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Abstract: Shenzhen Bay (SZB), situated between Shenzhen and Hong Kong, is a typical bay system.
The water quality of the bay is notably affected by domestic and industrial discharge. Rivers
and various types of drainage outlets carry terrestrial pollutants into SZB, resulting in elevated
concentrations of nitrogen and phosphorous as well as relatively poor water quality. For over
200 years, Hong Kong has practiced oyster farming within brackish estuarine waters. Oyster
farming is a type of mariculture which includes oyster breeding in oyster rafts. Remote sensing
is a monitoring technique characterized by large spatial coverage, high traceability, and low cost,
making it advantageous over conventional point-based and ship-borne monitoring methods. In
this study, remote-sensing models were established using machine-learning algorithms to retrieve
key water-quality factors (dissolved inorganic nitrogen (DIN) and orthophosphate-phosphorous
(PO4_P) concentrations, CDIN and CPO4_P, respectively) from long-term time-series data acquired by
the Landsat satellites. (1) Spatially, the water quality in Inner SZB was worse than that in Outer SZB.
(2) The water quality temporarily deteriorated between the end of the 20th century and the beginning
of the 21st century; then it gradually improved in the late 2000s. (3) Monitoring the water quality
in an oyster-farming area revealed that oyster farming did not adversely affect the water quality.
(4) The result of monitoring the water quality in river estuaries in SZB shows that water quality was
mainly affected by river input.

Keywords: Shenzhen Bay; remote-sensing monitoring; support-vector-machine model; backpropa-
gation neural network

1. Introduction

Bays are important areas for marine-based economic activity, tourism, and maricul-
ture. However, these activities lead to pollution in bays [1], such as in Shenzhen Bay
(SZB), a typical bay in the northern South China Sea between Shenzhen and Hong Kong.
Daily domestic activities and industrial operations (e.g., wastewater discharge from large
industrial enterprises, maritime shipping, and aquaculture) put enormous pressure on
coastal waters [2]. According to the 2012–2019 Shenzhen Municipal Environmental State
Bulletins, the seawater quality in the western coastal waters near Shenzhen was lower
than the Class IV standard of the Chinese Sea Water Quality Standard (GB 3097-1997) [3].
Dissolved inorganic nitrogen (DIN) and orthophosphate-phosphorus (PO4_P) were the
primary pollutants [4]. The government of Shenzhen has launched a campaign to reduce
pollution levels in SZB, joining forces with the government of Hong Kong to restore the
Shenzhen River—the largest river that empties into SZB [5]. Water-quality monitoring can
facilitate assessment of the current status of SZB as well as provide an evaluation of the
cleanup measures.
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Conventionally, water-quality factors (WQFs) are monitored through ship-borne and
buoy-based measurements, sampling at offshore monitoring stations, or field surveys.
These techniques can only acquire data at discrete spatial points and are relatively time-
consuming and costly. In addition, it is difficult to use these techniques to conduct mea-
surements over large spatial areas. In comparison, satellite remote-sensing technology is
known for its advantages of high spatial coverage, temporal continuity, and low cost. One
major application of remote sensing is to establish physical, empirical, and semi-empirical
models between spectral information received by sensors and WQFs; retrieval methods are
based on the principle that waters with different compositions exhibit different spectral
characteristics [6]. Previous studies have shown that remote-sensing technology can be
applied to the retrieval of nutrient concentrations in water. For example, some researchers
use MODIS data to estimate the concentration of dissolved inorganic nitrogen (CDIN) [7]
and total phosphorus (CTP) [8], in which the coefficient of determination R2 is equal to
0.82 and 0.68, respectively. Du et al. used Sentinel-3 data with the same spatial resolution
as MODIS to retrieve the CTP of Taihu Lake, achieving a root-mean-square error (RMSE)
of 0.04 mg/L [9]. Some researchers also use higher spatial resolution satellite data, such
as Landsat [10], WorldView-2 [11], and Sentinel-2 [12] to retrieve nutrient concentrations
and apply them to the direct or indirect retrieval of total nitrogen (CTN), CTP, CDIN, and
dissolved inorganic phosphorus (CDIP). Machine learning (ML) algorithms, including
neural networks (NN) and support vector machines (SVM), have also been applied to the
inversion of nutrient concentrations. Liu et al. established a retrieval model for CTP using
an SVM model, which yielded a retrieval accuracy (R2) of 0.604 [13]. Ding et al. estimated
CTP with an artificial neural network and achieved a retrieval accuracy (R2) greater than
0.73 [14]. Jiang et al. found that the extra-trees regression algorithm was the most suitable
for the inversion of CTN in the Miyun Reservoir and yielded an absolute square error of
0.000065 [15]. Sinshaw et al. established a retrieval model for summertime CTN and CTP
with pH, electrical conductivity, and turbidity as the input parameters for an NN and found
that the pH had the highest sensitivity [16]. The above research shows the feasibility of
sensing technology for nutrient-concentration retrieval, and it also reflects the advantages
of ML methods for such retrieval in coastal waters [13–16].

