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Abstract: Spatial distribution prediction of growing stock volume (GSV) for supporting the sus-
tainable management of forest ecosystems, is one of the most widespread applications of remote
sensing. For this purpose, remote sensing data were used as predictor variables in combination with
ground data obtained from field sample plots. However, with the increase in forest GSV values,
the spectral reflectance of remote sensing imagery is often saturated or less sensitive to the GSV
changes, making accurate estimation difficult. To improve this, we examined the GSV estimation
performance and data saturation of four optical remote sensing image datasets (Landsat 8, Sentinel-2,
ZiYuan-3, and GaoFen-2) in the subtropical region of Central South China. First, various feature
variables were extracted and three optimization methods were used to select optimal feature variable
combinations. Subsequently, k-nearest-neighbor (kNN), random forest regression, and categorical
boosting algorithms were employed to build the GSV estimation models, and evaluate the GSV
estimation accuracy and saturation. Second, Gram Schmidt (GS) and NNDiffuse pan sharpening
(NND) methods were employed to fuse the optimal multispectral images and explore various image
fusion schemes suitable for GSV estimation. We proposed an adaptive stacking (AdaStacking) model
ensemble algorithm to further improve GSV estimation performance. The results indicated that
Sentinel-2 had the highest GSV estimation accuracy exhibiting a minimum relative root mean square
error of 20.06% and saturation of 434 m3/ha, followed by GaoFen-2 with a minimum relative root
mean square error of 22.16% and a saturation of 409 m3/ha. Among the four fusion images, the NND-
B2 image—obtained by fusing the GaoFen-2 green band and Sentinel-2 multispectral image with the
NND method—had the best estimation accuracy. The estimated optimal RMSEs of NND-B2 were
24.4% and 16.5% lower than those of GaoFen-2 and Sentinel-2, respectively. Therefore, the fused
image data based on GF-2 and Sentinel-2 can effectively couple the advantages of the two images and
significantly improve the GSV estimation performance. Moreover, the proposed adaptive stacking
model is more effective in GSV estimation than a single model. The GSV estimation saturation value
of the AdaStacking model based on NND-B2 was 5.4% higher than that of the KNN-Maha model.
The GSV distribution map estimated by AdaStacking model used the NND-B2 dataset corresponded
accurately with the field observations. This study provides some insights into the optical image fusion
scheme, feature selection, and adaptive modeling algorithm in GSV estimation for coniferous forest.

Keywords: multispectral imagery fusion; data saturation; feature combination optimization; regres-
sion modeling algorithm; growing stock volume
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1. Introduction

Planted forests are an important resource and play a vital role in the global carbon
cycle. Additionally, they are an essential source for industrial raw materials [1,2]. Forest
growing stock volume (GSV) is the total stock volume of all live trees in a unit area of forest,
and is a basic parameter and key indicator for evaluating the quality of forest resources
and the health of forest ecosystems [3]. Accurate estimation of the GSV of planted forests
is highly essential for guiding a region’s forest management and carbon sequestration
policies [4,5]. Generally, traditional forest resource inventory methods are slow, laborious,
expensive, and often damages and disrupts the forest ecosystem [6–8]. In contrast, spatial
distribution mapping of forest parameters by combining remotely sensed data with a
small number of sample plot data has gained popularity due to the various advantages of
remote sensing technology, such as low cost, wide temporal and spatial coverage, and high
efficiency [9–13].

Various remote sensing data, have been utilized to monitor forest cover and estimate
forest parameters (e.g., volume/biomass/carbon sink) [14–18]. Compared to other optical
remote sensing data, Landsat images with a 30-m spatial resolution have been the most
widely used for forest GSV and aboveground biomass (AGB) estimation in the past decades
due to their long-term data recording and free access worldwide [19–24]. However, with
the increase in GSV or AGB values, the spectral reflectance of Landsat imagery often
tends toward saturation and is less sensitive to GSV or AGB changes due to the complex
forest canopy structure. This leads to estimated GSV or AGB values that are far below
the reference values [25]. Many researchers have made various efforts to reduce the
data saturation impact of Landsat images for forest parameter estimation, including the
application of various vegetation indices, texture features, phenology variables, terrain
features, and land-cover data [20,24–29]. Lu et al. [26] compared the effects of various
vegetation indices and found that SWIR band-derived vegetation indices had a better
relationship to AGB for complicated canopy structure forests than those of Visible and
near-infrared bands-derived. In another study, Zhu and Liu [28] explored phenology-based
methods using a time series analysis of Landsat normalized difference vegetation index
data to reduce the effects of data saturation. However, it is usually difficult to obtain
a large number of pollution-free optical images using this method, in rainy and foggy
mountainous regions. Due to the differences in tree species and forest stand structures,
different vegetation types have different growth rates under diverse altitude, slope, and
aspect conditions, thus exhibiting different surface spectral reflectance values [30,31].
Zhao et al. [24] found that the stratification of vegetation types and slope aspects mitigated
the data saturation problem of AGB estimation. However, the stratification approach
exhibited limitations. It is challenging to collect a sufficient number of plots for different
vegetation or topographic feature types due to cost and accessibility limitations. The
stratification will reduce the number of each vegetation type sample plot available for
modeling. Thus, the training samples do not sufficiently represent population features,
resulting in the built model being prone to overfitting in the actual forest parameter
prediction. Furthermore, certain difficulties persist in accurately classifying vegetation in
natural forests with complex forest structures [24].

Active remote sensing technologies, such as radar and lidar systems, have unique
advantages in forest parameter estimation [32,33]. Radar data with its capability of pene-
trating forest canopy structure may have different sensitivities to changes in forest density
compared to optical sensor images [34–36]. However, similar to optical imaging, the ac-
curacy and sensitivity of the metrics derived from the backscatter coefficient of the radar
system declined with increasing GSV or AGB density. Lidar systems are currently the most
advanced remote sensing technology employed for forest parameter estimation, efficiently
providing forest canopy height and spatial structural information [37,38]. Previous studies
have shown that canopy height features derived from lidar systems exhibit a high corre-
lation to GSV or AGB, even when the density of the forest canopy is very high [37–40].
However, the high cost, poor availability, and complex processing decrease the practicality
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of lidar systems for large regional-scale operational applications. Although the Radar and
Lidar systems can obtain forest vertical structure information and have certain techni-
cal advantages and good application potential in forest structure parameter estimation,
optical remote sensing system has absolute leading advantages in data availability, data
acquisition cost and data processing technology complexity. Therefore, the research on
forest GSV estimation based on optical remote sensing system is of great significance to
promote the development of large-scale and low-cost forest GSV mapping technology all
over the world.

