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Abstract: Linear discriminant analysis (LDA) is a mathematically robust multivariate data analysis
approach that is sometimes used for surface oil slick signature classification. Our goal is to rank
the effectiveness of LDAs to differentiate oil spills from look-alike slicks. We explored multiple
combinations of (i) variables (size information, Meteorological-Oceanographic (metoc), geo-location
parameters) and (ii) data transformations (non-transformed, cube root, log10). Active and passive
satellite-based measurements of RADARSAT, QuikSCAT, AVHRR, SeaWiFS, and MODIS were used.
Results from two experiments are reported and discussed: (i) an investigation of 60 combinations
of several attributes subjected to the same data transformation and (ii) a survey of 54 other data
combinations of three selected variables subjected to different data transformations. In Experiment 1,
the best discrimination was reached using ten cube-transformed attributes: ~85% overall accuracy
using six pieces of size information, three metoc variables, and one geo-location parameter. In
Experiment 2, two combinations of three variables tied as the most effective: ~81% of overall accuracy
using area (log transformed), length-to-width ratio (log- or cube-transformed), and number of
feature parts (non-transformed). After verifying the classification accuracy of 114 algorithms by
comparing with expert interpretations, we concluded that applying different data transformations
and accounting for metoc and geo-location attributes optimizes the accuracies of binary classifiers
(oil spill vs. look-alike slicks) using the simple LDA technique.

Keywords: remote sensing; synthetic aperture radar (SAR); microwave sensors; optical sensors;
image processing; linear discriminant analysis (LDA); oil slicks; oil spills; oil seeps; look-alike features

1. Introduction

The sea-surface signature of mineral oil contamination (“oil slicks”) can be the result
of natural causes seeping out of the sea floor (“oil seeps”) or being spilled through human
intervention (“oil spills”). Petroleum pollution in both coastal and open-ocean waters is
of great ecological concern [1,2]. Oil-related incidents usually draw media attention and
public awareness, leading the oil and gas industry to enforce rigorous safety protocols and
invest in contingency plans, as well as causing political conflicts, economic issues, ecological
problems, and scientific concerns [3,4]. A recent catastrophic oil spillage, unprecedented in
the last decades, occurred at the end of 2019 when an unknown source caused a myriad of
massive oil slicks along Brazil’s shoreline [5].

Remote sensing can help the detection of severe events, including the recent Brazilian
case [6], or in the relatively frequent minor oil slicks observed at the ocean surface; satellite
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data can be useful in hindcast oil-slick models [7]. Satellite-based oil pollution monitoring
has been extensively employed in recent times, and among the space-borne sensors widely
used to study mineral oil floating on the surface of the ocean are the Advanced Very High-
Resolution Radiometer (AVHRR [8]), Sea-Viewing Wide Field-of-View Sensor (SeaWiFS [9]),
Moderate Resolution Imaging Spectroradiometer (MODIS [10]), and Synthetic Aperture
Radar (SAR [11]). Although SAR is considered the most well-suited tool for oil surveillance,
partly because of immunity to the surface being hidden by clouds and not needing solar
illumination to provide the signal, there is a crucial issue: the ambiguity of oil signatures in
the radar backscatter [12]. Other environmental phenomena also produce the same signal
as oil in SAR imagery—biogenic films, algal blooms, upwelling, low winds, rain cells, and
others [13]. These oil-free false targets are often called “look-alike slicks”.

The remote sensing community has long invested effort to improve understanding
of the oil signature in SAR measurements, a process often referred to as image segmenta-
tion [14,15]. This mostly consists of identifying smooth sea surface regions with reduced
radar backscattering signals, thus delineating the shape of potential oil features [16]. Fol-
lowing SAR image segmentation, another major task is in developing algorithms for the
discrimination between possible causes of the signals—oil slicks vs. look-alike slicks [17].
Some researchers have focused on obtaining information about automatic [18] or semi-
automatic approaches [19], while others rely on human interpretation [20] to identify
oil in SAR imagery. Most of these discrimination algorithms involve complex machine
learning techniques, e.g., the Mahalanobis classifier [21], artificial neural networks [22],
fuzzy logic [23], decision trees [24], among others; Al-Ruzouq et al. [25] reviews the most
frequently used machine learning techniques used for oil slick detection. These methods
also use many complicated attributes; Espedal and Johannessen [26] and Stathakis et al. [27]
provide an extensive compilation of frequently used attributes. Polarimetric SAR attributes
(scattering matrices) have also been investigated [28]. A series of review papers have
described the processes for the detection of marine oil slicks, e.g., [29–32].

