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Abstract: Despite significant advances in the development of high-resolution digital cameras in the 

last couple of decades, their potential remains largely unexplored in the context of input-output 

modal identification. However, these remote sensors could greatly improve the efficacy of 

experimental dynamic characterisation of civil engineering structures. To this end, this study 

provides early evidence of the applicability of camera-based vibration monitoring systems in 

classical experimental modal analysis using an electromechanical shaker. A pseudo-random and 

sine chirp excitation is applied to a scaled model of a cable-stayed bridge at varying levels of 

intensity. The performance of vibration monitoring systems, consisting of a consumer-grade digital 

camera and two image processing algorithms, is analysed relative to that of a system based on 

accelerometry. A full set of modal parameters is considered in this process, including modal 

frequency, damping, mass and mode shapes. It is shown that the camera-based vibration 

monitoring systems can provide high accuracy results, although their effective application requires 

consideration of a number of issues related to the sensitivity, nature of the excitation force, and 

signal and image processing. Based on these findings, suggestions for best practice are provided to 

aid in the implementation of camera-based vibration monitoring systems in experimental modal 

analysis. 

Keywords: experimental modal analysis; modal damping; modal mass; computer vision; vibration 

testing 

 

1. Introduction 

Camera-based optical motion capture systems (MCS) have been widely used in the 

vibration monitoring of civil engineering structures in the last few decades due to their 

non-contact measurement capabilities [1]. The rapid development of camera-based MCS 

is best reflected in the number of review studies on the subject which contain a wealth of 

information related to recent advances in technology, methodology, applications, 

challenges and frontiers [2–8]. The typical application of camera-based MCS involves the 

measurement of structural responses to ambient or imposed loading at one spatial 

location at the time [8–13]. A simultaneous measurement of the structural response at 

spatially-distant points is less common, although single- and multi-camera MCS have 

been shown to enable this task. Various types of camera systems have been used, 

including high-speed cameras [14], action cameras (e.g., GoPro) [15], smartphones [16], 

consumer-grade digital cameras (CGC) [17], high resolution video cameras [18], stereo 

cameras [19], multi-camera systems [20–22], and camera systems on board of unmanned 
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autonomous vehicles (UAV) [23,24]. The obtained data are most often used to extract 

modal frequencies and mode shapes [15,18,25,26], and very rarely damping [20–22], using 

various operational modal analysis (OMA) algorithms [15,26] which rely on the 

measurement of the structural response only. The modal parameters established with 

OMA are used for updating numerical models of structures [25], and for the assessment 

of load bearing capacity [27], structural serviceability [13,28] and structural health [26,29]. 

Apart from the structural response measurements, a few studies estimated the dynamic 

input loads to civil engineering structures using optical MCS [30–32]. These loads were 

generated from humans jumping [30,33] or walking [34], or by passing vehicles [31]. Other 

studies explored the potential of hybrid instrumentation systems, combining 

measurements from typologically different sensors, although the main focus of this work 

has been on recovering more accurate structural response signals [35–38]. 

Notwithstanding the applicability of OMA in dynamic characterisation of civil 

engineering structures [39], its inherent limitation is associated with the unknown force 

input. This makes it difficult to obtain the modal mass (i.e., a measure of the mass being 

mobilised for a given mode), and hence scale the mode shapes. Although several 

propositions have been put forward to overcome this limitation, they rely on various 

interventions introducing changes in local mass or stiffness of the structure, which can be 

impractical to apply on large-scale structures, or require a high fidelity numerical model, 

which is often difficult to obtain [40,41]. Consequently, modal mass is often overlooked in 

the dynamic characterisation of structures [42]. However, modal mass is an important 

design parameter as it governs the dynamic behaviour of structures subjected to dynamic 

actions (e.g., due to wind and humans), as encapsulated by the Scruton number [43] and 

pedestrian Scruton number [44,45]. Therefore, classical experimental modal analysis 

(EMA), relying on the measured input force and output response, is favoured in the full 

dynamic characterisation of structures. Within this context, the only study known to the 

authors reporting the modal mass based on measurements from camera-based MCS is 

that of Kalybek et al. 2021 [46]. An instrumented hammer was used to provide excitation 

force to a simple spatial structure monitored with various optical MCS. The estimates of 

modal frequencies and mode shapes were found compatible with those obtained with 

accelerometry and laser Doppler vibrometer (LDV), while the maximum error 

magnitudes in the modal damping and mass for modes at 2.7, 8.7, 13.5 and 18.7 Hz were 

all within 12% and 20%, respectively. However, shaker excitation is often preferred over 

an instrumented hammer in modal testing, as it generally enables a better signal-to-noise 

ratio [47]. An accurate determination of modal damping and mass is of increasing 

importance, considering the advances in engineering materials coinciding with trends 

towards building lighter and slenderer structures, which are becoming increasingly 

susceptible to dynamic excitation. However, these dynamic system parameters are rarely 

reported, even in the case of carefully-arranged laboratory studies. The main reason for 

that is the significant uncertainty in the determination of modal damping and mass 

associated with the variety of damping mechanisms and modelling simplifications, and 

sensitivity to the vibration amplitudes and parameter extraction methods, in particular 

the type and arrangement of instrumentation systems and data processing algorithms 

[42,48]. This uncertainty reveals itself in the discrepancy between the estimated modal 

damping and mass relative to the benchmark, e.g., an instrumentation system of higher 

accuracy and sensitivity, reaching several dozen percent [46,48,49]. 