Sentinel-2 has 13 spectral band images with three spatial resolutions (10 m, 20 m,
and 60 m), and the A/B scheme of two satellites achieves a five-day revisit period [41].
Therefore, it provides images with a higher spectrum and spatiotemporal resolution than
Landsat 8. Currently, Sentinel-2 is the only available open source for optical remote sensing
images with three red-edge bands [42]. The 10 m resolution multispectral, and 20 m
resolution vegetation red-edge (VRE)/short-wave infrared (SWIR) band images provided
by the Sentinel-2 system allow us to obtain high-quality data for forest resource monitoring,
effectively improving the estimation accuracy of the forest structural parameters [43,44].
Chrysafis et al. [4] and Astola et al. [11] compared Sentinel-2 and Landsat 8 imagery
using random forest regression (RFR) and multilayer perceptron (MLP) models to assess
the relationships between forest GSV and remote sensing imagery, respectively. They
found that Sentinel-2 imagery was marginally better than Landsat 8 imagery for GSV
estimation. In particular, the Sentinel-2 VRE1 band (B5) and SWIR bands (B11, B12)
exhibited a significant correspondence with forest parameter estimation. Mura et al. [45]
and Hu et al. [46] obtained similar conclusions by using Sentinel-2 imagery for forest GSV
estimation in Italy and Hunan Province, China, respectively.

High spatial resolution optical remote sensing image datasets, such as WorldView,
GaoFen-2 (GF-2), and ZiYuan-3 (ZY-3), have also been used for forest resource monitoring
in recent years [18,19,47,48]. Compared to Landsat 8 and Sentinel-2, ZY-3 and GF-2 images—
with spatial resolutions of 2.1 m and 1 m—can obtain finer spectral and spatial texture
information for vegetation, which helps reduce the mixed pixels, theoretically improving
the estimation accuracy of forest parameters [47]. Moreover, owing to the differences in
spectral bands, spatial resolution, and radiation resolution, various sensors exhibit signifi-
cant differences in vegetation surface reflectance and spectral sensitivity [24]. Therefore,
utilizing spectral coupling and complementary effects between sensors can alleviate the
data saturation problem to a certain extent. Previous studies have indicated that the combi-
nation of remote sensing images with similar spectral ranges and spatial resolution cannot
improve the performance of forest parameter estimation [11,25]. In contrast, the integrated
data of remote sensing images with large differences in spectral bands and pixel resolution
can improve the accuracy of forest parameter estimation [19]. To examine the effect of
multispectral fusion images, Li et al. [19] used three feature selection methods and six
prediction models to estimate the GSV of coniferous plantations in northern China and
found that the fusion data of GF-2 red band and Landsat 8 multispectral image significantly
mitigated the data saturation problem and improved the GSV estimation performance.
However, the GSV estimation performance of fusion data based on high-resolution images
and high-quality classic medium-resolution images needs to be verified further using more
remote sensing images, more advanced fusion methods (e.g., nearest neighbor diffusion
pan sharpening (NND)) [49], and more field sample data from other study sites.

Regression estimation algorithms usually influence GSV prediction accuracy [25].
Compared to traditional parameter and non-parameter regression algorithms, ensemble
machine learning algorithms, including RFR, categorical boosting (CatBoost) and stacking,
often perform better in forest parameter estimation [42,50–56]. In particular, the stack-
ing algorithm performs well in various application scenarios even with a small sample
size [57,58]. Li et al. [19] examined and compared six regression models in forest GSV
estimation: k-nearest-neighbor (kNN), multiple linear regression (MLR), support vector
regression (SVR), RFR, extreme gradient boosting (XGBoost), and stacking. The results
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show that the stacking algorithm is better than the others in most data scenarios. Cai
et al. [58] used the object-based stacking ensemble method based on multi-source remote
sensing data for wetland mapping and found that the stacking algorithm was superior to
single classifiers for vegetation classification in highly heterogeneous areas.

This study aims to examine the data saturation issue of four optical remote sensing
image datasets (Landsat 8, Sentinel-2, ZY3, GF-2) in coniferous plantations and to explore
approaches to improve GSV prediction performance by integrating multispectral images
from various sensors, and applying the adaptive-stacking ensemble model in the subtrop-
ical region of Central South China. It also compares the performances of two common
image fusion algorithms and four classic regression models.

2. Study Area and Data
2.1. Study Area

The study site, the Huangfengqiao experimental forest farm, is located in the southeast
of Hunan Province, China (Figure 1), and covers an approximate area of 10,122.6 ha. It is
influenced by the subtropical monsoon humid climate, with an average annual temperature
of 17.8 ◦C, annual precipitation of 1410.8 mm, and annual frost-free period of approximately
292 d. The area has numerous medium to low mountains with elevations varying from
115 to 1270 m and slopes between 20◦ and 35◦. As shown in Figure 2, the main planted
forest stand type is Chinese fir and the area has a total stock volume of 0.89 million cubic
meters [35].

Figure 1. Study area location and distribution of field survey sample plots.
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Figure 2. (a) Distribution of tree species of the study area; (b) the digital elevation model of the study area; (c) photos of
Chinese fir in the sample plots.

2.2. Data Preparation
2.2.1. Reference Data

The study area was covered by 50 Chinese fir plantation sample plots measured in the
field from 2016 to 2017. The spatial distributions of all the investigated sample plots are
shown in Figure 1. The size of each plot was either 20 m× 20 m or 30 m× 30 m, depending
upon the topographic features and stem density. The corner and central point positions of
the sample plots were measured using a differential global positioning system unit. The
basic parameters of all standing trees with a diameter at breast height (DBH) greater than
5 cm were measured in each plot, including DBH, tree height, stem number, crown width,
and additional stand information such as topographic factors (e.g., elevation, slope, and
aspect) and dominant species. As shown in Formula (1), the GSV of each Chinese fir in the
field sample plots was calculated based on the “Table of forest resources survey in Hunan
Province” provided by the Hunan forestry department (http://lyj.hunan.gov.cn/, accessed
on 16 April 2020). The summary information of the GSV reference data for 50 sample plots
is presented in Table 1.