Researchers have investigated water-quality inversion in Shenzhen Bay and adjacent
waters. For example, Hafeez and Nazeer et al. retrieved the concentrations of suspended
sediment concentration (CSS) and chlorophyll-a (CChl-a) in the coastal waters offshore of
Hong Kong from data acquired by the Landsat TM and ETM+ sensors as well as the HJ-1
A/B satellites [17,18]. Nazeer and Hafeez retrieved CSS and CChl-a in the region extending
from the Pearl River Estuary to the coastal waters of Hong Kong [19,20]. Liu et al. estab-
lished a linear model for retrieving CPO4_P in SZB and analyzed the changes based only on
CPO4_P retrieved from remote-sensing data for 2 years (1988 and 2009) instead of a continu-
ous time series [21]. In summary, remote sensing research into nutrient concentrations in
the region is mainly conducted through indirect inversion of CSS or CChl-a data, and there
is a lack of long-term time-series analysis. Therefore, we lengthened the time series, used
remote-sensing technology to statistically analyze the changes in nutrients in SZB from
1988 to 2020 (more than 30 years), and explored the sources of nutrients.

In this study, several ML methods were used to establish retrieval models with
optimum modeling signals based on the relationships between the remote-sensing data
acquired by two satellites (Landsat-5 and Landsat-8) and in situ measurements of nutrient
concentrations. By comparing the retrieval accuracies of the models established using
various ML methods, optimum CDIN and CPO4_P retrieval models were determined. These
models were subsequently used to obtain the characteristics of the water-quality changes
in SZB over the 32-year period from 1988 to 2020. In addition, focus was placed on
determining the water quality in the oyster-farming area (OFA) and the estuary of the
Shenzhen River in SZB. The goal was to examine the relationships between the overall
water quality in SZB and the water quality in the OFA and the estuaries through which
terrestrial matter is carried into SZB.
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Therefore, using remote-sensing technology to retrieve the nutrient concentrations
in SZB over the past 30 years, we obtain a more detailed understanding of the water
quality in the area. We can also explore the sources of pollutants using the spatial pattern
of nutrient concentrations. A back-propagation neural network (BPNN) [22], SVM, and
high-resolution remote-sensing data in coastal second-class water bodies provide a basis
for subsequent research in other bays.

2. Materials and Methods
2.1. Study Area

Situated between the Hong Kong Special Administration Region and Shenzhen,
Guangdong Province (China), SZB (113◦55′8′′–114◦5′13′′E, 22◦26′23′′–22◦30′46′′N) is a
semi-enclosed shallow bay (see Figure 1 for location). SZB is traversed by a bridge, and it
is surrounded by urban land on three sides. The bay receives terrestrial input from rivers
such as the Shenzhen River, the Dasha River, and the Shan Pui River. With a coastline
of approximately 60 km in length, SZB encompasses an area of approximately 90.8 km2.
According to its geographic location, we define the northeast corner near the Shenzhen
River and the Shan Pui River as Inner SZB; the southwest corner connected to the open
sea is designated Outer SZB. For the analysis, we used a rectangular area of the same size
(see Figure 2) to represent Inner SZB and Outer SZB. The water is relatively shallow in
Inner SZB (depth generally less than 5 m and averaging 3 m), but it deepens in Outer SZB.
In SZB, there are irregular semidiurnal tides with an average tidal range of 1.36 m at the
mouth as well as southwest–northeast reversing tidal currents [23,24].

Figure 1. Schematic of the study area. (A) The approximate location of the study area (red box) in
China. (B) Satellite image of the general location of the study area, where SZB is within the red box.
(C) Close-up view of the study area: Shenzhen River and Shan Pui River are located within the red
box. (D) A view of Shenzhen River and Shan Pui River.
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Figure 2. Representative analysis areas of Inner SZB and Outer SZB. The red box represents the Inner
SZB water body, and the yellow box represents the water body of Outer SZB.