Although the interest in camera-based MCS stems from contactless monitoring of 

full-size structures, laboratory-based tests allow the performance of these systems to be 

scrutinised while removing error sources associated with the outside environment, e.g., 

wind and illumination changes, and random unmeasured loads. Apart from simple 

structural elements, such studies generally include scaled-down and simplified models of 

buildings [19,23,50], bridges [51], and grandstands [30]. Therefore, this approach is also 

adopted in this study. 
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Considering the above points and building on the work presented in [46], the 

purpose of this study was to assess the performance of optical MCS in experimental modal 

analysis using shaker excitation. To this end, the behaviour of a scaled model of a cable-

stayed bridge set in a laboratory environment was investigated subjected to pseudo-

random white noise-type and sine chirp excitation. The response of the bridge was 

measured with a set of wired accelerometers and two motion tracking algorithms 

available in an open access domain, relying on videos collected with a consumer-grade 

digital camera. A complete set of modal parameters was used in benchmarking of the 

performance of optical MCS against accelerometery, including modal frequency, 

damping, mass and mode shapes. To the best of the authors’ knowledge, this is one of the 

first studies exploring the performance of camera-based MCS in the context of EMA 

conducted with a shaker. 

The rest of the paper is organised as follows. The tested structure, instrumentation 

and data processing is discussed in Section 2. Section 3 presents the main results, starting 

from the assessment of data quality, through data processing considerations associated 

with the optical MCS, to a complete set of modal parameters. The results from Section 3 

are discussed in Section 4. Concluding remarks are given in Section 5. 

2. Materials and Methods 

Four forced vibration tests were conducted on a scaled model of a cable-stayed bridge 

set in a laboratory environment. The whole experimental campaign, including the 

deployment of the instrumentation systems, lasted three hours and there was no 

significant variation in the environmental and laboratory conditions during that time. A 

pseudo-random and a sine chirp excitation with frequency content between 3 and 25 Hz 

were delivered to the structure with a vibration exciter at two levels of intensity each. The 

range of excitation frequencies was chosen such as to mobilise the main vertical modes of 

the deck of the bridge model, as informed by the results presented in [52]. Each test lasted 

approximately 10 min. A summary of the tests and their identifiers used throughout the 

paper are presented in Table 1. To enable comparison of the excitation signals’ intensity, 

Table 1 includes the root-mean-square (RMS) value of the measured excitation force for 

each test. 

Table 1. Summary of the conducted modal tests. 

Test ID Excitation Type Rate [Hz/s] 
Intensity 

[RMS *, N] 
Approximate Test Duration [s] Frequency Range [Hz] 

T1 pseudo-random n/a 13.35 600 3–25 

T2 pseudo-random n/a 28.95 600 3–25 

T3 sine chirp 0.037 9.69 600 3–25 

T4 sine chirp 0.037 19.8 600 3–25 

* RMS = root-mean-square. 

An outline of the steps undertaken to capture and process the data used in EMA is 

presented in Figure 1. The bridge model, instrumentation systems and data processing 

steps are described in the following sections. 
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Figure 1. Outline of the data fusion undertaken to enable experimental modal analysis (EMA). 

2.1. Bridge Model 

The scaled model of a cable-stayed bridge used in this study and the layout of the 

instrumentation systems are shown in Figure 2. The geometry and dynamic properties of 

the bridge model were tuned to represent those of real-life full-scale counterparts. The 

long and short spans of the bridge are 4550 mm and 1550 mm long, respectively, with 50 

mm offset from the outer boundaries of the deck to the centre lines of the supports, and 

the pylon is 2880 mm high. The pylon consists of two legs, each equipped with a cable 

anchorage plate at the top, connected by a cross-beam. The short span has an auxiliary 

support enabling longitudinal movement. The deck is made of a solid steel plate 15 mm 

thick and 250 mm wide. Four pairs of cable stays connect the long span of the bridge to 

the pylon, back tied on the other side to two anchor blocks by two pairs of cable stays. The 

deck, sitting 595 mm above the ground, is fixed against longitudinal movement at the 

pylon but is free to rotate, and free to move longitudinally over all other supports. The 

bridge model has low frequency modes with relatively low damping. A detailed 

description of the bridge model can be found in [52]. 
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(a) (b) 

  

Figure 2. Layout of the bridge model and instrumentation systems; (a) overview, (b) zomed-in section of the deck near 

the shaker attachment. All dimensions in mm. In modal analysis, the performance of the bridge model in XY plane only 

was of interest. 

2.2. Instrumentation 

The instrumentation systems included wired accelerometers, vibration exciter 

(electromechanical shaker) and optical motion capture system. Basic specification of the 

instrumentation systems as provided by the manufacturers is given in Table 2, and a more 

detailed description is given in Sections 2.2.1–2.2.3. The vibration exciter and 

accelerometers were connected to Brüel & Kjær PULSE data acquisition system operating 

with resolution of 24 bit and frequency of 4096 Hz. 

Table 2. Basic specification of the instrumentation systems used in this study. 

System Sensor Quantity 
Operational Frequency and 

Resolution/Range/Sensitivity 

Accelerometry Brüel & Kjær miniature DeltaTron® 4507 B005 10 
0.4 Hz–6 kHz 

150 µg & 100 mV/(m·s−2) 

Vibration exciter Brüel & Kjær Type 4808 1 
5 Hz–10 kHz * 

112 N 

Force transducer Brüel & Kjær DeltaTron® 8230-003  1 

22000 N (compression) & 2200 N 

(tension) 

0.22 mV/N 

Data acquisition 

system 
Brüel & Kjær PULSE 1 

4096 Hz 

24 bit 

Consumer-grade 

camera (CGC) 

Canon EOS 200D with DIGIC 7 processor and 20 

mm Canon lens with maximum aperture f/2.8  
1 

59.94 fps 

24.2 MP 

* Although 5 Hz in the nominal lowest frequency at which the input force can be fully controlled, the shaker can deliver 

force below that frequency, as shown in Section 4. 