GSV = 5.8777042× 10−5 × D1.9699831 × H0.89646157 (1)

where, D, H is the DBH and height of tree, respectively.

http://lyj.hunan.gov.cn/
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Table 1. The GSV reference data in the sample plots (m3/ha).

Age Group Plot Number Value Range Mean Standard
Deviation

Coefficient of
Variation (%)

Immature 11 97~325 207.64 78.19 0.3766
Near Mature 17 137~304 211.82 50.04 0.2362

Mature 14 165~488 290.57 90.67 0.3120
Over mature 8 260~400 322.63 47.32 0.1467

Total 50 97~488 250.68 82.50 0.3291

2.2.2. Remote Sensing Data Collection and Pre-Processing

As shown in Table 2, we acquired six GF-2 images of the L1A-level product obtained
on December 8, 2016 (http://www.cresda.com/CN/, accessed on 10 May 2019), two ZY-
3 images on September 15, 2017 (http://www.cresda.com/CN/, accessed on 10 May 2019),
one Sentinel-2 (https://scihub.copernicus.eu/, accessed on 17 March 2019), and Landsat
8 images (http://www.gscloud.cn/, accessed on 15 June 2020) obtained on 14 Febru-
ary 2017, and on 14 April 2017, respectively. The terrain correction of optical images
was conducted using digital elevation model (DEM) data with 30 m spatial resolution
(http://www.gscloud.cn/, accessed on 15 June 2020), and terrain feature variables at the
pixel level, such as slope, aspect, and elevation, were extracted for GSV estimation from the
DEM data of the study area. Data from four sensors, with a spatial resolution ranging from
1 m to 30 m, were selected as the optical remote sensing data source for GSV estimation
in this study (Table 3). The nearest-neighbor interpolation method was used to resample
the selected band images of GF-2, ZY-3, and Sentinel-2 to 30 m in order to unify the image
resolution and DEM data so that the pixel size accurately corresponds with the sample plot.

Table 2. Basic information of four remote sensing image data sources.

Image Category Image Identification Product Level Acquisition Date

GF-2

GF2_PMS1_E113.7_N27.3_20161208_
L1A0002024803

GF2_PMS1_E113.7_N27.4_20161208_
L1A0002024809

GF2_PMS1_E113.6_N27.1_20161208_
L1A0002024810

GF2_PMS2_E113.9_N27.4_20161208_
L1A0002024716

GF2_PMS2_E113.9_N27.2_20161208_
L1A0002024720

GF2_PMS2_E113.9_N27.0_20161208_
L1A0002024721

Level 1A 8 December 2016

ZY-3

ZY3_MUX_E113.8_N27.1_20170915_
L1A0003798625

ZY301a_nad_031572_897157_20170915104347_01_sec_0001
_1709189743

Level 1A 15 September 2017

Sentinel-2 S2A_MSIL1C_20170214T025811_N0204_R032_T49RGL_201702
14T030309 Level-1C 14 February 2017

Landsat 8 LC81220412017104LGN00 L1T 14 April 2017

http://www.cresda.com/CN/
http://www.cresda.com/CN/
https://scihub.copernicus.eu/
http://www.gscloud.cn/
http://www.gscloud.cn/
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Table 3. Spectral bands of the GF-2, ZY-3, Sentinel-2, and Landsat 8 images used in the study.

Image Category Description of Bands Range of
Wavelength (µm)

Resolution
(m)

GF-2

Band 1 Pan 0.450–0.900 1
Band 2 Blue 0.450–0.520 4

Band 3 Green 0.520–0.590 4
Band 4 Red 0.630–0.690 4

Band 5 Near-Infrared (NIR) 0.770–0.890 4

ZY-3

Pan 0.500–0.800 2.1
Band 1 Blue 0.450–0.520 5.8

Band 2 Green 0.520–0.590 5.8
Band 3 Red 0.630–0.690 5.8
Band 4 NIR 0.770–0.890 5.8

Sentinel-2

Band 2 Blue 0.458–0.523 10
Band 3 Green 0.543–0.578 10
Band 4 Red 0.650–0.680 10

Band 5 Vegetation Red Edge (VRE 1) 0.698–0.713 20
Band 6 Vegetation Red Edge (VRE 2) 0.733–0.748 20
Band 7 Vegetation Red Edge (VRE 3) 0.773–0.793 20

Band 8 NIR 0.785–0.900 10
Band 8A Narrow NIR 0.855–0.875 20

Band 11 Shortwave infrared (SWIR 1) 1.565–1.655 20
Band 12 Shortwave infrared (SWIR 2) 2.100–2.280 20

Landsat 8

Band 1 Coastal 0.433–0.453 30
Band 2 Blue 0.450–0.515 30

Band 3 Green 0.525–0.600 30
Band 4 Red 0.630–0.680 30
Band 5 NIR 0.845–0.885 30

Band 6 SWIR 1 1.560–1.660 30
Band 7 SWIR 2 2.100–2.300 30

3. Methods
3.1. Research Framework

To improve the GSV estimation accuracy of Chinese fir plantations, we examined four
optical images datasets and explored the corresponding solutions (Figure 3). The specific
content included the following five steps:

(1) Four remote sensing image datasets were selected (Landsat 8, Sentinel-2, ZY3, GF-2)
and vegetation index, texture features, and terrain features were extracted, and
combined with the GSV measurement data of the field plots to generate training
sample sets.

(2) Three feature combination optimization methods (e.g., KNN-Mink-based, KNN-
Maha-based, and RFR-based methods (they are explained in detail in Section 3.3))
were used to select the optimal feature variable combination, subsequently employing
KNN-Mink, KNN-Maha, RFR, and Catboost algorithms to build the GSV estimation
models, and evaluating GSV estimation accuracy and saturation, and selecting the
better medium- and high-resolution images for further GSV estimation research.

(3) The selected medium- and high-resolution multispectral images were fused using
Gram-Schmidt (GS) [19] and NND pan sharpening algorithms to obtain a variety of
fusion image datasets; the feature combinations were selected subsequent to their
extraction, and four regressor algorithms were employed to build the GSV estima-
tion models, from which the best fusion data and corresponding estimation models
were selected.