Linear discriminant analysis (LDA) is a simple supervised classification technique
that can be applied to satellite measurements for classifying oil slicks [33]. Even though
LDA is a mathematically robust multivariate data analysis approach, it is seldom published
in the scientific literature for oil slick classification [33]. Mattson et al. [34] used LDAs to
classify six different infrared spectral patterns of 194 petroleum pollutant samples. The
main conclusion of their analysis was that LDAs did not reach a satisfactory classification
success rate; however, the LDA performance was positive after postulating it with decision
trees. Xu et al. [35] compared the use of penalized LDAs with six other techniques for the
classification of 198 targets (spills and look-alikes) identified in 93 satellite images. These
authors confirmed that LDAs were effective with 81% to 87% success rates depending on
the choice of accuracy metric; but three other methods were more effective. In an attempt
to use LDAs, among three other techniques for detecting oil spills, Liu et al. [36] explored
three different marine radar images to build a semi-automatic adaptive thresholding
detection method. Their LDAs were capable of flagging about 80% of the spills visually
identified by human interpretation, with LDAs being the second-best technique. Exploiting
267 targets (spills and look-alikes) observed in 198 SAR images, Cao et al. [37] compared
four techniques, including LDA, to train active learning methods to use fewer samples to
accomplish effective oil slick classification. They found LDAs as the third best technique
reducing the number of utilized samples. The conclusions presented in the few papers
using LDAs in classification problems are that there is room for improvement. In the
Methods section below, we give more details about LDAs.

A recent research topic is the use of LDAs to differentiate between oil categories:
oil seeps vs. oil spills [33]. An aspect of the seep-spill LDA investigation is that easily
identified variables (e.g., area and perimeter) resulted in successful classification rates
of ~70% [38–40]. The positive results of the seep-spill LDA studies, combined with the
simplicity and power of the linear analyses to classify oil slicks identified in satellite imagery,
form the justifications to retain this linear classification technique in the research reported
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here, where we study the classification between oil spills and look-alike slicks. While LDAs
were applied to remotely sensed features obtained with the Canadian RADARSAT-2 to
classify seeps and spills in Gulf of Mexico waters [41], here LDAs are applied to features
retrieved in images of the Canadian RADARSAT-1 to distinguish the presence of mineral
oil on the sea-surface from other petroleum-free features off the Brazilian coast [42].

Our overall objective here is to rank algorithms applied to many satellite-derived
parameters in various data combinations with simple data transformations, according
to their success in oil-slick classification. Two experiments to assess the classification
of oil spills from look-alike slicks were designed to fulfill our two objectives to rank
several combinations of (i) variables and (ii) data transformations using satellite-derived
measurements (microwave, infrared, and visible):

• Exclusion or inclusion of specific types of data (Experiment 1); and
• Data transformations applied to the attributes (Experiment 2).

Besides ranking the algorithms and to find the best binary classifiers, our research
also seeks to provide improved baseline information for future analyses to discriminate
sea-surface features identifiable in SAR imagery. The research reported here introduces
five innovations (referred to as “developments”):

1. Implementation of stringent knowledge-driven filters;
2. Use of simple morphological characteristics (or simply “size information”);
3. Exploration of several combinations of Meteorological-Oceanographic parameters

(collectively referred to as “metoc variables”);
4. Assess the value of the including geo-location parameters (“geo-loc”);
5. Application of different data transformations to the attributes in the same analysis.

Following the introduction and statement of objectives given in Section 1, information
about the study area and the satellite-based datasets are found in Section 2; the methods
are given in Section 3; results are presented in Section 4; important remarks are reported in
Section 5 in the discussion of the major findings; and the paper concludes with a summary
of our results and some recommendations for future work in Section 6.

2. Study Area and Data
2.1. Study Region

Our area of interest is the Campos Basin offshore of the southeast coast of Brazil
(Figure 1). The relevance of this region to the Brazilian economy is due to its numerous
offshore oil and gas exploration and production facilities—in 2020, 38 operational fields rep-
resented ~25% of the country’s fossil fuel supply with 989,949 barrels of oil equivalent [43].

Figure 1. Area of interest offshore from the southeastern Brazilian coast: Campos Basin. The dashed
square shows the region of the observed features: oil spills and look-alike slicks. Guanabara Bay (1),
Cabo Frio (2), Cabo de São Tomé (3), and isobaths (50 m, 100 m, 200 m, 1000 m, 2000 m, and 3000 m)
are shown. See also Section 2.1.
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The Campos Basin has very dynamic meteorological and oceanographic conditions
throughout the year: during the austral summer, constant northeasterly winds support up-
welling events that drop the surface water temperature and increase the primary biological
production, but in the winter months, strong southwesterly winds tend to roughen the sea
and primary biological production is reduced [44,45]. These phenomena are not confined
to the offshore region between the Cabo de São Tomé and Cabo Frio, near Guanabara Bay,
but that is where they are most frequently observed (Figure 1).

2.2. Database

A tabular remote sensing dataset, including microwave, infrared, and visible satellite
measurements, was exploited here. This dataset was first utilized by Bentz [46], and
later explored by Moutinho [47] and Carvalho et al. [42]. An important characteristic of
this dataset for our study is the classification of oil spills vs. look-alikes based on expert
interpretation. We use these interpretations as the basis for assessing the LDA accuracies.