2.2.1. Vibration Exciter 

The excitation force was delivered via a Brüel & Kjær Type 4808 permanent magnetic 

vibration exciter with a force rating of 112 N. Although the range of fully controllable 

excitation frequencies of the shaker starts at 5 Hz, the shaker is capable of delivering force 

at lower frequencies, albeit with lesser controllability. The shaker was mounted on a rigid 

plate supported by the laboratory strong floor and attached to the deck with a stinger via 

a Brüel & Kjær DeltaTron® 8320-003 force transducer, centrally in the transverse direction 

and 2.075 m away from the axis of the support furthermost from the pylon. The pseudo-

random white noise excitation and sine chirp excitation, with a frequency content up to 
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25 Hz, were applied to the structure, each at two levels of intensity as defined in Table 1. 

The rate of the frequency sweep for the sine chirp excitation was 0.037 Hz/s. Having two 

types of excitation signal served to strengthen confidence in the obtained modal results 

but also to examine whether the performance of the optical vibration monitoring systems 

differ in this respect. The pseudo-random and sine chirp excitations were chosen because 

they prevent bias error and offer a good signal-to-noise ratio [47] (p. 316). An important 

consideration in the case of pseudo-random excitation is that, although the inherent 

periodicity of the signal avoids leakage (i.e., spread of energy over frequency bins), the 

same force is effectively applied to the structure repeatedly over the duration of the test 

[53] (p. 167). Therefore, the influence of slight nonlinearities and random inputs will not 

be removed due to averaging to the same extent as in the case of periodic random 

excitation. Examples of the measured force and response at the point of application of 

force for T2 and T4 are shown in Figure 3. The repeating patterns of the input force and 

output acceleration can be seen for pseudo random excitation in Figure 3a,b, respectively. 

The three parts of the response to sine chirp excitation in Figure 3b for which the 

amplitude modulus grows beyond 2 m·s−2 correspond to the periods in which the 

harmonic components of the excitation signal are passing through the natural frequencies. 

These three parts correspond to the dips in the sine chirp excitation force in Figure 3a 

which indicate that the deck is moving away from the shaker at resonances [47] (p. 316). 

  

Figure 3. Truncated time histories of (a) excitation force and (b) structural response at the point of application of force 

during T2 and T4. 

2.2.2. Accelerometers 

Acceleration of the deck was measured with ten Brüel & Kjær miniature DeltaTron 

4507 B005 accelerometers sitting in dedicated clips attached to the deck with hot melt glue. 

Seven accelerometers were mounted along the edge of the bridge’s main span facing the 

camera, as shown in Figure 2a. The locations of these accelerometers correspond to the 

locations of fiducial markers used with the optical MCS. Therefore, only these seven 

accelerometers and the corresponding fiducial markers were used to measure the bridge 

model response for the use in EMA reported in Section 3.2. There were two accelerometers 

mounted on the other side of the deck, as shown in Figure 2b, to check for horizontal and 

torsional modes. Another accelerometer was collocated and coaxial with the force 

transducer mounted on the shaker’s stinger, except that it was mounted on the top rather 

than bottom side of the deck, to be able to obtain direct point frequency response functions 

(FRF) hence scale the mode shapes for calculating modal mass. 
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2.2.3. Optical Motion Capture System 

Optical MCS consisted of a Canon EOS 200D with DIGIC 7 processor and a Canon 

20 mm lens consumer-grade camera, hereafter referred to as CGC, and a set of fiducial 

markers based on ArUco library [54], facilitating feature recognition and tracking, as 

shown in Figure 4. A set of ten 80 × 80 mm ArUco markers with a 10 mm white border 

was used, such that each marker was 100 × 100 mm in total. The markers were printed on 

5 mm thick laminated Styrofoam boards and attached to the side of the deck facing the 

camera using hot melt glue. There were ten markers spaced every 450 mm between the 

pylon and the furthermost support away from the pylon. The data from the two outermost 

markers were not used in the subsequent analysis as there were fewer accelerometers 

dedicated to the corresponding measurement of the vertical bridge’s response. The short 

span of the bridge, having auxiliary support at midspan, was not instrumented as it is 

relatively stiff and it does not participate significantly in the lowest vibration modes which 

were of interest. The camera-to-structure distance was 5 m. To maximise the accuracy of 

measurement, the CGC was positioned at the level of the deck such that the angle of 

incidence was approximately zero degrees in the middle of the long span of the bridge. 

The horizontal tilt from the zero degrees incident angle at the middle of the long span of 

the bridge, established from the recorded videos, was approximately three degrees. These 

angles are within the range recommended for obtaining reliable camera calibration 

enabling data to be resolved to real-world (i.e., physical) coordinates. The videos were 

captured at 59.94 frames per second (fps), with autofocus mode disabled. The 

arrangement of the optical MCS is shown in Figure 4. The big ArUco markers in the 

background were used for calibration, i.e., scaling the readings from the camera to world 

coordinate system. 

 

Figure 4. Optical motion capture system. 

Two motion tracking algorithms commonly used for structural vibration monitoring 

and available in an open access domain were used in video post processing—an area-

based template matching, hereafter referred to as template matching and denoted as TM, 

and sparse optic flow, denoted as OF. Both algorithms were implemented in a custom 

software package written in C++ enabling camera calibration (i.e., compensation for the 

lens’ distortion), definition of the homography matrix [55] (i.e., specification of the transfer 

function between the world coordinate system and the image coordinate system), and the 

assignment of the region of interest (ROI) (i.e., an area within the captured image within 

which to perform the tracking). 

The area-based TM is a method that searches for an area in a frame that best matches 

the template image. Although the laboratory in which the experiments took place had 

small windows enabling ambient light to get through, the light intensity fluctuations were 

rather small during the 2 h testing period. Nevertheless, the normalized correlation 
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coefficient was used as a correlation criterion as it is proven to be the most robust against 

light intensity fluctuations [56]. Once the areas matching the template image are found 

within a given video frame, the pixel coordinates are further refined using an enhanced 

cross-correlation (ECC) interpolation method [57]. 