(4) An adaptive-stacking ensemble algorithm that implements the iterative selection of
basic regressors and the automatic optimization of hyperparameters for modeling the
GSV was employed, and the GSV estimation performance of the adaptive-stacking
ensemble model was explored based on the best fusion data.
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(5) The GSV distribution of the study area was predicted and mapped based on the best
data scheme obtained and the GSV estimation model.

Figure 3. The research framework for forest GSV estimation based on adaptive-Stacking algorithm. (a) Selection of the most
suitable image for GSV estimation; (b) (b-1) Multispectral image fusion, (b-2) selection of optimal integrated dataset, (b-3)
flow chart of adaptive stacking ensemble algorithm.

3.2. Feature Variable Extraction Based on Image Data

As shown in Table 4, we extracted four categories of feature variables from GF-2, ZY-3,
Sentinel-2, Landsat 8, and DEM images, including spectral information, vegetation indices,
texture features, and terrain factors. The spectral information is the pixel spectral reflectance
of the resampled original multispectral image. For sentinel-2, only ten bands with original
spatial resolutions of 10 m and 20 m were used in this study. We employed four, four, and
seven multispectral bands from the GF-2, ZY-3, and Landsat 8 images, respectively, and
calculated four types of vegetation indices widely used in forest parameter prediction [19].
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The elements in the gray-level co-occurrence matrix (GLCM) represent the joint distribution
of the gray levels of two pixels with a certain spatial position relationship. Thus, the GLCM
is a statistical-based texture feature extraction method that is frequently used to extract
image texture features, such as the image mean, variance, contrast, homogeneity, entropy,
dissimilarity, second moment, and correlation [19]. The elevation, slope, and aspect were
extracted as terrain factors from the DEM images. Terrain texture is an important factor for
distinguishing different landforms, whose features usually have a certain impact on the
growth rate of forests. Thus, there is a theoretical relationship between the terrain-based
texture feature variables and forest GSV values. Therefore, this study also extracted terrain
texture feature variables from the elevation, slope, and aspect images of the study area.

Table 4. All feature variables extracted from GF-2, ZY-3, Sentinel-2, and Landsat 8 images in this
study. We extracted texture factors from optical images, Elevation, Slope, and Aspect data with the
step size (1,1], and the window size (3 × 3, 5 × 5, 7 × 7, 9 × 9).

Variable Category Description Reference

Spectral information
GF-2: Blue, Green, Red, NIR
ZY-3: Blue, Green, Red, NIR [19,25]

Sentinel-2: Blue, Green, Red, VRE 1, VRE 2, VRE
3, NIR, Narrow NIR, SWIR 1, SWIR 2

Landsat 8: Coastal, Blue, Green, Red, NIR,
SWIR 1, SWIR 2

Vegetation indices

NDVI ij = (Band i − Band j)/(Band i + Band j)
NDVI ijk = (Band i + Band j − Band k)/(Band i +

Band j + Band k) [19,25]

RVI i_j = Band i/Band j
DVI i_j = Band i − Band j

Texture features (GLCM)

Mean, Variance (Var), Homogeneity (Hom),
Contrast (Con), Dissimilarity (Dis),

Entropy (Ent),
Second moment (Sec), Correlation (Cor)

[27]

Terrain factors Elevation, Slope, Aspect [36]

3.3. Feature Combination Optimization Program Based on Regression Models

Numerous feature variables generate a high calculation load for forest GSV modeling,
in addition to increasing the risk of overfitting of the estimation model. Therefore, feature
selection is particularly important for the GSV estimation. The feature combination op-
timization method established by previous studies performs better than the SMLR and
RF feature selection methods for forest parameter estimation based on remote sensing
technology [19,51,56]. In this study, two KNN algorithms [59,60], including the Minkowski
distance KNN (Formula (2)), Mahalanobis distance KNN (Formula (3)), and a regression
tree algorithm (RFR) were used as regression models to select the optimal feature com-
bination with the minimum root mean square error (RMSE) between the measured and
estimated GSV values. These three feature combination optimization methods are denoted
as KNN-Mink-based, KNN-Maha-based, and RFR-based, respectively.

DMink
(
xi, xj

)
=

(
n

∑
l=1

∣∣∣xi
(l) − xj

(l)
∣∣∣m) 1

m

(2)

DMaha
(
xi, xj

)
=
√
(xi − xj)

TΣ−1
(
xi − xj

)
(3)

where X is the feature space with an n-dimensional vector, xi, xj∈X; p ≥ 1; Σ is the
covariance matrix of the sample dataset, Σ−1 is the inverse matrix of Σ, and T is the
matrix transposition.

For each iteration, the feature combination optimization program selects a feature
variable from the candidate feature set in turn and adds it to the optimal feature set
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Best_F, then employs the KNN or RFR algorithm to construct the GSV estimation model,
subsequently employing the leave-one-out cross validation (LOOCV) method to calculate
the GSV estimation RMSE value. The program determines the best one in the current
candidate feature set according to the minimum RMSE principle and when the iteration
termination condition is satisfied, the program exits, and the optimal feature variable
combination Best_F is obtained.

3.4. Multispectral Image Data Fusion and Combination

In this study, the GSV estimation performance of four optical remote sensing image
datasets were compared, two images with the highest GSV saturation and estimation
accuracy were identified, and the data integration scheme suitable for GSV estimation was
subsequently explored through image data fusion and combination. Remote sensing image
data fusion usually adopts the method of fusing high-resolution multi-spectral image with
medium-resolution multi-spectral images, in order to obtain a fusion image with both
high spatial resolution and rich spectral information similar to medium-resolution images.
Furthermore, since each multispectral band of high-resolution images can be fused with
medium-resolution images, a variety of fusion schemes based on different image bands
and different fusion algorithms can be explored. Therefore, we can obtain multiple image
fusion data with large differences in spectral information, which is convenient for further
extraction of the feature variables used for GSV estimation, construction of a corresponding
GSV estimation model for each data scene based on the selected features, and exploration
of the most suitable remote sensing image fusion data for GSV estimation.

To find a multi-spectral image fusion method suitable for forest AGB estimation,
we compared two classic fusion algorithms, GS and NND. In this study, each of the
two multispectral bands (B2_green and B3_red) of the high-resolution image (GF-2 or
ZY-3) was fused with the medium-resolution image (Sentinel-2 or Landsat 8). The fused
images are denoted by the fusion method and the band names. For example, the image
obtained after fusion of the B2_green image with Sentinel-2 or Landsat 8, using the NND
method, is denoted as NND_B2. For comparison with fusion images, we also examined the
combination scheme of images, which integrated all feature variables of the two images as
a single sample dataset.

