases the memory and reduces the efficiency of the algorithm. To make semantic
segmentation more efficient, RandLa-Net [32] uses random point sampling and a local
feature aggregation module to reduce memory usage and computational complexity while
maintaining high precision.

3. Methodology

As shown in Figure 1, our registration pipeline for large, outdoor scenes consisted
primarily of these steps:

1. For the source point clouds M and the template point clouds N, we first downsampled
it by voxel filter, and voxel size was set to 0.05 m. Then we used statistical analysis
filters to eliminate outliers in the point cloud. The number of neighborhood points
analyzed for each point was set to 30, and the multiple of the standard deviation was
set to 1. After that, a deep neural network was used to predict semantic labels for the
input cloud.

2. The point cloud was divided into different subsets based on semantic labels. For
the subsets that had the same labels, we extracted key points using intrinsic shape
signatures (ISS). Additionally, for each key point, the hand-crafted feature Fast Point
Feature Histograms (FPFH) [7] was calculated to get the initial correspondence set.

3. The random sample consensus (RANSAC) strategy was used to reject incorrect corre-
spondence and calculate the transformation matrix between subsets in the source and
template point clouds.
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4. For each transformation matrix, we applied it to the source point cloud and chose the
transformation matrix that had the highest inlier ratio as the final result.
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Figure 1. The over information flow of our method.

A detailed description of each step is as follows.

3.1. Semantic Information Extraction—Randla-Net

To quickly and effectively obtain semantic information for the next steps, we employed
RandLA-Net, a lightweight and low-memory network structure that can directly process
large-scale 3D point clouds. RandLA-Net first uses random sampling to process large-scale
point clouds and then designs a local feature aggregation module to capture local structures.
Its structure is similar to the classic point cloud segmentation encoder–decoder network
structure. As shown in Figure 2, for encode, the input is a point cloud with a size of
N × din, where N is the number of points and din is the feature dimension of each input
point, which may contain information such as coordinates, colors, normal, etc. In each
encoding layer, the size of the point cloud is reduced by random sampling and per-point
feature dimensions is increased by local feature aggregation module. For each layer in
the decoder, the point feature set is upsampled through a nearest-neighbor interpolation.
Next, the upsampled features are concatenated with the intermediate feature produced
by encoding layers through skip connections, after which a shared MLP is applied to the
concatenated feature. Finally, the semantic label of each point is obtained through shared
fully connected layers.

Next, we will give a brief description of the key local feature aggregation module
(LFA) in the network, including local spatial encoding, attentive pooling and the dilated
residual block.
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Figure 2. The structure of RandLA-Net.

1. Local spatial encoding: First, for each point, the nearest neighbor search algorithm is
used to find the nearest neighborhood points in Euclidean space. Then, the neighbor-
hood points are encoded by concatenating the three-dimensional coordinates of the
center point, the three-dimensional coordinates of the neighboring point’s relative
coordinates, and the Euclidean distance, calculated as follows:

rk
i = MLP

(
pi ⊕ pk

i ⊕
(

pi − pk
i

)
⊕ ‖pi − pk

i ‖
)

(1)

f̂
k
i = fk

i ⊕ rk
i (2)

where ⊕ is the concatenation operation, rk
i represents the features after aggregation,

and f̂
k
i represents new features in the neighborhood after concatenation.

2. Attentive pooling: This module is used to aggregate feature sets of neighborhood
points. Unlike traditional algorithms, which usually use pooling to achieve hard
integration of the feature set of neighborhood points, attentive pooling applies an
attention mechanism to automatically learn and aggregate useful information in the
feature set. It is defined as follows:

f̃i =
K

∑
k=1

(
f̂

k
i · sk

i

)
(3)

where f̂
k
i is features of each point in the neighborhood and sk

i is the attention score
learned using shared MLP.

3. Residual block: In simple terms, this module connects skip connections with multiple
local spatial encoding and attentive pooling to form a dilated residual block so that
the network can obtain a larger receptive field when the point cloud is continuously
downsampled.

We adopted the network’s original architecture for training and testing. When the
network finished training on the outdoor data set, NPM3D, we used that trained network
to obtain predicted labels for the Whu-TLS data set and used them to test our methods.