The original dataset contained 779 individual polygons that were identified in 402 scenes
of the Canadian RADARSAT-1 taken between July of 2001 and June of 2003. These 8-bit,
HH polarized, C-band SAR images are from different beam modes [48,49]: ScanSAR
Narrow (incident angles: 20 to 46) and Extended Low (incident angles: 10 to 23). Their
data were re-sampled to ground resolutions of 100 m [46]. The borders of all observed
features with low-backscatter radar signal, i.e., oil and non-oil, were delimited using a
multiple resolution segmentation approach [50]. 358 spills are associated with oil samples
from identified exploration or production facilities and ship-spills; confirmed spills but
from unknown origins are referred to as orphan-spills. 421 look-alike slicks are sea-surface
expressions of five different environmental phenomena: biogenic films, algal blooms,
upwelling, low wind conditions, and convective rain cells.

Each polygon was described using 34 main descriptive characteristics divided into six
attribute types:

1. Two textural (i.e., contrast and entropy of the pixels within the features);
2. Four related to SAR-signatures (e.g., standard deviation and mean ratios between the

pixel values inside and outside of the targets);
3. Three scene-related (e.g., quantity of identified features pre-SAR image);
4. Nine pieces of size information (e.g., area and perimeter);
5. Four metoc variables—cloud cover information, wind speed (WND), sea-surface

temperature (SST), and chlorophyll-a concentration (CHL)); and
6. Twelve geo-loc parameters (e.g., bathymetry (BAT) and distance to coastline (CST)

calculated to the feature centroid).

The textural and SAR-signature attributes were calculated from uncalibrated SAR
measurements, i.e., digital numbers (DNs [51]). Metoc measurements were retrieved from
auxiliary environmental Earth-Observation System (EOS) satellites: WND from SeaWinds
scatterometer onboard the Quick Scatterometer (QuikSCAT [52]), SST from AVHRR on
the National Oceanic and Atmospheric Administration (NOAA) satellites [53,54], and
CHL from SeaWiFS on the OrbView-2 satellite [55] or MODIS on the Terra satellite [56].
Additionally, ancillary WND, SST, and CHL maps, derived from measurements from these
sensors, were also utilized by the experts to assist their binary classifications.

All algorithms evaluated here use part of the data records and some of the attributes
contained in the “original dataset” [46]. The subset of the database analyzed here is defined
after the discussion of our research strategy and data mining.

3. Methods

A pair of methodological steps was performed: research strategy and data mining
exercises (Figure 2). These evolved from prior analyses using LDAs to: (i) differentiate oil
spills from oil seeps in RADARSAT-2 images off the Gulf of Mexico coast (Campeche Bay,
Mexico) proposed by Carvalho [33] and further developed by Carvalho et al. [38–40]; and
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(ii) distinguish oil spills from look-alike slicks observed in RADARSAT-1 scenes off the
coast of Brazil (Campos Basin) [42].

Figure 2. Methodological steps: research strategy and data mining exercises. Experiment 1 and
Experiment 2 are aligned with our objectives.

We explored many data combinations: 60 combinations of variables (Experiment 1)
and 54 combinations of data transformations (Experiment 2). In practice, each combina-
tion was considered as an individual “LDA algorithm”. The data combinations in our
algorithms are different to those explored in earlier studies, but are similar in number of
combinations in three other papers, i.e., 32 [39] + 61 [40] + 39 [42] = 132. Of the combina-
tions analyzed here (60 + 54 = 114), only nine have been previously investigated, but were
modified as discussed below.

3.1. Research Strategy

This section has three parts describing the data filtering, the removal or inclusion of
data (Experiment 1), and the consideration of various data transformations in the same
analysis (Experiment 2).

3.1.1. Data-Filtering Scheme

The first development is that we removed samples based on the likelihood of them
being outliers. Because of a common issue faced in data classification problems, i.e., to
define a good collection of instances with representative characteristics of each class [57,58],
the proposed filtering was based on local, historical, and empirical knowledge. As a result,
we designed quality control tests to remove samples that include values of any variables
that are unlikely to contribute to the oil spill vs. look-alike classification. The number of
instances in the experiments was determined by this filtering.

3.1.2. Data Information: Removal or Inclusion

This section presents the different ways the attributes were combined to verify the
consequences of removal or inclusion of data. These actions assisted in the ranking of the
different combinations of variables, which is our first objective.