3.5. Forest GSV Estimation Modeling Based on Adaptive-Stacking Ensemble Algorithm

This study aims to address the disadvantages of underestimation and overestimation
in the estimation results of a single model, and plans to adopt the stacking machine
learning model ensemble algorithm that integrates the prediction results of the basic
regression models as independent variables of a meta-regressor for secondary prediction.
However, the selection of the base-and meta-models and hyperparameter optimization are
the keys to the stacking integration algorithm. Therefore, based on the analysis of different
model architectures and estimation performance, this study comprehensively considers
the coupling mechanism between the models and realizes the adaptive integration of the
stacking model through the iterative selection of models and the automatic optimization of
hyperparameters. As shown in Figure 3, the adaptive stacking ensemble learning algorithm
flow is as follows:

Step 1: The training dataset is inputted, and the base regression model (RM 1), RM i,
Meta Regressor, Best_RMSE, and other related parameters are initialized.

Step 2: Using the LOOCV method, one out of all samples will be set aside as the test
sample (TestData), and the other samples are input into the training dataset as training
samples (TrainData). The training dataset is also divided into K parts. Each time, the
predictions are made simultaneously in one part of TrainData and TrainData as a whole., K
prediction results are thus obtained after K iterations.

Step 3: By comparing the RMSE loop traversal optimization model parameters, the K
prediction results of models RM 1 and RM i in step 1 are used as the new training data set
feature variables F1 and F2, and the K test samples of RM 1 and RM i are used to predict
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the results. The average values are used as feature variables V1 and V2 of the new test
sample, respectively.

Step 4: The set of F1, F2, and the set of V1 and V2 are used as the training sample set
and test sample set of the meta-regressor, respectively, and the meta-regressor is used to
fit the training sample and build the regression model, and make predictions on the test
samples to obtain the prediction results.

Step 5: On comparing the RMSE of the model cross-validation results, if the conditional
discriminant best_RMSE < Best_RMSE is satisfied, integration of the new basic regression
model RM I is continued, the relevant parameters of the existing integrated model are
updated, subsequently returning to Step 2; if the conditions are not met, the loop is exited,
the optimal integrated model is outputted and the final prediction result is obtained.

Considering the superior performance of the KNN, RFR, and CatBoost algorithms in
forest parameter estimation, this study used the feature variable selected by the KNN-based
or RFR-based feature combination optimization program to construct various forest GSV
estimation models, including the Minkowski distance KNN (KNN-Mink), Mahalanobis
distance KNN (KNN-Maha), RFR, and CatBoost algorithms. Additionally, these models
are used as basic regression models to further develop the AdaStacking ensemble model,
and automatically screen and optimize basic regressors and hyperparameters through
iterative procedures.

3.6. Model Evaluation and Saturation Calculation

To maximize the use of the existing field observation sample dataset, the performance
of the GSV estimation model was examined in this study, using the LOOCV method. In
each iteration, one sample was selected as the test sample, and the remaining 49 samples
were used to establish the GSV estimation model based on the regression algorithm. The
GSV estimation values of all the samples were obtained after 50 looped repetitions. By
comparing the estimated GSV value obtained by the GSV estimation model with the
observed GSV value measured at the field site, we can obtain the GSV estimation saturation
value of each modeling scheme, which is constituted by an image data scene and estimation
model. The evaluation indices for various estimation models were calculated based on the
estimated and observed GSV values, including the coefficient of determination (R2), RMSE,
relative RMSE (RMSEr), and mean absolute error (MAE).

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n− 1
(5)

RMSEr =
RMSE

y
(6)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (7)

where n is the sample size, yi is the observed reference GSV value, y is the mean of all yi, ŷi
is the estimated GSV value from the regression model.

Generally, smaller RMSE, RMSEr, and MAE values indicate a higher accuracy of the
estimation model; the larger the R2 value, the better the fit of the model, and the higher the
degree of explanation of independent variables with respect to dependent variables.
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4. Results and Discussion
4.1. Evaluation of GSV Estimation Performance of Four Image Data Sets
4.1.1. Selection of the Best Predictive Feature Variable Combination of GF-2, ZY-3,
Sentinel-2, and Landsat 8 Images

In this study, three feature combination optimization methods, i.e., KNN-Mink-based,
KNN-Maha-based, and RFR-based, were used to select feature variables from the GF-2,
ZY-3, Sentinel-2, and Landsat 8 image datasets (Table A1). Of the 12 feature variable
combinations—composed of four image data scenes and three feature selection methods—
66 feature variables were selected, of which 54 were texture feature variables, 11 were
vegetation index variables, and 1 was green band spectral information. The most frequently
selected texture factors are the second moment, homogeneity, correlation, mean, and
entropy, and the selected times were 10, 9, 9, 8, and 6, respectively. In summary, the feature
variables selected in this study based on the feature combination optimization program
were consistent with the research results of Jiang et al. [41] in forest GSV estimation and
Han et al. [60] in forest AGB modeling.

For high-resolution images (GF-2 and ZY-3), due to the lack of red edges and short-
wave infrared bands suitable for vegetation growth monitoring, resulting in the vegetation
index variables being insufficiently sensitive to changes in forest GSV [47,48,61]. For
medium spatial resolution images (Sentinel-2 and Landsat 8), the selected vegetation index
variables increased significantly, especially with the Sentinel-2 image dataset containing
three red-edge bands and two short-wave infrared bands. Two methods selected four
vegetation index variables each, and the third selected one. Among them, six were related
to the red edge band of the Sentinel-2 image, indicating that the red edge bands and
short-wave infrared bands of the medium spatial resolution image play an important role
in GSV estimation.

4.1.2. GSV Prediction Performance of GF-2, ZY-3, Sentinel-2, and Landsat 8 Images

As shown in Figures 4, A1 and A2, the Sentinel-2 and GF-2 image datasets showed
the best GSV estimation performance, and their GSV estimated saturation value reached
434 m3/ha and 409 m3/ha, respectively. When using sentinel-2 and GF-2 image data
sets to build the GSV estimation model based on four regression algorithms, the mini-
mum RMSEr values were 20.06% and 22.16%, and average RMSEr values of 23.43% and
23.34%, respectively.