The sparse OF estimation is an image processing method that computes the motion 

or flows of sparse feature points (e.g., edges and corners) between two subsequent images 

caused by the relative movement between the object and camera. The method first extracts 

the feature points within the predetermined target ROI using the Shi-Tomasi method [58] 

and then calculates the optical flow at these points using the Lukas and Kanade OF 

estimation algorithm [59]. The average coordinates of tracked points for each target area 

are then estimated. 

2.3. Data Processing 

The data processing consisted of two main steps, signal resampling and time 

alignment outlined in Section 2.3.1, and modal analysis outlined in Section 2.3.2. 

2.3.1. Signal Resampling and Time Alignment 

The following procedure was implemented in order to obtain frequency response 

functions (FRF) for modal analysis. In the first step, the signals from the CGC, 

accelerometers and force sensor had to be reconciled to a common sampling frequency, 

which was chosen as 333 Hz. This was dictated by a desire to convert the decimal 

frequency of the CGC at 59.94 Hz to an integer, while ensuring the sampling frequency is 

high enough to enable good time alignment between signals from different sensors. To 

prevent the loss of signal energy associated with this process, the resample function in 

Matlab R2020b [60] was used, employing a finite impulse response filter. The outcome of 

this process is shown in Figure 5. It can be seen that the original signals are represented 

well by the resampled signals, both in the time and frequency domains, insomuch as the 

difference between them is hardly visible on the plots. Further evidence supporting this 

point, in particular in relation to the phase relationships, is given in Section 3.1. 
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Figure 5. Original and resampled acceleration measured at the excitation point during T2 in (a) time and (b) frequency 

domain and the corresponding plots for T4 in (c,d). Signals in (a,c) were filtered with a 4th order Butterworth filter with 

cut off frequencies of 3 & 23 Hz and 1 & 23 Hz, respectively. PSDs in (b,d) were obtained without averaging and 

windowing. 

Having obtained signals sampled at a common frequency, time-alignment was 

achieved by matching spatially correspondent acceleration and displacement signals by 

finding the best fit in the least-squares sense. The point of application of force was chosen 

for that purpose; to guarantee sufficient motion amplitude. To avoid excessive 

inaccuracies associated with numerical operations, acceleration and displacement signals 

were, respectively, integrated and differentiated only once to obtain velocity signals. A 

4th order two-way Butterworth band-pass filter with cut-off frequencies at 3 and 20 Hz 

was applied throughout this process. The results of signal alignment are shown in Figure 

6. It can be seen that the match is generally good, although there are small amplitude 

differences at the peaks. 

  

Figure 6. Truncated time-aligned response signals recorded at the excitation point during (a) T2 and (b) T4. 

The time-aligned signals served in modal analysis, outlined in Section 2.3.2. 
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2.3.2. Modal Analysis 

Modal analysis was conducted using Siemens Test.Lab 18.2 PolyMAX™ based on 

poly-reference least-squares complex frequency domain algorithm. 

The input-output relationship in a linear time-invariant system can be quantified in 

terms of frequency response functions (FRF). The two main methods of estimating FRF 

are denoted as H1 and H2. They differ in their definition and main assumption. H1 is 

defined as a ratio of the cross-spectral density of the output with input to the auto-spectral 

density of the input, and it assumes that the noise at the input is negligible. H2 is defined 

as a ratio of auto-spectral density of the output to the cross-spectral density of the input 

with output, and it assumes that the noise at the input is non-negligible. In theory, for 

noise-free input and output, H1 and H2 should yield the same results, however, this is not 

the case in real engineering systems. The phase of H1 and H2 is then the same, but the 

magnitudes differ [61]. H1 and H2 were used in modal analysis, however, since H1 turned 

out to outperform H2, the reported results are based on H1. H2 is sometimes preferred in 

the case of shaker excitation to define resonances, as in these conditions the response of 

the structure is significant but the input signal is relatively weak, hence errors are expected 

at the input. The choice of the FRF estimator is discussed further in Section 3.1, when 

considering the FRF obtained with sine chirp excitation which, in theory, should not 

necessitate windowing of the signals. 

To minimise leakage in spectral analysis, windowing and weighting functions are 

often applied onto the analysed signals to enforce periodicity [53]. The pseudo-random 

signal contained a number of repeating windows within which the harmonic components 

were perfectly periodic, see Figure 3. Therefore, the excitation and response signals were 

truncated such as to cover an integer number of windows while removing transients due 

to initial conditions and the ramp function. In the case of sine chirp excitation, since the 

periodicity requirement is in this case was met by default, no weighting functions were 

initially applied in modal analysis. However, as will be later shown, this turned out to be 

inadequate for EMA, in particular in the case of optical vibration monitoring systems, and 

hence this step of signal processing was later introduced. 

3. Results 

The quality of the recorded data was assessed first and this is reported in Section 3.1, 

followed by the evaluation of the performance of camera-based MCS in Section 3.2. 

3.1. Quality of Data 

An initial assessment of the data quality was made based on the driving point FRF 

obtained from signals collected with spatially collocated and axially aligned force and 

response sensors, as shown in Figure 2b. A H1 estimator was used herein under the 

assumption of the measured input signal being free from noise. 

To verify whether the attachment of the shaker to the deck is adequate, the imaginary 

part of driving point FRF should contain well defined peaks in one direction only. This is 

shown based on the resampled signals collected during T2 and T4 in Figure 7. There are 

well defined positive peaks at the frequencies close to those previously identified as the 

natural frequencies based on a numerical model and experimental data [52], which 

satisfies this quality requirement. The slight bumps at the frequencies close to 11Hz are 

also indicative of a natural frequency, however, the instrumentation system was not tuned 

to capture it, as discussed in the subsequent paragraphs. 
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Figure 7. Imaginary part of driving point accelerance FRF from (a) T2 and (b) T4. 