Of the six attribute types in the original dataset, three were not considered: textural,
SAR-signature, and scene-related information (Section 2.2). In the original dataset, texture
and SAR-signature had not been converted to backscatter coefficients (sigma-, beta-, or
gamma-naught [59]) making it impossible to compare time series of images, but instead,
they had been registered in uncalibrated DN values, therefore permitting only relative
comparisons within individual scenes. Scene parameters (i.e., number of identified features
per scene, sum of the areas of all features within each SAR image, etc.) cannot contribute to
a classification scheme, as these are functions of the SAR swath width and not of the slicks.
We thus utilized variables from the remaining three attribute types: size information, metoc
variables, and geo-loc parameters (Section 2.2). Within these attribute types, we explored
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three subdivisions: “Size Plus Metoc Set” (Figure 3A: blue panel); “Size Set” (Figure 3B:
green panel); and “Metoc Set” (Figure 3C: gray panel). These subdivisions, which were
analyzed in conjunction with geo-loc parameters (white circles in Figure 3), are further
discussed below.

Figure 3. Data combinations explored to evaluate the linear discriminant analysis (LDA) algo-
rithms during the data-information experiment fulfilling our first objective, i.e., determine the
best combination of variables for linearly discriminating oil spills from look-alike slicks. Color-
coded circles represent attribute types. Yellow: size information—area, compact index (CMP:
(4.π.area)/(perimeter2)), aspect ratio (length-to-width ratio: LtoW), perimeter-to-area ratio (PtoA),
fractal index (FRA: 2.ln(perimeter/4)/ln(area)), and number of parts of each feature (NUM). Black:
Meteorological-Oceanographic (metoc) variables—wind speed (WND), sea-surface temperature
(SST), and chlorophyll-a concentration (CHL). White: geo-location (geo-loc) parameters—bathymetry
(BAT) and distance to coastline (CST). Colored panels correspond to attribute-type subdivisions:
(A) blue (“Size Plus Metoc Set”—9 data combinations); (B) green (“Size Set”—3 data combinations);
and (C) gray (“Metoc Set”—8 data combinations). Each of these 20 combinations had all variables
subjected to the same data transformation (i.e., non-transformed, cube root, or log10), thus forming
60 combinations. Combinations previously explored in Carvalho et al. [42] are indicated (#). See also
Section 3.1.2.
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3.1.2.1. Size Information

The second development here is the independent use of simple size information. Be-
sides the nine geometry, shape, and dimensions characteristics—area, perimeter, shape in-
dex (SHP = (perimeter/4).(area1/2)), compact index (CMP = (4.π.area)/(perimeter2)), asymme-
try (ASY = 1 − (ratio between feature’s length and width)), aspect ratio (LtoW = length/width),
density (DEN), curvature (CUR), and number of parts of each feature (NUM)—we also
explored two other morphologic variables: perimeter-to-area ratio (PtoA), and fractal
index (FRA = 2.ln(perimeter/4)/ln(area)). However, several of these eleven attributes are
correlated: area with perimeter, CMP with SHP and DEN, LtoW with ASY, and PtoA with
CUR [38–40,42]. The FRA and NUM variables did not correlate with any other attribute.
The choice of uncorrelated attributes is given below (Section 3.2.2). Because the five corre-
lated characteristics (i.e., perimeter, SHP, DEN, ASY, and CUR) led to no LDA classification
improvements [42], they are not pursued here. Thus, we use the six uncorrelated variables
to define the Size Set; in Figure 3 they are represented by yellow circles:

• area;
• CMP;
• LtoW;
• PtoA;
• FRA; and
• NUM.

3.1.2.2. Metoc Variables

Of the four metoc variables (clouds, WND, SST, and CHL), only cloud cover infor-
mation was discretely registered as the absence (0) or presence (1) of clouds within the
polygons, and is not explored further here due to its binary character. The third develop-
ment explored three different combinations of metoc variables to quantify their influence
(individual and combined) on the algorithm’s accuracy. In Figure 3, black circles correspond
to the three combinations defining the Metoc Set:

• WND, SST, and CHL;
• WND; and
• SST and CHL.

3.1.2.3. Geo-Location Parameters

The fourth development is the use of geo-loc parameters. Because most geo-location
attributes are site-specific (e.g., distance to petroleum platforms or to underwater pipelines)
we only considered two of them:

• bathymetry (BAT); and
• distance to coastline (CST).

In Figure 3, these parameters are shown by white circles. One should note that even
though they are considered independently, they are always analyzed together with size
information and/or metoc variables.

3.1.2.4. Data Transformations

The application of data transformations to the attributes prior to using them in the
machine learning methods is, in principle, capable of improving algorithm classification
accuracy [35]. Carvalho et al. [39] tested the LDA performance with data from eight
non-linear transformations, and based on their results, we analyzed the data without any
transformation (i.e., “non-transformed set”) and with two data transformations:

• cube root; and
• logarithm base 10 (log10).