2.2. In Situ Measurement Data

The measurement data used in this study were obtained from the Environmental
Protection Department of Hong Kong (HKEPD). The HKEPD divides the coastal waters of
Hong Kong into ten control zones [25]: the Southern Zone, the Tolo Harbor and Channel
Zone, the Northwestern Zone, the Victoria Harbor Zone, the Mirs Bay Zone, the Junk Bay
Zone, the Eastern Buffer Zone, the Western Buffer Zone, the Port Shelter Zone, and the
Deep Bay (i.e., SZB) Zone, where 76 water-quality monitoring points have been established.
Monthly measurements have been continuously recorded at the monitoring points from
1986 to the present. The data are published on the website of the HKEPD (https://cd.epic.
epd.gov.hk/EPICRIVER/marine/?lang=en, accessed on 1 December 2020). For this study,
the measurement data at five sample stations in SZB were used (see Figure 3). Based on the
statistics of the CDIN and CPO4_P measured in situ in SZB from 1986 to 2019, CDIN ranges
0.11–14.05 mg/L, and the multi-year average is 2.15 mg/L. CPO4_P is 0.001–2.9 mg/L, and
the multi-year average is 0.222 mg/L.

https://cd.epic.epd.gov.hk/EPICRIVER/marine/?lang=en
https://cd.epic.epd.gov.hk/EPICRIVER/marine/?lang=en


Remote Sens. 2021, 13, 3469 5 of 20

Figure 3. Locations of the 76 monitoring points in the ten water-quality control zones established by
the HKEPD. Stations DM1 to DM5 were used in this study.

2.3. Remote-Sensing Data and Preprocessing

The remote-sensing data used in this study were acquired by the TM sensor onboard
the Landsat-5 satellite and the OLI onboard the Landsat-8 satellite. The Landsat-5 and
Landsat-8 satellites were launched by the United States National Aeronautics and Space
Administration on 1 March 1984 and 11 February 2013, respectively. Landsat-5 TM has six
bands with a spatial resolution of 30 m, including three visible bands, two near-infrared
bands, and one mid-infrared band. Compared with Landsat-5, Landsat-8 has an additional
coastal/aerosol band; the wavelength range of each band also differs. In this study, images
with cloud coverage of less than 30% were selected. The path and row numbers for the
study area were 122 and 44, respectively. In total, there were 37 Landsat-5 TM images
(acquired between 1988 and 2011) and 22 Landsat-8 OLI images (acquired between 2013
and 2020) available for the study area (see Table 1). The data were downloaded from the
United States Geological Survey Earth Explorer website (https://earthexplorer.usgs.gov/,
accessed on 5 December 2020).

The images were subjected to preprocessing, including radiometric calibration and
atmospheric correction (fast line-of-sight atmospheric analysis of spectral hypercubes
(FLAASH) method). Previous studies have shown that the FLAASH method is effective
for measuring the surface reflectance of water components [26].

https://earthexplorer.usgs.gov/
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Table 1. List of remote-sensing images.

Path 122 Row 44

Landsat-5 Landsat-8

24 November 1988 4 July 2000 9 August 2013 18 February 2020
10 December 1988 21 August 2000 29 November 2013 16 November 2020
11 November 1989 18 January 2003 31 December 2013 2 December 2020
13 December 1989 13 July 2003 16 January 2014
5 December 1992 17 October 2003 15 October 2014

22 September 1994 19 October 2004 16 November 2014
8 October 1994 22 October 2005 3 January 2015

25 November 1994 11 February 2006 19 January 2015
9 September 1995 10 November 2006 18 October 2015

3 March 1996 13 January 2007 7 February 2016
7 June 1996 29 January 2007 26 March 2016
9 July 1996 26 July 2008 5 November 2016
25 May1997 15 November 2008 7 December 2016
13 June 1998 17 October 2009 20 August 2017
15 July 1998 4 December 2009 23 October 2017

4 November 1998 13 March 2011 12 February 2018
7 January 1999 1 June 2011 1 April 2018

8 February 1999 4 August 2011 19 May 2018
9 December 1999 14 November 2019

Water bodies were identified using the normalized difference water index (NDWI) [27].

NDWI = (RGreen − RNIR)/(RGreen + RNIR) (1)

where RGreen represents the reflectance of the green band, and RNIR represents the re-
flectance of the NIR band. If the NDWI value is greater than 0, then the pixel is judged to
be a body of water.

2.4. Method of Model Building

The optical properties of Case-2 waters are affected by colored dissolved organic
matter (CDOM) and inorganic mineral particles, in addition to phytoplankton [28,29]. Due
to the complex composition of Case-2 waters, models were established using ML methods,
including SVM and BPNN.