In the case of driving point measurement, the FRF magnitude was expected to 

contain an antiresonance dip between each pair of resonance peaks, while the FRF phase 

was expected to exhibit a sharp transition from π to 0 rad around the resonances and from 

0 to π rad around the antiresonances. For good quality results, the magnitude-squared 

coherence should take the values close to unity at and around the natural frequencies. To 

verify this condition, the random error in FRF magnitude at the peaks (which will be later 

shown to correspond to natural frequencies) was calculated using the formula stated in 

Brandt [47] (p. 294), after Bendat and Piersol [62]. Furthermore, in theory, no averaging 

nor windowing should be necessary to obtain smoothly varying FRF magnitudes in the 

case of sine chirp excitation. All of these issues will be dealt with in turn, for the pairs of 

tests conducted with the same type of excitation signal. 

Figure 8a,b present the FRF mobility magnitude for T1 and T2, respectively, obtained 

using 71 blocks of 16 s length with a uniform window and 50% overlap, giving a frequency 

resolution of Δf = 0.0625 Hz. It can be seen that, although the magnitude varies non-

smoothly for all signals, it is generally well recovered by the optical systems relative to 

accelerometry, except at the antiresonances where it fluctuates. Using more averages 

produces much smoother results, but it masks the fact that the variance of the FRF 

magnitude for optical MCS is compatible with accelerometry down to the level of the 

discrete frequency value at and around the two well-defined peaks at the lowest 

frequencies. The measurements from sine chirp tests were processed in the same way in 

order to compare the distinct features of FRF between the two excitation methods. For 

frequencies below approximately 0.5 Hz, not presented explicitly, the FRF magnitude is 

more reliable for optical systems, since the amplitude and phase error in piezoelectric 

accelerometers is relatively high at low frequencies. 
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Figure 8. Driving point mobility for T1 & T2, respectively, in terms of (a,b) magnitude and (c,d) phase, together with (e,f) 

magnitude-squared coherence. All signals were processed using 71 blocks of 16 s length with uniform window and 50% 

overlap, giving frequency resolution Δf = 0.0625 Hz. 

Out of the four peaks visible in the FRF magnitudes for T1 and T2 in Figure 8a,b, 

respectively, only three correspond to well defined modes. The split peak at around 11.6 
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Hz is not well defined with any of the MCS, including accelerometry, which is 

corroborated by the lack of phase transition in Figure 8c,d, which is clearly visible for the 

other peaks. According to the numerical model of the bridge created for the purpose of 

the previous study [52], this peak corresponds to a mode dominated by the vertical 

bending behaviour of the deck accompanied by the less pronounced bending behaviour 

of the pylon. However, the setup of the instrumentation systems disallowed its full 

characterisation, as the shaker was exciting the bridge in very close proximity to a node 

for that mode, nor was the full modal characterisation the purpose of the current study. 

Therefore, in the remainder of this study the focus will be on modes with frequencies at 

approximately 5.2, 15.1 and 19.2 Hz, referred to as mode 1, mode 3 and mode 4, 

respectively. 

The magnitude squared coherence presented in Figure 8e,f for T1 and T2, 

respectively, is always above 0.81 at the three clearly identifiable peaks in Figure 8a,b, and 

can reach up to 0.96. The match between accelerometry and optical MCS is generally very 

good, with the maximum discrepancy of 0.05 for the three peaks. OF typically 

outperforms TM. 

In the case of T1 and T2, the random error at the FRF magnitudes’ peaks 

(corresponding to natural frequencies) always falls below 3.65% and is almost identical 

between all MCS for a given test and peak, with differences in the range of 0.006% to 

0.079% from the (percentage) error obtained from accelerometry. 

Figure 9a,b present driving point FRF magnitudes for T3 and T4 (both involving sine 

chirp excitation), respectively, obtained without windowing and averaging, having a 

frequency resolution of Δf = 0.0017 Hz. As could be expected, the magnitude obtained 

from accelerometry is varying smoothly, except for the frequencies below 3 Hz, for which 

there was no excitation force, and frequencies between 3 Hz and 4.5 Hz, for which the 

excitation force controllability and the accelerometer’s performance was not optimal, and 

for the frequencies above 18 Hz and close to the expected antiresonance dips. However, 

the FRF magnitudes for the optical MCS show a high level of noise across the whole 

frequency range shown, except for the resonance peaks. This is due to the low response 

amplitudes of the bridge at frequencies away from the resonances relative to the 

sensitivity of the optical MCS and internal data processing algorithms used in the motion 

extraction. This shows that, despite the harmonic nature of the excitation signal in T3 and 

T4, the signals need to be windowed and averaged to minimise the errors associated with 

the internal data processing inherent to optical MCS. Furthermore, the H1 estimator is 

preferred in this case, since the internal processing of MCS data seems to generate 

significant noise away from the resonances. The results obtained using 71 blocks of 16 s 

duration with a  uniform window and 50% overlap, giving a frequency resolution of Δf 

= 0.0625 Hz, are shown in Figure 10. 
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Figure 9. Driving point FRF mobility from sine chirp excitation in (a) T3 and (b) T4. 
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Figure 10. Driving point mobility for T3 & T4, respectively, in terms of (a,b) magnitude and (c,d) phase, together with (e,f) 

magnitude-squared coherence. All signals were processed using 16 s length with uniform window and 50% overlap, 

giving frequency resolution Δf = 0.0625 Hz. 

It can be seen in Figure 10a,b that the FRF mobility magnitude for T3 and T4, 

respectively, is generally well recovered by the optical systems relative to accelerometry 

at and around the first peak. For the rest of the peaks, the optical MCS match and 

underestimate the magnitude obtained from accelerometry at frequencies lower and 

higher than those at the peaks, respectively. OF generally outperforms TM, and the results 

are better for T4. In comparison to the results presented in Figure 8 for T1 and T2, which 

were obtained with the same signal processing method, the match in the FRF magnitude 

is overall worse, although the magnitude evolves more smoothly, in particular for 

accelerometry and OF. 