It should be noted that the FRA variable contains negative values and cannot be
subjected to logarithmic transformation.
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3.1.2.5. Data Combinations

Eleven variables were carried forward in our study: six pieces of size informa-
tion (Section 3.1.2.1), three metoc variables (Section 3.1.2.2), and two geo-loc parameters
(Section 3.1.2.3). These resulted in nine data combinations of the Size Plus Metoc Set
subdivision with and without geo-loc (Figure 3A), three Size Set combinations with and
without geo-loc (Figure 3B), and eight Metoc Set combinations with and without geo-loc
(Figure 3C). The three attribute-type subdivisions when analyzed with or without geo-
loc parameters formed 20 different data combinations. Each of these combinations was
analyzed three times—in which all variables were subjected to the same data transfor-
mation: non-transformed, cube root, or log10 (Section 3.1.2.4). In the first experiment
(denoted as “Data-Information Experiment”) we compared the performance of as many as
60 LDAs (20 × 3). This collection of LDAs was implemented to reach our first objective
(Experiment 1) and differ from those proposed in the section to follow to attain our second
objective (Experiment 2).

Three of the 39 combinations investigated by Carvalho et al. [42], indicated in Figure 3
by the # symbol, are also evaluated here: (i) all-size information plus all-metoc variables;
(ii) all-size information; and (iii) all-metoc variables. However, Carvalho et al. [42] did
not include any geo-location data, but all variables were also subjected to the same data
transformations as those used in this experiment. This resulted in nine combinations (3 × 3)
in common with their study, but here, these combinations are treated differently due to
two of the five developments: the elimination of some samples and the analysis including
geo-loc parameters.

3.1.3. Combined Use of Several Data Transformations in the Same Analysis

The fifth development of this research in relation to any other published binary classi-
fication studies (to our knowledge), is that we verified the influence of applying different
data transformations to the attributes in the same analysis, i.e., our second objective. Three
selected variables were each subjected to different transformations. Table 1 depicts the
27 possible combinations and its pool of 27 different LDAs—3 variables vs. 3 transforma-
tions. LDAs were implemented in two distinct assemblages of variables:

1. “Metoc Assemblage”: WND, SST, and CHL; and
2. “Size Assemblage”: area, LtoW, and NUM.

Table 1. The 27 possible data combinations of three variables (Var.) each of which are subjected to
three data transformations in the same analysis: none, cube root, or log10. Two distinct assemblages
were used in the “Data-Transformation Experiment” to address the second objective—establish the
best combination of data transformation for the discrimination of oil spills from look-alike slicks.
Baseline combinations with the same transformation are given in the first row. “Metoc Assemblage”:
wind speed (WND), sea-surface temperature (SST), and chlorophyll-a concentration (CHL). “Size
Assemblage”: area, aspect ratio (length-to-width ratio: LtoW), and number of parts of each feature
(NUM)—see also Figure 4 in Carvalho et al. [42]. See also Section 3.1.3.

Var. 1 Var. 2 Var. 3 Var. 1 Var. 2 Var. 3 Var. 1 Var. 2 Var. 3

None None None Cube Cube Cube log10 log10 log10

None None Cube Cube Cube None log10 log10 None
None Cube Cube Cube None None log10 None None
None Cube None Cube None Cube log10 None log10

None None log10 Cube Cube log10 log10 log10 Cube
None log10 log10 Cube log10 log10 log10 Cube Cube
None log10 None Cube log10 Cube log10 Cube log10

None Cube log10 Cube None log10 log10 None Cube
None log10 Cube Cube log10 None log10 Cube None
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These two assemblages resulted in another series of 54 LDAs (27 × 2) that are used in
the second experiment, referred to as the “Data-Transformation Experiment”. Regarding
the “Assemblage” nomenclature, the reader should not get confused with the terms using
“Set” previously defined in Section 3.1.2: Size Set and Metoc Set.

While the Size Assemblage was chosen based on inspection of the dendrograms iden-
tifying uncorrelated variables (see Figure 4 in Carvalho et al. [42]), the Metoc Assemblage
verifies if we can exclude the use of SAR data and solely use measurements from environ-
mental EOSs sensors. One should note that even though the Metoc Assemblage has the
same metoc variables as those from the first Metoc Set, the attributes of this assemblage are
subjected to different transformations instead of the same transformation as in the set.

3.2. Data Mining Exercises

This section has three parts describing the selection of attributes, the LDA algorithms,
and the evaluation of the algorithm accuracy. An open-access software package was used:
Paleontological Statistics (PAST [60]).

3.2.1. Attribute-Selection Approach

Rooted tree dendrograms (Unweighted Pair Group Method with Arithmetic mean:
UPGMA [61]) were used to assess the level of correlation among variables. The threshold for
uncorrelated attributes using dendrograms is user-defined, and two of the most common
approaches have been separately applied here:

• In Experiment 1, an across-dendrogram numeric threshold (phenon line [62]) was
used to identify groups of correlated variables from which one attribute is selected per
group. This used a fixed Pearson’s r correlation coefficient (0.3 > r > −0.3 [63]); and

• In Experiment 2, a visual identification of correlated groups of variables, from which
one attribute is manually selected for each group.