BPNN is one of the most commonly used artificial neural networks, which is based
upon the biological neural system in a highly simplified form. These networks provide
a statistical tool for simulating the dependent variables of various engineering problems,
especially where highly complex relationships define the physical processes of the prob-
lem [30]. The simplest three-layer structure of BPNN includes an input layer, hidden layer,
and output layer (see Figure 4).

SVM theory is an approximation of the principle of structural risk minimization that
involves the same processing complexity for high- and low-dimensional samples. Kernel
functions are introduced to realize nonlinear mapping, thereby perfectly solving nonlinear
processing problems and ensuring that SVMs are able to produce relatively good results
when trained on a small number of samples [31]. The SVM model has been proven more
suitable for modeling small sample data in previous research [13,31].
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Figure 4. Three-layer BPNN structure.

In this paper, the optimum models for retrieving nutrient concentrations were de-
termined by comparing model results from each ML method against empirical/in situ
measurement data. Subsequently, the results were used to retrieve nutrient concentrations.

3. Results
3.1. Modeling

Corresponding radiance values in the remote-sensing images were matched based on
the latitude and longitude of the HKEPD in situ data for SZB. To ensure synchronicity, the
remote-sensing images acquired within 4 days of the measurement dates were selected.
Given that the band settings for the Landsat-5 TM sensor and Landsat-8 OLI were not
completely identical (the latter adds a new coastal band and the wavelength range of each
band is slightly different), the synchronous datasets were separately matched. In total,
164 sets of valid radiance acquired by the Landsat-5 TM sensor from 1988 to 2011 were
obtained. The corresponding in situ CDIN measurements ranged from 0.21 to 12.02 mg/L,
averaging 2.30 mg/L. CPO4_P ranged from 0.001 to 1.6 mg/L, averaging 0.22 mg/L. For the
Landsat-8 OLI sensor, 25 sets of valid radiance values were obtained. The corresponding
CDIN measurements ranged from 0.21 to 4.37 mg/L, averaging 1.52 mg/L. CPO4_P ranged
from 0.001 to 0.23 mg/L, averaging 0.1 mg/L.

Following data preparation, the inversion model was built. The correlations between
radiance values from the remote sensing (RS) data and the in situ measurements are
presented in Figure 5. The sensitive bands of LT5 and LT8 are different. For LT5, the most
sensitive band for CDIN and CPO4_P is the near-infrared band, followed by the red band.
For LT8, the most sensitive band is the red band, followed by the green band. The in situ
CDIN and CPO4_P measurements are highly synchronous (Figure 6).
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Figure 5. Correlations between the radiance values of Landsat single-band data and the in situ CDIN

and CPO4_P: (a) Landsat-5 TM; (b) Landsat-8 OLI.

Figure 6. Analysis of the correlations between the in situ CDIN and CPO4_P measurements (units:
mg/L): (a) Landsat-5 TM; (b) Landsat-8 OLI.

Following identification of the relatively sensitive bands, multiple combinations of
bands were tested. The nutrient concentrations derived from multiple combinations of
bands were correlated with the band ratios and their measurements. Finally, the most
suitable form of index factors was determined.

1. Single-band form;
2. Multi-band form;
3. Band-ratio (combination) form.

Compared to the values derived from the remote-sensing data in single bands (see
Figure 5), values derived from the remote-sensing data in combinations of bands were
more strongly correlated with the in situ measurements (Table 2). Nutrient-concentration
retrieval models for the two satellites were established based on the SVM and the BPNN
models. The data were divided into a training set (80%) and a validation set (20%). Because
the amount of data matched by OLI was small, the SVM method that was more suitable for
small dataset modeling was given priority [31].
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Table 2. R-square between the reflectance values based on Landsat-5 TM and Landsat-8 OLI data for various combinations
of bands and in situ measurements of CDIN and CPO4.