There are resonant FRF phase transitions in Figure 10c,d for T3 and T4, respectively, 

around the frequencies corresponding to the three clearly visible peaks in Figure 10a,b, 

although the results from TM are relatively noisy, in particular for T3. 

The magnitude squared coherence presented in Figure 10e,f for T3 and T4, 

respectively, is always above 0.7 for accelerometry and OF at the three clearly identifiable 

peaks in Figure 10a,b, and can reach up to 0.95. The match between accelerometry and OF 

is very good, with the maximum discrepancy of 0.05 for the three peaks. The magnitude 

squared coherence for TM takes values as low as 0.62 for mode 4, and the match with 

accelerometry is much worse, with maximum discrepancy of 0.33. 

In the case of T3 and T4, the random error in FRF magnitude at the peaks (which will 

be later shown to correspond to natural frequencies) always falls below 5.59% and is 

almost identical between all MCS for a given test and peak, with differences in the range 

of 0.007% to 0.052% from the (percentage) error obtained from accelerometry. 

3.2. Modal Parameters 

In general, modal parameters are sensitive with regards to the data processing 

method. In particular, the number of averages and the size of blocks of data chosen in the 

calculation of the FRF will affect the random and bias errors, respectively. Since these two 

parameters are co-dependent (i.e., longer block size will produce fewer averages for a 

given signal length and vice versa), a compromise needs to be found. Furthermore, the 

block size will affect the frequency resolution of FRF, and hence the accuracy of modal 

frequency estimates. Therefore, to establish and verify the data processing method, 

stabilisation diagrams of modal parameters were generated for each of the considered 

modes. Exemplar outcomes of this process are shown in Figure 11 for T2. The number of 

independent blocks (or averages), nb, was {1,3,6,9,18,36,72,144}, there was no windowing 
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applied and no overlap. A relatively high variability of modal parameters can be seen for 

nb < 18. The difference in modal parameters obtained with the three MCS becomes fairly 

consistent at each nb > 18. To account for these features, a trade-off between the random 

and bias error, and FRF frequency resolution was established at nb = 36. For consistency 

and compatibility, this condition was applied in all analyses presented hereafter. 

  

 

 

Figure 11. Exemplar stabilisation plots for modal parameters derived for (a) mode 1, (b) mode 3 and (c) mode 4 from T2. 

The modal parameters for all tests were established using 36 nonoverlapping blocks 

of 16 and 16.65 s duration for T1 and T2, and T3 and T4, respectively, applying a uniform 

window with 50% overlap, giving a total of 71 blocks. The results are shown in Table 3. 

The percentage errors relative to the results from accelerometry are given in the brackets 

and, for better observability of trends, visualised in Figure 12. 
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Table 3. Modal properties. Values in brackets denote percentage error relative to the results from accelerometry. 

   Frequency (Hz) Damping Ratio (%) Generalised mass (kg) 

Test  Mode Accelerometry TM OF Accelerometry TM OF Accelerometry TM OF 

T1 1 5.384 
5.373 

(−0.2) 

5.368 

(−0.3) 
4.79 

5.00 

(4.38) 

4.97 

(3.76) 
89.5 

83.7 

(−6.45) 

84.1 

(−6.01) 

T1 3 15.218 
15.215 

(−0.02) 

15.213 

(−0.03) 
0.70 

0.68 

(−2.86) 

0.71 

(1.43) 
353.0 

418.9 

(18.67) 

463.3 

(31.24) 

T1 4 19.637 
19.634 

(−0.02) 

19.627 

(−0.05) 
1.91 

1.88 

(−1.57) 

1.89 

(−1.05) 
79.8 

111.7 

(39.91) 

127.9 

(60.24) 

T2 1 5.182 
5.180 

(−0.04) 

5.177 

(−0.1) 
3.19 

3.24 

(1.57) 

3.22 

(0.94) 
87.8 

92.4 

(5.2) 

98.3 

(11.85) 

T2 3 15.082 
15.081 

(−0.01) 

15.08 

(−0.01) 
0.78 

0.76 

(−2.56) 

0.77 

(−1.28) 
371.9 

387.3 

(4.14) 

383.3 

(3.06) 

T2 4 19.178 
19.183 

(0.03) 

19.18 

(0.01) 
2.09 

2.06 

(−1.44) 

2.06 

(−1.44) 
80.7 

101.6 

(25.97) 

84.13 

(4.3) 

T3 1 5.398 
5.381 

(−0.31) 

5.368 

(−0.56) 
2.91 

2.66 

(−8.59) 

2.82 

(−3.09) 
110.8 

112.5 

(1.51) 

103.8 

(−6.34) 

T3 3 15.210 
15.143 

(−0.44) 

15.155 

(−0.36) 
0.88 

0.46 

(−47.73) 

0.52 

(−40.91) 
369.7 

640.5 

(73.22) 

426.5 

(15.35) 

T3 4 19.410 
19.499 

(0.46) 

19.326 

(0.43) 
1.15 

1.70 

(47.83) 

0.70 

(−39.13) 
119.2 

104.5 

(−12.36) 

171.9 

(44.2) 

T4 1 5.182 
5.215 

(0.64) 

5.214 

(0.62) 
2.92 

2.89 

(−1.03) 

2.79 

(−4.45) 
94.0 

90.9 

(−3.21) 

96.2 

(2.4) 

T4 3 15.059 
15.015 

(−0.29) 

15.053 

(−0.04) 
0.90 

0.60 

(−33.33) 

0.72 

(−20) 
396.3 

466.2 

(17.63) 

469.6 

(18.47) 

T4 4 18.960 
19.084 

(0.65) 

18.912 

(−0.25) 
1.07 

1.43 

(33.64) 

0.71 

(−33.64) 
109.2 

134.0 

(22.71) 

182.2 

(66.85) 
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Figure 12. Errors in modal parameters obtained with optical motion capture systems: (a) frequency, (b) damping, (c) mass. 