For the GF-2 image dataset, both the RFR and CatBoost models exhibit good GSV
estimation performance. When the GSV value is large, there is no underestimation that
the absolute deviation is 50% greater than the average value of GSV samples; however,
when the GSV value is less than 150 m3/ha, the overestimation is evident. The GSV
estimation performance of the ZY-3 image dataset was inferior to that of the GF-2 image.
The underestimation of high GSV value areas is particularly severe, resulting in the GSV
estimated saturation value of the ZY-3 image being much lower than that of the other
three images. For the Sentinel-2 image data set, the GSV estimation performance of the
KNN-Maha model performed the best, exhibiting the lowest estimated MAE and RMSE
values of 41.01 m3/ha and 50.29 m3/ha, respectively. Furthermore, the highest value of
the GSV estimated saturation of the Sentinel-2 image is much larger than that of the other
three image datasets. The GSV estimation performance of the Landsat 8 image dataset
was inferior to that of the other three images. The distribution of GSV estimation residual
values shows a highly recognizable linear trend, indicating that the overestimation in
the GSV low-value area and the underestimation in the GSV high-value area are both
relatively severe.
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Figure 4. Based on ZY-3, GF-2, sentinel-2 and Landsat 8 data scenarios, the box plot of various evaluation indexes of GSV
estimation results obtained by RFR, CatBoost, KNN-Maha and KNN-Mink modeling algorithms respectively. (a–e) are the
R2, RMSE, RMSEr, MAE, Saturation, respectively.

Astola et al. examined the GSV estimation performance of Sentinel-2 and Landsat
8 images in a boreal forest in Southern Finland and found that the estimation accuracy
of Sentinel-2 was higher than that of Landsat 8 images. Their conclusions are consistent
with the results of this study. Moreover, the predictive ability of Sentinel-2 VRE images
has been reported in recent forest GSV studies [41], tree species classification [59], wetland
mapping [58], and biophysical variable prediction [6]. Chrysafis et al. [4] examined the
importance of feature variables using the random forest method for GSV estimation and
found that SWIR 1 was the most important band for both Sentinel-2 and Landsat 8 images.
Our study found that, compared with feature importance analysis, identifying the best
combination of feature variables matching with a specific regression model is the key to
accurately estimating GSV. For instance, the combination of feature variables selected using
the three methods based on the Sentinel-2 dataset is different from the corresponding
GSV estimation accuracy. However, all three methods choose the combination of feature
variables related to VRE bands and elevation data, indicating that these two parameters
play a vital role in GSV estimation.

4.2. GSV Estimation Performance Improvement Method Based on Multi-Spectral Image Fusion

Although the GSV estimation performance of GF-2 and Sentinel-2 images is higher
than that of ZY-3 and Landsat 8, problems still persisted. For example, GF-2 images main-
tained a certain overestimation in low GSV value areas, and Sentinel-2 images exhibited a
large estimation deviation in the GSV value range of 200 m3/ha–400 m3/ha, indicating
clear underestimation. To further improve the accuracy of GSV estimation, GS and NND
methods were used to perform multispectral image fusion on GF-2 and Sentinel-2, which
generated four fusions: GS-B2, GS-B3, NND-B2, and NND-B3 image data scenes. This
study used three feature variable combination optimization methods to screen feature vari-
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ables based on one combination data scene and four fusion datasets of GF-2 and Sentinel-2,
and utilized four regression algorithms to establish the GSV estimation models.

As depicted in Figures 5–8, for five image data scenarios, including the combination
dataset of GF-2 and Sentinel-2, and four fusion images, the GS-B3 and NND-B2 datasets
have the best GSV estimation performance, with the minimum GSV estimation RMSEr
values of 19.79% and 16.76%, respectively. Compared with the GSV estimation results of
the GF-2 and Sentinel-2 image data scenarios, the optimal estimation R2 of NND_B2 was
36.9% and 18.5% higher than those of the GF-2 and Sentinel-2, and the best RMSE value
was 24.4% and 16.5% lower, respectively. As seen from the scatter plot of Figure 6(e2), when
the CatBoost model was employed, the estimation GSV based on the NND-B2 dataset had
a highly concentrated distribution and clear fitting trend, with no evident overestimation or
underestimation. Moreover, all four GSV estimation models based on the NND-B2 image
dataset have competent estimation accuracies; the average value of the GSV estimation
RMSEr is 19.85%, which is significantly lower than those of the original image and fusion
image datasets. Li et al. [19] employed the fusion data of GF2 and Landsat 8 multispectral
images to estimate the GSV of Chinese pine and larch plantations in northern China.
Interestingly, they found GF2 red to be the most suitable band for fusion with Landsat
8 multispectral images in the GSV estimation process. In this study, when the GS method
was used to fuse two multispectral images, the GF-2 red band exhibited an appreciable
performance, and the GS-B3 image obtained a satisfactory estimation accuracy; however,
when the NND fusion method was employed, the fusion image NND-B2 obtained by the
GF-2 green band had the highest estimated performance. The different climate, tree species,
and terrain with respect to our study could explain the differences in the results.

4.3. GSV Estimation Ability of the AdaStacking Ensemble Model

The GSV estimation performance for the GS-B3 fusion image dataset was only marginally
higher than that of the Sentinel-2 image. When the GSV value exceeded 300 m3/ha, the under-
estimation issue was particularly serious. Although the estimation accuracy of NND-B2 is
greatly improved compared to that of GF-2 and Sentinel-2, the estimated saturation of
GSV is lower than that of Sentinel-2. To further explore the possibility of improving the
GSV estimation performance, the AdaStacking ensemble model was developed based on
the GS-B3 and NND-B2 image datasets and their corresponding optimal feature combi-
nations. As shown in Figure 9, by applying the AdaStacking model ensemble method,
the estimation performance of the NND-B2 and GS-B3 images is further improved. The
best obtained estimation RMSEr was 25.1% and 7.2%, respectively, lower than that of
Sentinel-2. Specifically, the adaptive ensemble of estimation models has alleviated the
underestimation problem of the high-value range of the GSV. The saturation of the GSV
estimation value of the AdaStacking model based on NND-B2 was 5.4% higher than that
of the KNN-Maha model.
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Figure 5. Scatter plot and residual distribution of the predicted GSV results obtained by the RFR, CatBoost, KNN-Maha, and
KNN-Mink modeling algorithms under the fused images of GS-B2 (a1–b4) and GS-B3 (c1–d4) dataset scenarios. The blue
dotted line is the fitting trend of the sixth-order polynomial between the estimated value and the observed value of GSV.