Landsat-5 TM DIN PO4_P Landsat-8 OLI DIN PO4_P

b(Blue), b(Green), b(Red), b(NIR) 0.58 0.65 b(Coastal), b(Blue), b(Green), b(Red), b(NIR) 0.78 0.84
b(Blue)/b(Red) 0.39 0.42 b(Red)/b(Coastal) 0.56 0.57
b(Blue)/b(NIR) 0.30 0.26 b(Coastal), b(Red) 0.55 0.64

b(Green)/b(Red) 0.34 0.34 b(Red), b(NIR) 0.50 0.66
b(Green)/b(NIR) 0.22 0.18 b(Coastal)/b(Red) 0.47 0.51
b(Red)/b(Blue) 0.47 0.43 b(Blue), b(Red) 0.41 0.55

b(Red)/b(Green) 0.43 0.42 b(Blue), b(Green) 0.39 0.48
b(NIR)/b(Blue) 0.47 0.33 b(Coastal), b(Green) 0.39 0.42

b(NIR)/b(Green) 0.42 0.30 b(Red)/b(Blue) 0.38 0.45
b(SWIR)/b(Blue) 0.14 0.04 b(Green), b(Red) 0.35 0.51

The BPNN model was trained on the Landsat-5 TM dataset. The visible- and NIR-
band data were selected as the inputs. The output in this network is CDIN and CPO4_P. The
modeling work was conducted as follows. (1) Determine the structure of the network. The
simplest three-layer network structure was used. The number for the hidden layer was set
to 4–10. (2) Choose an activation function. The Levenberg–Marquardt method was selected
as the activation function. (3) Validation. Training was performed 5000 times to yield a
result with the smallest RMSE [30]. The same training procedure was used for CPO4_P. The
performances of the NN models were determined based on the results obtained from the
independent validation set (see Figure 7). The CDIN and CPO4_P retrieval models yielded
R2 values of 0.90 and 0.82 and RMSEs of 0.458 and 0.075, respectively.

Figure 7. Scatterplots of the validation data for Landsat-5. (a) CDIN. (b) CPO4_P.

The SVM model was trained on the Landsat-8 OLI data. The visible- and NIR-band
Landsat-8 data were selected as the input. Similar to the neural network, the data were
divided into a training set (80%) and test set (20%). To avoid overfitting, the data were
subjected to a five-fold cross-validation [32]. The obtained CDIN and CPO4_P retrieval
models yielded RMSEs of 0.571 and 0.032 and R2 values of 0.66 and 0.80, respectively. Due
to the relatively small amount of matched Landsat-8 OLI data, Landsat-8 OLI data for the
measurement months were used to form an independent validation set. The validation
results are shown in Figure 8.
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Figure 8. Results obtained from the validation data for Landsat-8. (a) CDIN. (b) CPO4_P.

3.2. Temporal and Spatial Distributions of Concentration Retrievals

In the study area, cloud cover tends to be extensive in the summer, inhibiting con-
struction of an RS-imagery-based time series. Thus, relatively continuous imagery in the
fall and winter was selected for a long-term time-series analysis. Imagery for some years
was low quality and omitted. The retrieved surface CDIN and CPO4_P in SZB are shown in
Figures 9 and 10, respectively.

Figure 9. Estimated CDIN in SZB from RS imagery.

In Figures 9 and 10, the top, middle, and bottom rows of the retrieved images cor-
respond to the pre-2000 period, the period between 2000 and 2010, and the post-2010
period, respectively. The retrieved multi-year nutrient concentrations show specific spatial
distribution trends. The nutrient concentrations were higher in Inner SZB than Outer SZB.
High concentrations were clustered in the estuary of the Shenzhen River near northeastern
SZB, as well as in the areas of SZB near land. The concentrations were lower in central SZB
than in the SZB regions near land, mainly because pollutants in SZB originated primarily
from the rivers (e.g., the Shenzhen River and Shan Pui River) flowing into Inner SZB [19].
Pollutants produced by human activities flow into the river through surface runoff and
underground pipelines. The smaller tributaries flow into the Shenzhen River and the Shan
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Pui River, and finally into the SZB; this pattern greatly influences the water quality of
Inner SZB. To some extent, SZB can be considered an independent system (simplified as a
southwest–northeast gulf system) (Figure 11b). The pollution sources are mainly located in
the northeast corner and spread to the southwest.

Figure 10. Estimated CPO4_P in SZB from RS imagery.

Figure 11. Spatial concentration of CDIN. (a) Interpolation results based on multi-year average of in situ CDIN (from 1986 to
2019). (b) Simplified model of pollutant diffusion in Shenzhen Bay. (c) Estimated CDIN in SZB.
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To compare the characteristics of the spatial distribution of nutrients in SZB, represen-
tative areas from Inner and Outer SZB were analyzed (see Figure 2 for locations). A compar-
ison of the nutrient concentrations in Inner SZB and Outer SZB shows the following. The
multi-year average CDIN was 4.17 mg/L in Inner SZB, nearly six times that (0.698 mg/L)
in Outer SZB. The multi-year average CPO4_P in Inner SZB was 0.297273 mg/L, nearly nine
times that (0.034 mg/L) in Outer SZB. According to the Chinese Sea Water Quality Stan-
dards (GB 3097-1997) [3], the Class IV CDIN and CPO4_P standards are 0.5 and 0.045 mg/L,
respectively. A comparison shows that CDIN was 8.34 times higher than the standard in
Inner SZB and was at the inferior Class IV level in Outer SZB; also, CPO4_P in Inner SZB was
6.6 times higher than the standard [3]. These findings are consistent with the assessment of
seawater quality in the annual reports published by the HKEPD, namely, the water quality
in SZB was relatively poor [25].