3.2.2. Linear Discriminant Analysis (LDA)

In addition to being used to reduce the dimensionality of data classification analyses,
LDAs can be used as a classification technique [64]. In our analyses we explore conventional
LDAs, but many other LDA variants exist: global-local LDA [65], probabilistic LDA [66],
dual-space LDA [67], null-space LDA [68], penalized LDA [69], among others. While
Tharwat et al. [70] and Legendre and Legendre [71] discuss these linear analyses in a
wider context, a summary of the main benefits and weaknesses of conventional LDAs is
given below:

• Advantages: LDA is a supervised classification method that uses the observed val-
ues (attribute magnitudes) of the data (samples) to determine the location of a spe-
cific boundary (a linear discriminant axis) between each group (in our case, oil and
look-alikes). The LDA general concept is to use the data according to two crite-
ria: (i) maximization of the distance between the average value of each group; and
(ii) minimization of the scatter within each group. The ratio of these two criteria,
mean squared differences to sum of the variances, is projected onto a line (the linear
discriminant axis), providing the ability to linearly separate the groups of samples.
This projected lower-dimensional space inherently preserves the group discrimina-
tory information, if one exists. A covariance matrix is calculated for each group
along with a within-group scatter matrix to create what is called a discriminant func-
tion [72]. Numerically, this function, which corresponds to the dependent variable
(DF(X)), is the sum of the product of the independent variables’ values (Xn) with
a calculated independent variables’ weight (Wn); a constant offset may apply (C):
DF(X) = (X1W1 + X2W2 + . . . + XnWn) − C [73].

• Disadvantages: LDA outcomes tend to support good classification decisions, but there
are limitations. The number of variables must not exceed the number of samples [74].
LDAs are restricted to linearly separable groups. In addition, the variables used
should have as small a correlation as possible [75]. This was accomplished through
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the pre-selection of attributes. Another aspect to consider is that the dataset must
include a binary labeling that can be used to assess the LDA performance [76]: the
accuracies of our supervised learning method were verified against the baseline of the
experts’ classifications.

3.2.3. Classification-Accuracy Assessment

The outcomes of the LDA algorithms (“predicted classes”) were assessed by com-
parison with the baseline interpretation of experts (“true classes”) with all samples used
as the training-set. We choose to work with five straightforward evaluators obtained
from 2-by-2 confusion matrices [77] (Figure 4: Panel 1). Because the standalone use of
the common performance metric, i.e., overall accuracy (ratio of all correct decisions to
all possible outcomes), can be misleading, four additional metrics were used: sensitivity,
specificity, positive- and negative-predictive values [78]. Different nomenclatures are found
in the literature for these metrics, for instance: “recall” rather than sensitivity, “precision”
instead of positive-predictive value, etc. [79]. These four performance metrics play equally
important roles alongside the overall accuracy in measuring the success of binary classi-
fication algorithms. While sensitivity and specificity indicate the amount of previously
known features correctly identified by the LDAs (the predicted classes), the positive- and
negative-predictive values report how many of the features predicted by the LDA match
the a priori knowledge (the true classes). Figure 4 illustrates the domains of these metrics:

• Panel 1: Diagonal analysis produces the overall accuracy;
• Panel 2: Horizontal analysis provides the sensitivities and specificities (the producer’s

accuracy), and their complements (false negatives and false positives: Type I error or
omission error); and

• Panel 3: Vertical analysis gives the positive- and negative-predictive values (the user’s
accuracy) and their counterparts (inverse of the positive- and inverse of negative-
predictive values: Type II error or commission error).

Figure 4. Confusion matrix, i.e., 2-by-2 table (panel 1): “Predicted classes”: algorithm outcome.
“True classes”: expert interpretation. (A) Correctly classified oil spills. (B) Misidentified oil spills.
(C) Misidentified look-alike slicks. (D) Correctly classified look-alike slicks. Number of correctly
classified features: A + D. A priori known oil spills (A + B) and look-alikes (C + D)—these are fixed
values established in the data-filtering scheme. Numbers of classified oil spills (A + C) and look-
alikes (B + D) differ for each algorithm. Performance metrics: overall accuracy (panel 1), sensitivity
and specificity (panel 2: horizontal analysis), and positive- and negative-predictive values (panel 3:
vertical analysis). Compact confusion matrix form (panel 4) used to facilitate the comparison of the
many explored classifiers: 114—i.e., 60 (Figure 3) plus 54 (Table 1). See also Section 3.2.3.
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The classification-accuracy assessment using these three 2-by-2 matrix domains (diag-
onal, horizontal, and vertical) differs from other published investigations exploring oil-slick
LDA classifiers, which do not report their accuracies in such a succinct manner as we do
here. Some papers ignore the vertical-analysis metrics (e.g., [35]) or even both, horizontal
and vertical (e.g., [34,36]).