3.2. Point Cloud Registration with Semantic Information

Given two sets of points, M and N in arbitrary initial positions, let M =
{

M1, M2, . . . , Mk1

}
and let N =

{
N1, N2, . . . , Nk1

}
be the semantic segments obtained after segmenting M and

N, respectively. For each Mi and Ni with the same labels, we used a voxel filter for down-
sampling and extracted ISS key points. Then, the FPFH feature descriptor was utilized to
compute and match key points. Two points were matched if their FPFH features were one
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of the five nearest neighbors to each other. When the correspondences were established, we
used a RANSAC-based strategy to calculate rotation and translation parameter, as follows:

1. A subset was randomly selected from the set of matched feature pairs.
2. Singular value decomposition (SVD) method was applied to calculate the rotation

and translation matrix. First, we defined Mi and Ni as centroids of Mi and Ni, which
are two point sets to be registered. The cross-covariance matrix H is calculated by:

H =
N

∑
i=1

(
Mi −Mi

)(
Ni −Ni

)T (4)

Then, we used SVD to decompose H to U, V:

[U, S, V] = SVD(H) (5)

Subsequently, we extracted the rotation matrix R and translation vector t by Equa-
tions (6) and (7):

R = VUT (6)

t = −R ·Ni + Mi (7)

3. The matching results were verified to ensure they can make the most of the feature
points’ overlap. If the accuracy met the requirement or reached the maximum number
of iterations, the registration result was output; otherwise, it returned to (1).

We obtained a transformation matrix set T =
{

T1, T2, . . . , Tk1

}
after the last step. To

register two point clouds, we computed parameters by the following object function:

T̂ = argmaxTi (|g(Ti(M), N)|) (8)

where Ti is the transformation matrix calculated by Mi and Ni, which have the same
semantic labels, and g(.) is a function that calculates the inlier ratio after source point cloud
transformation and it is defined as follows:

g(T) =

D
∑

i=1
I(‖RM + t−N‖ ≤ ε)

S
(9)

where I(.) is the indicator function, which equals 1 if the input is true or 0 otherwise, ε is
the inlier threshold, and S is the number of points in the source point cloud.

To maximize the object function, we applied each Ti to the source point cloud and
chose a Ti that aligned the largest numbers of inliers so that two point clouds could be
registered with the highest probability.

4. Experiments and Results
4.1. Data Sets and Configuration

For semantic segmentation, we trained the semantic segmentation model on the
NPM3D [33] data set, which is a large-scale, outdoor, point cloud segmentation benchmark.
This data set was generated by a mobile laser system that accurately scanned two different
cities in France (Paris and Lille). It was labelled into nine categories: ground, building,
pole, bollard, trash can, barrier, pedestrian, car, and natural (vegetation). The specific
distribution of each category is shown in Table 1. The data set was split into three stations
for training, one station for validation, and four stations without ground truth for testing in
our experiments. For the registration task, we used the Whu-TLS data set for the algorithm
test. This data set was a large-scene point cloud registration benchmark that consisted
of 11 different environments, such as subway station, mountain, forest, campus, etc. The
Whu-TLS data set also provided ground-truth transformations to verify the accuracy of the
registration results.
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Table 1. NPM3D dataset category distribution table. The training and validation dataset are a 1%
random sample.

Class Train Set (1%) Valid Set (1%) Test Set

Ground 470,186 181,180 18,118,080
Building 240,665 89,278 6,741,262

Pole 4591 1905 155,999
Bollard 376 277 14,915

Trash can 2680 271 33,860
Barrier 16,603 23,723 310,146

Pedestrain 337 1396 26,554
Car 29,259 13,073 949,635

Natural 43,319 62,300 2,781,644
Total 808,006 373,403 29,132,095

We compared our method to Four Points Congruent Sets (4PCS) [34], Fast Global
Registration (FGR) [35], and PointNetLK. For 4PCS, we set the delta to 0.8 and the number
of samples to 1000. PointNetLK was implemented by the authors’ release code with a
pretrained model. We set a 5-m radius to estimate the normal and an 8-m radius to calculate
FPFH for both FGR and our methods. The mean squared error (MSE), root mean squared er-
ror (RMSE), and mean absolute error (MAE) between the ground truth transformation and
the predicted transformation were used for accuracy evaluation (angular measurements
are in units of degrees). All experiments were implemented on an Intel Xeon W-2145@
3.70 GHz, 64 G RAM, GPU NVIDIA TITAN RTX 24G workstation.

4.2. RandLA-Net or KPConv

To choose a model to obtain predicted labels for each point in the registration data set
more precisely and quickly, we compared the performance of RandLA-Net and KPConv,
which are current popular semantic segmentation networks. Their performance on the
NPM3D data set is presented in Table 2 (the data are from the official website of the
benchmark data set). From Table 2, we can see that KPConv outperformed RandLA-Net in
the mean Intersection-over-Union(mIoU) metric. However, RandLA-Net achieved better
results for five categories, including building, bollard, barrier, car, and natural. In other
categories, the accuracy of KPconv was better than RandLA-Net. We inferred from this
that RandLA-Net may have a better semantic segmentation effect on large-object point
cloud because the LFA module increased the receptive field of the network, while KPConv
had a better effect on small-object point cloud.