3.3. Time-Series Analysis

Considering that the effectiveness of remote-sensing images in fall and winter is higher
than that in spring and summer, the RS imagery for fall and winter was selected for the
time-series statistics. The inversion results for Inner SZB and Outer SZB in various years
are shown in Figure 12. The concentrations in Outer SZB are relatively low and mostly
stable over time, with only a slight upward trend from 1988 to 2020. However, the nutrient
concentration in Inner SZB greatly fluctuates, showing a gradual increase (1988–2009) and
then a gradual decrease, with occasional peaks.

Figure 12. Graph of changes in CDIN and CPO4_P in Inner SZB and Outer SZB during fall and winter.

Regression analysis of the changes of CDIN and CPO4_P in Inner SZB and Outer SZB
is shown in Table 3. A slope of less than 0 indicates a decrease and vice versa. A greater
absolute value of the slope indicates a more significant change. On this basis, it can be seen
that changes were more pronounced in Inner SZB than in Outer SZB. In addition, CDIN
changed more significantly than CPO4_P in Inner SZB. In contrast, in Outer SZB, the changes
of CDIN and CPO4_P were relatively insignificant, with the concentrations remaining nearly
the same and CDIN slightly increasing.
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Table 3. Regression analysis results for changes in CDIN and CPO4_P.

Parameter Location Slope Intercept R2

DIN
Inner Bay −0.0766 5.2072 0.0531
Outer Bay −0.0422 1.2784 0.2443

PO4_P
Inner Bay 0.0077 0.4246 0.1101
Outer Bay −0.0004 0.0412 0.0351

4. Discussion
4.1. Monitoring Water Quality of the Rivers Flowing into SZB

In total, six rivers flow directly into SZB: five from Shenzhen (Shenzhen, Fengtang,
Xiaosha, Dasha, and Houhai Central River) and one from HK (Shan Pui River). Pre-
vious studies have shown that these rivers transport terrestrial pollutants and directly
cause water-quality deterioration in SZB [19,20]. With estuaries of approximately 200 m
(Shenzhen River) and 110 m (Shan Pui River) in width, these rivers situated in the inner-
most bay area are the primary sources of terrestrial pollution. A time-series graph was
produced based on the data from the estuaries, as shown in Figure 13. In SZB, there are an
average of two images per year (Table 1), but the climates differ from year to year resulting
in a non-uniform distribution.

Figure 13. Time series of the estimated CDIN and CPO4_P of the Shenzhen River and Shan Pui River estuaries. The time-series
polyline is smoothed.

The annual average CDIN and CPO4_P of the Shenzhen River and Shan Pui River estu-
aries in Figure 13 show that the nutrient concentrations first increased and then decreased;
the overall trend was downward. Note the pivot points occurred at different times. The
nutrient concentrations in the Shan Pui River decreased between approximately 2005 and
2009. During this period, Hong Kong focused on pollution sources through a voluntary
surrender scheme for poultry and pig farming licenses. As a result, the water quality in
the Shan Pui River and other surface sources that discharge into the Shenzhen River im-
proved [5,23]. A notable decrease in the nutrient concentrations on the Shenzhen side of the
SZB began after 2013. In 2000, the two governments formulated the “Deep Bay SZB Water
Pollution Control Joint Implementation Program” (JIP) to improve SZB’s water quality. The
JIP outlines pollution-control measures to be undertaken by both governments at various
stages to reduce wastewater discharge into Deep Bay by extension and improvement of
sewerage infrastructure [5]. Multi-year observations indicate that the work conducted in
the Shenzhen River was highly effective and that both CDIN and CPO4_P in the Shenzhen
River were declining. Prior to 2013, the diversion of rain and sewage water was relatively
unsatisfactory in Shenzhen. As a result, during heavy rainfall events, rain and sewage wa-
ter would overflow and directly discharge into the rivers that eventually emptied into SZB,
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resulting in deteriorating water conditions in SZB. With completion of the 12th “Five-Year
Plan” and the implementation of the 13th “Five-Year Plan”, a sewage system based on the
diversion of rain and sewage water, as well as pollution interception and treatment, has
been put into operation to strengthen the comprehensive management of drainage [33].
As a consequence, there has been a decrease in overflow and direct discharge as well as a
gradual improvement in the water conditions in the rivers flowing into SZB.