It can be seen that the modal parameters are sensitive to the excitation method, both 

in terms of the nature of the excitation signal and its intensity. This is true regardless of 

the MCS being considered. The modal mass for mode 3 is much higher than for mode 1 

and 4, due to that mode significantly mobilising the pylon. The pseudo random excitation 

consistently yields better results in terms of modal frequency and damping, but similar 

results in terms of modal (generalised) mass. The closest match between the modal 

damping and mass is typically found for mode 1. The error magnitude is typically the 

highest for modal mass, reaching maximum slightly above 73%, and the lowest for modal 

frequency, reaching maximum at just below 0.66%. Overall, the best set of data in terms 

of the congruence between the accelerometry and optical MCS comes from tests 

conducted at a higher excitation intensity (i.e., T2 and T4), and the pseudo-random 

excitation yields better results than the sine chirp excitation. 

The (partial) mode shapes of the longest span of the bridge are shown in Figure 13. 

The limits on the horizontal axes were scaled to represent the total length of that span 

between the supports. The 50 mm difference between the span length in Figures 2 and 13 

is caused by the offset of the deck’s support furthermost away from the pylon from the 

boundary of the bridge. It can be seen that the match between accelerometry and optical 

MCS is generally good. 
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Figure 13. Partial mode shapes for T2: (a) mode 1, (b) mode 3 and (c) mode 4. 

The modal assurance criterion (MAC) obtained between the mode shapes from 

accelerometry and optical MCS is presented in Table 4 and, for better observability of 

trends, visualized in Figure 14. 

Table 4. Modal assurance criterion (MAC) for all tests. 

Test Optical MCS Mode 1 Mode 3 Mode 4 

T1 Template matching (TM) 0.9650 0.9763 0.9875 

T1 Optic flow (OF) 0.9982 0.9986 0.9964 

T2 Template matching (TM) 0.9513 0.9903 0.9931 

T2 Optic flow (OF) 0.9528 0.9966 0.9928 

T3 Template matching (TM) 0.9904 0.9617 0.9901 

T3 Optic flow (OF) 0.9926 0.9759 0.9865 

T4 Template matching (TM) 0.9866 0.9723 0.9921 

T4 Optic flow (OF) 0.9870 0.9841 0.9962 

 

Figure 14. Modal assurance criterion (MAC) for all tests. 

In all cases the MAC takes values above 0.95, indicating that the eigenvectors derived 

from accelerometry and optical MCS are well correlated [61] (p. 426). The results obtained 
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with the two image processing algorithms are similar, but OF gives slightly better match 

with accelerometry on average. 

4. Discussion 

Three well-defined modes were identified by all instrumentation systems, although 

the presence of another mode was also evident in the measured signals, but it was not 

identified explicitly due to the excitation force applied at the node for that mode. This 

agrees with the predictions of a numerical model of the bridge [52], indicating four modes 

within the frequency range of interest of this study. All of these modes can be 

characterised by the bending behaviour of the deck in the plain containing its weak axis, 

accompanied by the bending behaviour of the pylon in the plane containing the 

longitudinal axes of the two legs. Although the behaviour of the pylon was not measured 

explicitly, according to a numerical model of the bridge all the mentioned modes are 

dominated by the movement of the deck, except for mode 3 which is dominated by the 

movement of the pylon. This explains the modal mass for mode 3 being significantly 

greater than for the other modes identified herein. 

The modal parameters established during this study differ slightly from those 

previously reported [52]. There are two main reasons for this. On the one hand, the tension 

in the cable stays have been changed since the previous tests. On the other hand, the 

excitation force came from the shaker rather than ambient sources. However, as could be 

expected, the unity-normalised mode shapes are still in relatively good agreement. 

The dynamic behaviour of the bridge was found to be sensitive to the excitation 

intensity. This applies to the values of the derived modal parameters, but also to the 

accuracy of results from optical MCS against accelerometry. The best set of data in the 

latter sense comes from T2 (i.e., test with pseudo-random excitation of higher intensity), 

where the excitation force had the highest power density of all tests, as shown in Figure 

15. In comparison, during T4 (i.e., test with sine chirp excitation of higher intensity), the 

force power density has only reached half of that in T2. However, the excitation intensity 

alone does not explain the better match of modal parameters derived from optical MCS 

for T1 (i.e., pseudo-random test with lower intensity), relative to T4 (and T3, i.e., test with 

sine chirp excitation of lower intensity). Since the ambient conditions have not changed 

during the tests, which were conducted in a highly controlled laboratory environment, it 

seems that the internal processing of data during motion extraction favours the pseudo-

random excitation. This is corroborated by the results in Figure 8 and Figure 10, showing 

a better match of driving point FRF derived from T1 and T2 relative to T3 and T4. 

 

Figure 15. Power spectra density of the input force for all tests. 
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The difference in modal parameters derived from tests at various excitation intensity 

can be mainly attributed to the behaviour of the bearings away from the pylon, of which 

an example is shown in Figure 16. At a relatively low level of excitation, (e.g., during T1 

and T3), the bearings have significant friction providing restraint against movement, and 

hence relatively higher identified natural frequencies. The friction at the bearings is 

overcome by the excitation force during T2 and T4, most likely due to static-kinetic friction 

transition. Similar behaviour can be observed in real full-scale bridges. For example, for 

the simply-supported bridge reported in [63], the bearings work in different regimes 

depending on the vibration amplitude. At relatively small vibration levels, the idealised 

bearings behave as a pin-pin arrangement, providing restraint against longitudinal 

movement, and hence higher modal frequencies. However, at higher vibration levels, the 

idealised bearings behave as a pin-roller arrangement, providing allowance for 

longitudinal movement, and hence lower modal frequencies. This amplitude dependence 

hypothesis can be further supported illustratively in view of Figure 17a depicting the 

comparison of modal frequencies derived solely through accelerometry for all tests 

relative to the results from T2. Namely, for the pairs of tests with the same excitation type, 

frequency increases with decreasing response amplitudes (or excitation intensity) for all 

modes. Furthermore, comparing Figures 17a and Figure 12a, it can be seen that the modal 

frequency deviation between results from accelerometry and optical MCS, for any mode 

identified from a given test, typically falls below the modal frequency deviation obtained 

from accelerometry between tests for that mode. This implies that the potential error from 

the optical MCS is within the identification uncertainty bounds imposed by the excitation 

type and intensity in the case of accelerometry. 