Wang et al. [62] predicted the forest unit GSV based on the reference data provided
by the National Forestry Science Data Sharing Service Platform in China, and found that
the best unit GSV estimation accuracy of the single model was 83.81%, and the multi-
model estimation by the stacking ensemble was 84.55%. Although they used the Pearson
correlation coefficient and the least absolute shrinkage and selection operator (LASSO)
regression method to filter and select features, and employed the stacking ensemble method
to integrate various regression models, the GSV estimation performance was not ideal; in
particular, the stacking ensemble method was only 0.88% more efficient than the single
model. The possible reason for this is that their feature selection method does not consider
the heterogeneity between the feature variables and the combination effect relationship, and
does not use texture feature factors reflecting forest resource space distribution details. Most
importantly, the data source was not selected based on the spectral saturation of remote
sensing images, and there is no multispectral fusion processing on the image. Moreover,
Jiang et al. [41] estimated coniferous plantation GSV based on Sentinel-2 images using the
SRF method and RFR model in North China, and found that the GSV estimation RMSEr
minimum was 28%. Their accuracy was significantly lower than that of the AdaStacking
method proposed in this study, where the GSV estimation minimum RMSEr value reached
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15.03% and the maximum R2 value was 0.7871 with the AdaStacking model based on the
NND-B2 image.

Figure 6. Scatter plot and residual distribution of the predicted GSV results obtained by the RFR, CatBoost, KNN-Maha,
and KNN-Mink modeling algorithms under the fused images of NND-B2 (a1–b4) and NND-B3 (c1–d4), and the combined
(e1–f4) of GF-2 & Sentinel-2 dataset scenarios. The blue dotted line is the fitting trend of the sixth-order polynomial between
the estimated value and the observed value of GSV.
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Figure 7. Based on the fused and the combined GF-2 and Sentinel-2 dataset scenarios, the box plot of various evaluation
indexes of GSV estimation results obtained by RFR, CatBoost, KNN-Maha and KNN-Mink modeling algorithms, respectively.
(a–e) are the R2, RMSE, RMSEr, MAE, and Saturation, respectively.

Figure 8. Comparison of various evaluation indexes of GSV estimation results based on nine dataset scenarios obtained by
RFR, CatBoost, KNN-Maha and KNN-Mink modeling algorithms, respectively. (a–e) are the R2, RMSEr, RMSE, MAE, and
Saturation, respectively.
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Figure 9. Scatter plots of the observed and estimated GSV values (m3/ha) using the NND-B2 and GS-B3 datasets with
feature variables selected by the RFR-based method. (a1,a2), the GSV estimated from the fused image NND-B2 using the
AdaStacking model. (b1,b2), the GSV estimated from the fused image GS-B3 using the AdaStacking model.

4.4. Predicting and Mapping the GSV of Coniferous Plantation

We mapped the spatial GSV distribution of Chinese fir plantations in the study area,
using the AdaStacking model based on the fused images GS-B3 and NND-B2. Figure 10a,b
depict the estimated GSV distribution map obtained from the NND-B2 and GS-B3 datasets,
respectively. Figure 10a exhibits additional rose red and light green pixels and fewer dark
green and blue areas than Figure 10b, especially in the east and south of the study area.
Figure 9 shows that when the AdaStacking model is implemented, the overestimation
problem of GS-B3 is significantly more severe than that of NND-B2 in the low GSV range
of 150–200 m3/ha, exhibiting an overestimation problem even the GSV value exceeding
300 m3/ha. This could potentially be due to the working mechanism of the basic KNN-
Maha model used in the AdaStacking model integration and the complexity of the forest
ecosystem. The estimation accuracy of the KNN algorithm based on the distance measure-
ment mechanism is mainly determined by the number of nearest neighbors selected. When
the number is too large, the estimated result tends closer to the sample mean. When the
number of neighbors is too small, the estimation model is prone to overfitting. Typically, to
ensure the total estimation accuracy, the value of the number of neighbors (n_neighbors) is
not set very high. In the forest ecological environment with large spatial heterogeneity, due
to the influence of canopy shadow, slope, aspect, and sunlight angle, even forests with very
different GSV values may produce imagery with analogous spectral information. Therefore,
when the proportion of samples with a higher GSV value in the training sample set is larger
and the n_neighbors of the KNN model is smaller, overestimation is highly likely.
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Figure 10. (a) and (b) are the GSV distribution maps of Chinese fir Plantations in the study area estimated by AFCO-RFR
method and AdaStacking model from the fusion images NND-B2 and GS-B3, respectively.

4.5. Uncertainty Analysis of Forest GSV Estimation

The forest GSV estimation accuracy based on remote sensing technology is influ-
enced by various factors, including the optical remote sensing image prediction ability,
field measurement error, selection of predictive characteristic variables, generalization
ability of modeling methods, and differences in physiological characteristics between tree
species [24,25].

First, the differences in the spatial and spectral resolution of images taken by different
optical sensors will lead to differences in the perception and sensitivity of forest vegetation
spectral information. This study’s results show that Sentinel-2 images with multiple VRE
bands have significantly higher GSV estimation accuracy and saturation than Landsat
8 images with 30 m resolution, and that GF-2 with 1 m resolution has better GSV estimation
performance than ZY-3, thus elucidating the necessity of selecting a suitable remote sensing
image data source for accurate GSV estimation. Second, the errors in the measured data of
the forest survey sample plot will also have an impact on the GSV modeling accuracy. The
GSV sample data collection time span of this study was approximately one year. During
this period, the growth of the forest could also generate an error in the observed GSV
value. Third, the extraction and selection methods of predictive feature variables directly
affect the accuracy and saturation of the model. For example, when employing RFR-based,
KNN-Maha-based, and KNN-Mink-based methods to select feature variable combinations
of Sentinel-2 images, the estimated GSV saturation values were 370 m3/ha, 434 m3/ha,
and 418 m3/ha, respectively. Fourth, variations were observed in the model generalization
performance and estimation accuracy of the different modeling algorithms. For example,
the feature variables of RFR and CatBoost algorithms for modeling were identical; however,
in most data scenarios, especially for the NND-B2 dataset, their estimation performance
had certain variances, and the estimated RMSEr value obtained by the CatBoost algorithm
was 21.6% lower than that of the RFR algorithm. Finally, differences in canopy structure
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and spectral reflectance characteristics between the tree species led to differences in the
GSV models and the estimation results, causing classification errors of forest tree species to
affect the estimation accuracy of GSV. In summary, the study considers that the above five
factors will produce significant uncertainty in the forest GSV remote sensing estimation
results and in the estimation of other forest parameters.