Algorithms were deemed “void” if an evaluator was below 60%. Another reason to
void the algorithms was due to unbalanced classification rates, i.e., algorithms correctly
identifying 30% or more of one class than another; see Section 4.1 for the balance sampling
percentages of the database analyzed here.

Because of the generation of multiple 2-by-2-tables (60 + 54 = 114), the five performance
metrics are given in a compact confusion matrix form. This compact structure is shown
in Figure 4 (Panel 4) and displays: the five metrics; the number of correctly identified oil
spills and look-alikes (A and D, respectively); and the quantity of all correct classifications
(A + D). This simple configuration enables us to construct a single table accounting for
all 60 combinations (Experiment 1), and two other tables with 27 combinations each
(Experiment 2).

4. Results

This section follows the research strategy (Figure 2). Throughout this section we list
15 important “remarks” that are revisited in the discussion section.

4.1. Data-Filtering Scheme

In the first part of our research (Figure 2) we indicated the number of instances
utilized in the 114 LDA algorithms. The outcomes of the knowledge-driven filters are
summarized in Table 2. Ten samples (eight spills and two look-alikes) were identified as
having transcription errors, thus removing 1.3% of the original dataset (Table 2). Apart
from these, only the WND and SST variables presented unexpected values, and their
removal is summarized below:

Table 2. Summary of the data-filtering scheme showing the number of eliminated records. Wind speed (WND) filter:
<3 m/s and >6 m/s. Sea surface temperature (SST) filter: <11 ◦C. Transcription errors (typo) filter. The statistics of all
removed samples, of the original dataset instances [46], and of the analyzed database are also given. See also Section 4.1.

Class/Category Orginal
Dataset

WND Filter SST
Filter

Typo
Filter

All
Filters

Analyzed
Database<3 m/s >6 m/s Both

Formation Tests 65 (8.3%) 0 −10 −10 0 −3 −13 52 (9.3%)
Accidental Discards 149 (19.1%) −2 −19 −21 0 −3 −24 125 (22.3%)

Ship-Spills 76 (9.9%) −1 −13 −14 0 0 −14 62 (11.1%)
Orphan-Spills 68 (8.7%) −4 −20 −24 0 −2 −26 42 (7.5%)

Oil Spills 358 (46.0%) −7 −62 −69 0 −8 −77 281 (50.2%)
Biogenic Films 203 (26.1%) −40 −1 −41 −4 0 −45 158 (28.2%)
Algal Blooms 61 (7.8%) −18 0 −18 0 0 −18 43 (7.7%)

Upwelling 27 (3.5%) −2 −5 −7 0 −1 −8 19 (3.4%)
Low Wind 51 (6.5%) −38 0 −38 0 −1 −39 12 (2.1%)
Rain Cells 79 (10.1%) 0 −26 −26 −6 0 −32 47 (8.4%)

Slick-Alikes 421 (54.0%) −98 −32 −130 −10 −2 −142 279 (49.8%)

Class/Category Orginal
Dataset

WND filter SST
filter

Typo
filter

All
Filters

Analyzed
Database<3 m/s >6 m/s Both

All Features
779 −105 −94 −199 −10 −10 −219 560

100.0% −13.5% −12.0% −25.5% −1.3% −1.3% −28.1% 71.9%

• WND Filter: The SAR-detection ability to identify sea-surface features relies on re-
duced radar backscatter from the sea-surface, which is dependent on the local wind
field [80]. However, the wind limits (lower and upper) to identify sea-surface features
in SAR images are not agreed upon by the remote sensing community [81–83]. Weak



Remote Sens. 2021, 13, 3466 12 of 30

wind conditions (<3 m/s) may prevent correct classification of features as the ambient
water around them is also smooth [81]. Even though some authors have pointed
out that oil slicks can be observed in ~10 m/s or higher winds (e.g., [82]), others
have found the upper wind limit is ~6 m/s (e.g., [83]). To eliminate unwanted wind
influence on our classifiers, samples having wind speed <3 m/s and >6 m/s were
not considered. WND filtering removed 199 features (69 spills and 130 look-alikes)
that represent 25.5% of the original dataset (Table 2). A primary concern about the
WND variable is the ground resolution disparity between the QuikSCAT wind data
and the SAR pixel: ~25 km vs. ~100 m. Although we used the wind information
already included in the original dataset [46], finer wind measurements could produce
different outcomes. The reader is referred to Remark 5 below, where we discuss the
WND variable impact on the LDA classification decision.