To further verify the inversion results, the annual average change of the monitoring
point DM1 closest to the two estuaries was chosen as the reference standard, as shown in
Figure 14.

Figure 14. The annual average in situ values at the DM1 monitoring point from 1988 to 2019.

From 1988 to 2020, in situ CDIN measurements at the DM1 monitoring site showed an
upward trend from 1988 to 2003, and then a downward trend after 2007; the only exception
occurred in 1996. In situ CPO4_P was slightly different from CDIN. The main difference was
that during 1988–1991, CPO4_P was higher and then began to decrease. After 1992, CPO4_P
was consistent with CDIN and began to gradually increase, peaking in 2007, then gradually
decreasing. The nutrient-concentration trend in the estuary obtained by the inversion in
Figure 13 is nearly the same as that of the actual monitoring data. The overall trend is
upward, then downward. The peak appeared around 2004, with a more obvious decline
after 2009. Although the overall trends are similar, some differences exist, probably due to
(1) the small number of images per year and the bias towards fall and winter, and (2) slight
differences between the measurements at the estuaries and measurements at DM1, which
is slightly farther away from the estuaries.

4.2. Impact of Oyster Rafts

In this study, many oyster rafts (ORs) were found close to the Hong Kong side of SZB,
particularly in the Lau Fau Shan region at the interface between fresh and salty water (an
area highly suitable for oyster farming). According to the information published by the
Agriculture, Fisheries and Conservation Department of Hong Kong, oyster farming has
been continually conducted in the intertidal mudflats along the coast of Deep Bay (SZB)
for more than two centuries. However, the breeding method of using ORs had only been
introduced in the past 10 years. In previous studies, researchers found that oyster farming
had a low impact on local water quality [34–36]. We verified this claim as follows. In this
study, the OR-distribution area was extracted to determine any changes and to investigate
whether these changes were possibly correlated with the nutrient concentrations. Because
ORs had only been in use for approximately 10 years, our research focused on Landsat-8
series images with a lower signal-to-noise ratio and higher quality.
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The ORs significantly differ from water bodies in remote-sensing imagery but are
spectrally similar to land. Therefore, ORs and water bodies can be differentiated using the
NDWI [28]. The ORs identified for each year are shown in Figure 15.

Figure 15. The distribution of ORs in SZB for each year.

From 2013 to 2019, the general trend is an increase in the area used for ORs. To examine
the impact of ORs on water quality, a graph of annual changes in nutrient concentrations
at point A (see Figure 16 for location) within the OFA in central SZB was produced (see
Figure 17 for results).

Figure 16. Analysis location for research on impact of oyster farming (Point A).
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Figure 17. Changes in nutrient concentrations in the OFA in SZB (in situ measurements at the DM3 station versus retrieved
values). The gray histogram shows the relative changes in the OFA statistical area.

During 2013–2019, there was an increase in the number of ORs, whereas the nutrient
concentrations decreased, resulting in a year-to-year improvement in the water quality in
the OFA in SZB. Figure 17 shows the changes in the measured nutrient concentrations at
the HKEPD DM3 measurement point in the same month as the RS image, which also shows
a decrease. However, whether oyster farming improved the water quality in SZB cannot
be determined based solely on the results in Figure 17. Therefore, two transects along the
oyster rafts were selected for further research: one transect was near the ORs (Transect A
in Figure 18) and the other was 1000 m from the ORs (see Transect B in Figure 18). The
multi-year-average nutrient concentrations from 2013 to 2019 in the waters near OFA and
approximately 1000 m from OFA were further compared (see Figure 19 for results).

Figure 18. Transect and perpendicular lines for researching the impact of oyster farming on water quality. Transect A is
near the ORs, while Transect B is approximately 1000 m from the ORs.
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Figure 19. The multi-year-average nutrient concentrations near to and 1000 m from the OFA from
2013 to 2019.

In the graph in Figure 19, the latitude gradually decreases from left to right, corre-
sponding to the direction from Inner SZB to Outer SZB. Based on Figure 10, the nutrient
concentrations were significantly reduced from Inner to Outer SZB. The difference between
the nutrient concentrations near OFA and 1000 m away is not obvious, but the value does
fluctuate. However, as the distance from OFA decreases, the water quality neither improves
nor deteriorates. Based on these results, it is not clear whether oyster farming improves the
water quality of SZB because oyster farming is not the only influencing factor.