Table 2. Intersection over union (IoU) metric of RandLA-Net and KPConv for the different classes of the Semantic3D dataset.
mIoU refers to the mean of IoU of each class (%).

Methods mIoU Ground Building Pole Bollard Trash Can Barrier Pedestrian Car Natural

RandLA-Net 78.5 99.5 97.0 71.0 86.7 50.5 65.5 49.1 95.3 91.7
KPConv 82.0 99.5 94.0 71.3 83.1 78.7 47.7 78.2 94.4 91.4

Table 3 presents the effectiveness of the two networks over two scans of campus scenes
in the Whu-TLS registration data set. The runtime of RandLA-Net was greatly reduced
when compared with KPConv in the downsampled point cloud. From Figure 3, we can see
that RandLA-Net mostly correctly classified building, ground, and natural point clouds.
But for KPConv, some building point clouds were misclassified as natural. Perhaps this was
due to our downsampling of the original point cloud and the difference between the types
of features in the campus scene and the training data set. Therefore, for the sake of accuracy
and efficiency, we finally chose RandLA-Net as our semantic segmentation network.
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Table 3. Runtime of the two networks in the point cloud to be registered.

Methods Scan Point Numbers Time(s)

RandLA-Net Station 1 79,137 4.22
Station 2 136,443 7.04

KPConv Station 1 79,137 94.11
Station 2 136,443 125.52
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4.3. The Effect of Different Classes

As our method was based on semantic segmentation, we explored which class was
suitable for registration in our method. Table 4 presents the registration results calculated
for each class in our experiment. We chose three classes that had enough points to calculate
FPFH and correspondences. It can be seen that the ground and natural points could not
be registered well, and their predicted transformation was very different from the ground
truth. We inferred that this was because the ground points had no obvious geometric
structure and the natural points contained too many noise points. Therefore, few correct
correspondences were generated and the accurate registration transformation was difficult
to calculate. In contrast, building points contained obvious structural features and less
noise, so the methods produced better results for these categories.
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Table 4. Registration error and time for different classes.

Class R/MSE R/RMSE R/MAE t/MSE t/RMSE t/MAE Point Number Time(s)

Ground 12,750.873 112.919 65.915 2519.015 50.189 31.179 8579 0.29
Natural 10,132.264 100.659 71.129 338.403 18.395 16.367 23,278 4.19
Building 0.238 0.489 0.418 0.134 0.366 0.346 48,419 19.86

4.4. The Effect of Different Max Iterations

We compared our method, fusing semantic segmentation with RANSAC, with the
traditional RANSAC method in regard to the maximum number of iterations. As shown
in Table 5 and Figure 4, the errors descended as the maximum number of iterations
increased in both methods. This is because, for the RANSAC method, as the number of
iterations increases, more accurate and reliable correspondences can always be found to
obtain better registration results, but it also requires more time consumption. Our method
achieved good registration results when the maximum number of iterations was small.
Additionally, the efficiency was also significantly improved. This improvement was due
to the addition of a semantic segmentation module, which filtered out a large number
of incorrect correspondences. For example, two points with different semantic labels
could not be the correspondence. It made the search for correct correspondences between
different stations faster and more accurate. Moreover, the traditional RANSAC method
needed more iterations to get a better result because there were points with similar FPFH
features in different classes, causing us to get some wrong matches.

Table 5. Registration error and time of different max iterations.

Iterations Ours RANSAC
MSE(R) RMSE(R) MAE(R) MSE(t) MRSE(t) MAE(t) Time MSE(R) RMSE(R) MAE(R) MSE(t) MRSE(t) MAE(t) Time

1000 8.250 2.872 1.739 8.973 2.995 2.914 3.27 214.223 14.636 9.882 935.62 30.587 25.259 7.55
5000 0.199 0.446 0.374 1.511 1.229 1.056 6.31 0.878 0.936 0.885 2.598 1.611 1.092 18.66

10,000 0.238 0.489 0.418 0.134 0.366 0.346 25.11 1.774 1.332 0.814 1.027 1.014 0.698 62.49
20,000 0.238 0.489 0.418 0.134 0.366 0.346 50.23 1.770 1.330 0.813 1.022 1.011 0.697 125.31
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Figure 4. Each line shows registration error and time cost with respect to the maximum number of iterations, (a) Our
method, (b) Traditional RANSAC method.