5. Conclusions

In this study, GSV estimation performance of four optical remote sensing images with
different spatial resolutions and spectral resolutions for the Chinese fir plantations was
examined. Three feature combination optimization methods and four regression algorithms
were utilized to select features and to develop the GSV estimation models, obtain and assess
four multispectral fusion image datasets, and propose an AdaStacking ensemble algorithm
for modeling the GSV. The results indicated that: (1) the texture feature variables extracted
from multispectral imagery and DEM data were highly correlated with the observed GSV
samples. Texture features accounted for 81.82% of all the feature variables selected by the
three feature combination optimization methods, and (2) the obtained GSV estimation
minimum RMSE based on four image datasets (GF-2, ZY-3, Sentinel-2, and Landsat 8) were
22.16%, 22.44%, 20.06%, and 24.73%, respectively. The GSV estimation saturations of the
four image datasets were 409 m3/ha, 380 m3/ha, 434 m3/ha, and 400 m3/ha, respectively.
It was observed that Sentinel-2 had the highest estimation accuracy and saturation among
the four image datasets, followed by GF-2, and (3) the new image data obtained by fusing
multi-spectral images of different spectral and spatial resolutions effectively coupled the
advantages of the two images and significantly improved the GSV estimation performance.
Among the four fusion images obtained by GF-2 and Sentinel-2 using GS and NND
methods, the NND-B2 image exhibited the best estimation accuracy with an estimated
optimal RMSE that was 24.4% and 16.5% lower than GF-2 and Sentinel-2, respectively;
and (4) the AdaStacking algorithm proposed in this study adaptively selected the basic
regression model and realized the automatic optimization of model hyperparameters
through an iterative procedure, exhibiting better GSV estimation performance than a single
model. This study examined the data saturation issue of four optical remote sensing
image datasets in coniferous plantations and explored a novel approach to improve GSV
prediction performance. Our research provides some new insight into the application
of optical imagery and advanced remote Sensing algorithms for estimating the GSV of
coniferous plantations.
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Appendix A

Table A1. Selected feature variables from the GF-2, ZY-3, Sentinel-2 (S2), and Landsat 8 (L8) images dataset by three
feature combination optimization methods, including KNN-Mink-based, KNN-Maha-based, and RFR-based. W, Texture
window size (3 × 3, 5 × 5, 7 × 7, 9 × 9); Mean, GLCM-mean; Var, GLCM-variance; Hom, GLCM-homogeneity; Con,
GLCM-contrast; Dis, GLCM-dissimilarity; Ent, GLCM-entropy; Sec, GLCM-second moment; Cor, GLCM-correlation. For
example, GF2_Red_W3_Hom is expressed as a texture feature with the texture window size 3 × 3, homogeneity, that is
derived from the GF-2 Red band image.

Image Dataset Feature Selection Method Selected Feature Variables

GF-2
KNN-Mink-based GF2_Red_W3_Hom GF2_NIR_W7_Hom

GF2_Red_W5_Hom GF2_Red_W3_Sec
KNN-Maha-based GF2_Red_W3_Hom GF2_Blue_W3_Var

RFR-based GF2_Red_W3_Hom Elevation_W3_Ent Slope_W5_Sec

ZY-3
KNN-Mink-based

ZY3_Blue_W5_Mean ZY3_Blue_W9_Cor ZY3_
Red_W5_Cor

ZY3_ Blue_W3_Hom Elevation_W3_Sec ZY3_
Blue_W7_Mean

KNN-Maha-based
ZY3_NIR_W7_Var ZY3_ Blue_W5_Cor

ZY3_Green_W3_Con
ZY3_ Blue_W5_Sec ZY3_Green

RFR-based

ZY3_Red_W7_Mean ZY3_NIR_W7_Con
Elevation_W3_Sec

Slope_W3_Hom Slope_W3_Ent Slope_W3_Cor
Elevation_W7_Cor

Sentinel-2
KNN-Mink-based

S2_VRE3_W9_Sec Elevation_W3_Sec S2_RVI6_8
S2_NDVI9_10 S2_VRE3_W5_Sec S2_NDVI1_2

S2_RVI6_7

KNN-Maha-based

S2_Green_W5_Ent Elevation_W3_Ent S2_NDVI1_2
S2_DVI1_8

S2_Red_W5_Mean S2_DVI2_6 S2_RVI1_5
S2_NIR_W9_Var

Elevation_W5_Con Slope_W7_Cor

RFR-based Elevation_W3_Ent S2_Red_W5_Var Slope_W5_Cor
S2_DVI3_4

Landsat 8
KNN-Mink-based

L8_NDVI5_6_3 L8_Red_W3_Dis L8_SWIR2_W9_Dis
Slope_W3_Ent Slope_W3_Hom

Slope_W7_SecElevation_W5_Hom

KNN-Maha-based

L8_NDVI5_6_3 L8_ Red_W3_Con L8_Coast_W7_Mean
L8_Coast_W3_Cor L8_Red_W3_Ent L8_SWIR2_W7_

Mean
L8_SWIR2_W9_Con L8_SWIR1_W5_Sec

RFR-based L8_Red_W3_Cor L8_Blue_W5_Mean L8_
Blue_W3_Mean
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Figure A1. Scatter plot and residual distribution of the predicted GSV results obtained by the RFR, CatBoost, KNN-Maha,
and KNN-Mink modeling algorithms under the ZY-3 (a1–b4) and GF-2 (c1–d4) dataset scenarios. The blue dotted line is the
fitting trend of the sixth-order polynomial between the estimated value and the observed value of GSV.
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Figure A2. Scatter plot and residual distribution of the predicted GSV results obtained by the RFR, CatBoost, KNN-Maha,
and KNN-Mink modeling algorithms under the Sentinel-2 (a1–b4) and Landsat 8 (c1–d4) dataset scenarios. The blue dotted
line is the fitting trend of the sixth-order polynomial between the estimated value and the observed value of GSV.
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