 

Figure 16. Bearing’s arrangement. 
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Figure 17. Errors in modal parameters obtained with accelerometry for tests T1, T3, and T4 in comparison to T2: (a) 

frequency, (b) damping, (c) mass. 

In general, the errors in modal frequencies are negligible for all modes and all modal 

results closely follow the qualitative and quantitative outcomes obtained in [46]. An 

impulse excitation delivered with an instrumented hammer was used therein to mobilise 

a simpler and lighter structure of which response was measured with a great variety of 

instrumentation systems. Only the TM outputs are directly comparable to this study. A 

common feature, beyond the relative magnitudes of deviations established, is that there 

is no clear trend in the identification errors of modal frequency or damping or mass. This 

is to say that, relative to the baseline results from accelerometry, a higher mode does not 

necessarily produce worse modal estimates than a lower and possibly more excited mode 

when identified through optical means. 

Considering all tests and tracking algorithms, the best match between optical MCS 

and accelerometry was found for mode 1. The error magnitudes in modal frequency, 

damping and mass fall in this case below 0.65%, 9% and 12%, respectively. As could be 

expected [46], the most challenging parameter to capture in experimental studies is the 

modal mass. The deviation from the baseline values from accelerometry reaches in this 

case up to 74% for mode 3 and TM during T3—the test yielding the worst results overall. 

Damping, which is also amenable to numerous influences and artefacts, and for this 

reason has been rarely reported in previous studies probing the performance of optical 

MCS [64], follows close with deviations reaching up to almost 48% for mode 3 and mode 

4, again for TM and during T3. It is worth noting that mode 4 is generally less excited than 

mode 3 for any test, see e.g., Figure 3b, which is particularly influential on the results 

obtained from optical MCS measuring the displacement. What seems to be working very 

well for identifying both modal damping and mass with optical MCS, regardless of the 

considered mode, is the application of OF during T2—pseudo-random excitation at a 

sufficient intensity. 

To further reveal the limitations of the results obtained with optical MCS, it is also 

worthwhile considering the deviations between the modal damping and mass obtained 

during different tests from accelerometry only. These are shown in Figure 17b,c relative 

to the corresponding results from T2—the test yielding the best results overall. 

The error in modal mass seems to be identified with similar and not higher 

uncertainty than modal damping. However, looking at the results in Figure 12, the 

opposite is true for the results obtained with optical MCS relative to accelerometry. This 

is interesting in itself and requires further investigation. 

The errors in modal parameters are comparable with those established from testing 

a structure moved between twelve European laboratories during a project aiming at 

establishing the consistency in obtaining modal parameters [49]. The variability in the 
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modal frequency, damping and scaling coefficient for mass-normalised modes (rather 

than modal mass, as presented here) based on measurements from accelerometers was 

within 4%, 30% and 10%, respectively. The results presented here are also in agreement 

with outputs from a series of papers, e.g., [64,65], originating from a project aiming at 

benchmarking the performance of optical MCS against accelerometry. However, no 

modal damping nor mass was reported therein. Admittedly, it would be interesting to 

compare the identification accuracy for the full set of modal parameters directly, however, 

similar data are not available elsewhere. On these grounds, the relevant work presented 

herein constitutes a genuine contribution to the field. 

5. Conclusions 

SHM using optical MCS has been gaining much popularity over conventional wired 

and wireless approaches requiring direct contact with the tested structure. In the course 

of a well-controlled experimental campaign on a large-scale model of a cable-stayed 

bridge, a number of observations were made regarding the performance of CGC-based 

MCS in EMA. Namely: 

Optic flow algorithm consistently gives better results than template matching. 

 Relative to the benchmark results obtained with accelerometry, the pseudo random 

excitation gives superior results to sine chirp excitation regardless of the excitation 

intensity. 

 The error in modal parameters derived from optical MCS relative to accelerometry is 

within the uncertainty bounds imposed by the excitation type and intensity when 

considering the identification results from accelerometry only. 

 The necessary processing of images by the motion extraction algorithms unavoidably 

generates noise, the nature of which appears to be random. To alleviate this effect, 

the duration of the test should be long enough to be able to average out the noise 

while preserving sufficient frequency resolution. This also applies in the case of sine 

chirp excitation, which, in theory, should not require windowing and averaging due 

to the periodicity of the excitation signal. 

 Although in the case of shaker excitation, a H2 estimator is sometimes preferred to 

define resonances [62] (p. 288), the noise associated with the extraction of motion data 

from images overwrites this casualty making a H1 estimator more suitable for 

obtaining FRFs. 

 As is often the case in modal analysis, the modal parameters are sensitive to the data 

processing method, e.g., the length of blocks of data. This is also the case when using 

optical MCS, and suitable stabilisation diagrams can be used to gain confidence in 

the reliability of the results. 

Overall, the results of this study encourage wider utilisation of camera-based 

vibration monitoring systems in engineering practice and motivate efforts to fully exploit 

the high-end information (i.e., by deriving modal damping and mass), apart from the 

modal frequencies and mode shapes typically reported. 
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