4.5. Comparison with Different Methods

We compared our method with 4PCS, FGR, and PointNetLK for two point clouds’
registration in different scenes. Table 6 quantitatively shows the registration error and total
time for different methods when registering campus scenes, which contain many artefacts.
And Figure 5 shows the registration result of each algorithm for campus scenes. It can
be seen that (1) 4PCS took the most time and obtained a good registration result, but it
sometimes exhibited a poor registration effect or direct deviation in our experiment because
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it randomly sampled the points every time. (2) FGR roughly aligned two point clouds with
initial poses that were far away but still needed to be further refined. (3) PointNetLK is
an end-to-end network in deep learning with extremely high registration efficiency for
small objects, but it is not directly applicable to point cloud registration in large scenes
with complex and asymmetric structures. (4) Our method produced better results for point
cloud alignment in terms of accuracy and efficiency, although the two point clouds had
artefact noise points. The a priori semantic information was used to avoid incorrect classes
from affecting the correspondence search.

Table 6. Registration error and time of different methods for campus scenes.

Methods R/MSE R/RMSE R/MAE t/MSE t/RMSE t/MAE Time(s)

4PCS 1.039 1.019 0.887 8.019 2.832 2.373 58.59
FGR 116.181 10.778 10.621 412.365 20.307 16.199 49.09

PointNetLK 8857.101 94.112 64.473 995.206 99.575 87.587 5.86
OURS 0.238 0.489 0.418 0.134 0.366 0.346 39.11
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The residence scene in the Whu-TLS data set contained many repetitive structures
and homogeneous architectural layouts. We compared the accuracy and efficiency of
the four methods in this scene. It can be seen from Table 7 and Figure 6 that 4PCS and
our method obtained worse results than for campus scenes because of the ambiguity
caused by repetitive structures. As the model was trained on a simulation data set whose
transformation was set manually (the source point cloud and the target point cloud were
symmetrical), PointNetLK obtained a better result than the campus scene.

Table 7. Registration error and time of different methods for residence scenes.

Methods R/MSE R/RMSE R/MAE t/MSE t/RMSE t/MAE Time(s)

4PCS 3.895 1.973 1.351 84.742 9.205 6.881 7.51
FGR 53.082 7.285 6.841 54.676 7.394 6.863 82.52

PointNetLK 23.627 4.861 4.108 118.068 10.866 9.116 8.12
OURS 2.878 1.696 1.197 3.418 1.849 1.735 80.23
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Table 8 and Figure 7 show that 4PCS and PointNetLK both failed to register due to
noise and semi-environments in the park scene. Although FGR and our method both
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used FPFH to generate a set of correspondences, our method was more robust for large,
outdoor scenes, which may contain noise, artefacts, and complex structures. The addition
of semantic information can reduce the probability of incorrect correspondence and achieve
a better registration result.

Table 8. Registration error and time of different methods for park scenes.

Methods R/MSE R/RMSE R/MAE t/MSE t/RMSE t/MAE Time(s)

4PCS 10,978.821 104.779 71.407 548.138 23.412 19.646 5.28
FGR 16.617 4.076 3.749 2.286 1.512 1.349 130.63

PointNetLK 3364.173 58.001 36.161 522.466 22.857 18.831 10.36
OURS 0.292 0.540 0.381 0.025 0.016 0.143 30.25
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5. Conclusions

In this work, we presented a new pipeline for large, outdoor scenes’ point cloud
registration. Unlike traditional RANSAC-based methods, we first performed semantic
segmentation on the point cloud and calculated the geometric transformation for each
segment of two point clouds that had the same semantic labels. We aimed to find the
transformation that had the highest inlier ratio so that the point cloud could be registered
to the greatest extent.

Our method was proposed to use semantic segmentation to improve the accuracy
and efficiency of point cloud registration in large, outdoor scenes. Because the outdoor
scene point cloud contains many noise points and the volume is huge, the traditional
registration method based on low-level feature descriptors like FPFH usually takes a lot of
time to obtain unsatisfactory results. Sometimes, points in different categories may have
the same feature descriptor, which will generate wrong correspondence. This may reduce
the accuracy of the registration or take more time to eliminate wrong matches. However, it
can be solved by using a priori semantic information during the registration process.

We tested our method on the Whu-TLS registration data set. The results of the
experiments showed that our method produced results with better quality and run time
than the other methods for different scenes. However, it is worth mentioning that the
registration results obtained from our methods were highly dependent on the semantic
segmentation step. If the result of semantic segmentation is bad, it will directly affect our
registration step because the data will be missing points of the same label. Additionally,
more detailed and faster semantic segmentation may be able to further improve our
method. Therefore, our future works will focus on the improvement of the semantic
segmentation step.
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