The nutrient concentrations at the four perpendicular lines (see Figure 18 for locations)
are shown in Figure 20. To avoid the influence of land-based river input on the south side
of the ORs, four perpendiculars were selected on the north side of the ORs and away from
the land. The solid line represents the overlapping area with the ORs. As the latitude
increases, the perpendicular overlaps with the OFA, and the nutrient concentrations tend
to decrease slightly.

Figure 20. Nutrient concentrations at four perpendicular lines. (A–D) represent the results of the same four perpendiculars
in Figure 18.
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The appearance of ORs did not significantly change the basic spatial distribution of
nutrient concentrations in SZB. A higher nutrient concentration was not found in the OFA,
and the high nutrient concentration was still concentrated near the land and at the mouth
of the river.

5. Conclusions

Offshore aquatic environments are complex. As a result, simple linear relationships
cannot be used to analyze spectral information and WQFs. In comparison, nonlinear
models are very broad in scope and can be continuously optimized through multiple
training times based on ML. This aspect allows independent variables to increasingly
approximate true dependent variables through nonlinear relationships. Different ML
methods were trained based on the characteristics of the Landsat-5 TM and Landsat-8
OLI data that matched the in-situ data. Using the BPNN method, the validation shows
that the final Landsat-5 TM-based CDIN and CPO4_P retrieval models yielded R2 values of
0.90 and 0.82 and RMSEs of 0.458 and 0.075, respectively. A second-order SVM (R2 = 0.66,
RMSE = 0.571) was selected to retrieve CDIN from Landsat-8 OLI data. A second-order
SVM model with a visible band combination as the input (R2 = 0.80, RMSE = 0.032) was
selected to retrieve CPO4_P from Landsat-8 OLI data.

In terms of the overall spatial distribution, the water quality in Inner SZB was worse
than that in Outer SZB. Specifically, CDIN and CPO4_P values in Inner SZB were 2–9 and
approximately 4–19 times higher, respectively, than those in the Outer SZB. From Inner to
Outer SZB, the decrease in nutrient concentration is driven by the inflow of the Shenzhen
River. This conclusion is consistent with the land-based metal enrichment proposed by
Liu et al. due to anthropogenic pollutants discharged by riverbank runoff [37]. Outer SZB
is farther away from the Shenzhen River, and it is connected to the open sea such that
the water exchange capacity is stronger than that of Inner SZB. With these factors, the
concentrations of nutrients in Outer SZB are lower than those in Inner SZB. In the central
SZB, there were a large number of ORs, which had a relatively insignificant impact on the
overall water quality. During 1988–2020, the concentrations of each WQF in Inner SZB
fluctuated and eventually displayed an upward and then a downward trend. In Outer SZB,
the nutrient concentrations remained relatively stable and exhibited downward trends with
relatively small slopes. The water quality in SZB was primarily affected by the rivers. Thus,
the water conditions in the estuaries of several key rivers were determined based on remote-
sensing data. The results show the following. A series of restoration operations, particularly
those targeting the Shenzhen River, improved the quality of the water discharged into
SZB [25]. CDIN decreased to approximately half of the pre-2013 multi-year average, while
CPO4_P also decreased from the pre-2013 levels. These improvements were closely related
to the measures implemented in Shenzhen after 2013, such as comprehensive strengthening
of drainage management and diversion of rain and sewage water [33].

This study demonstrates the feasibility of remote sensing in monitoring water quality
in bays. The use of remote-sensing data to obtain large-area coverage and long-term
traceable water quality data is conducive to the supervision and monitoring of the bay.
At present, many countries and regions have launched ecological governance work for
gulfs. The application of remote-sensing technology to gulf water quality can support
the traceability of pollution sources; it can also evaluate, supervise, and track the process
of gulf governance projects. Overall, remote-sensing technology provides a new way of
studying a bay’s ecological environment, and it helps promote ecological management.

However, the current research still has issues, such as the small amount of useful data
and underestimating instantaneous tidal effects. Future research will attempt to combine
multiple satellites with higher spatial and temporal resolutions, for example, matching the
higher spatial resolution satellite Sentinel-2 with measurement data to compare the pros
and cons of different inversion results. The use of inversion algorithms still needs to be
explored in terms of modeling methods for small sample data and algorithm optimization.
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