• SST Filter: The upwelled cold water that usually surfaces in the Campos Basin region
comes from the South Atlantic Central Water and has temperatures between 6 ◦C and
20 ◦C [84]. However, an analysis of all AVHRR images from the year 2001 in this
basin, 176 cloud-free scenes, did not indicate SSTs <11 ◦C even in the coldest core of
the upwelling between Cabo de São Tomé and Cabo Frio [45]. Thus, all samples with
SSTs <11 ◦C were removed prior to the analysis. This SST filtering did not remove
any spill samples but eliminated 10 look-alike slicks amounting to 1.3% of the original
dataset (Table 2). The ground resolution discrepancy between the AVHRR SSTs and
SAR measurements is not as marked as that with the wind, but may also be a matter to
bear in mind: ~1 km vs. ~100 m. As this filter only removed 10 look-alikes (Table 2), it
is most likely that it did not exert as much influence as the WND filter on the analysis.
Even though our choice of 11 ◦C was based on an earlier analysis, other SST thresholds
could influence the LDA outcomes.

These filters removed 21.5% of the oil spills (77) and 33.7% of the look-alike slicks
(142) from our analyses (Table 2), resulting in ~28% fewer instances (219) being analyzed in
relation to the 779 samples in the original dataset [46]. Consequently, the database analyzed
here has 560 records. Since all LDAs were evaluated using the same collection of samples,
the discretization resolution of our analyses is 0.18%, i.e., one misclassified feature (1/560).

While the original dataset had a somewhat unbalanced sampling percentage, 46%
(358 spills) and 54% (421 look-alikes), the filtered database used here has fortuitously
a well-balanced sampling: 50.2% (281 spills) and 49.8% (279 look-alikes); Table 2. This
balance increased the chances of reaching good predictability levels among the five perfor-
mance metrics, thus enabling a more meaningful comparison of the performance of the
LDA algorithms.

The data-filtering scheme determined the most effective combination of samples by
considering the magnitudes of all selected variables, thus adequately accomplishing its
goal of establishing a collection of samples using a conservative approach to reduce the
chances of incorrect classification in the two experiments presented below. Other factors
influencing the delineation of oil-slick features in the SAR signal include oil type (light or
heavy oil), slick age (time in the sea-surface since its release), acquisition geometry (incident
angle), among others [85,86]. However, these were not stored as separate attributes in the
dataset to allow their implementation as filters.

4.2. Experiment 1: Data Information

Sixty data combinations were analyzed in the second part of our research (Figure 2).
The UPGMA dendrograms revealed that the bulk of these combinations had variables
correlated at levels practically within the similarity threshold of 0.3 > r > −0.3. The LDA
outcomes are presented in Table 3A,B.
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Table 3. Classification accuracy from testing 60 LDA algorithms to determine the best combination of variables—first
objective, i.e., “Data-Information Experiment”. Inclusive hierarchy runs from 1 to 60 and is divided in three color-coded
blocks: (A) Size Plus Metoc Set (blue: 1–29) (B) Size Set (green: 25–36) and Metoc Set (gray: 37–60), all of which were
analyzed with or without at least one geo-location parameter and were subjected to the same data transformation (Transf.):
none, cube root, or log10. A ranking within attribute-type subdivisions is also provided between parentheses: 1–27 (Size
Plus Metoc Set: blue), 1–9 (Size Set: green), and 1–24 (Metoc Set: gray). Blocks match the three attribute-type subdivisions
(Figure 3). Size information: area, compact index (CMP: (4.π.area)/(perimeter2)), aspect ratio (length-to-width ratio: LtoW),
perimeter-to-area ratio (PtoA), fractal index (FRA: 2.ln(perimeter/4)/ln(area)), and number of parts of each feature (NUM).
Meteorological-Oceanographic (metoc) variables: wind speed (WND), sea surface temperature (SST), and chlorophyll-a
concentration (CHL). Geo-location (geo-loc) parameters: bathymetry (BAT) and distance to coastline (CST). Variables not
used are indicated with a dot. # indicates combinations previously investigated [42]. $ indicates hierarchies out of order.
* indicates unbalanced identification rate: algorithms correctly identifying 30% or more oil spills than look-alike slicks.
! indicates void algorithms: at least one performance metric below 60%, i.e., specificity. For the interpretation of thick table
lines see Section 4.2. Detailed statistical information is found in Figure 4.

(A)

Hierarchy (Rank) Size Metoc Geo-Loc Transf. Oil Spills Slick-Alikes All Features

1 (1) Size WND SST CHL BAT . Cube 251
89.3%

223
79.9%

474 84.6%
81.8% 88.1%

2 (2) Size WND SST CHL BAT . log10 251
89.3%

221
79.2%

472 84.3%
81.2% 88.0%

3 (3) Size WND SST CHL . CST Cube 250
89.0%

222
79.6%

472 84.3%
81.4% 87.7%

4 (4) Size WND SST CHL . CST None 245
87.2%

226
81.0%

471 84.1%
82.2% 86.3%

5 (5) Size WND SST CHL . CST log10 250
89.0%

221
79.2%

471 84.1%
81.2% 87.7%

# 6 (6) Size WND SST CHL . . None 244
86.8%

226
81.0%

470 83.9%
82.2% 85.9%

# 7 (7) Size WND SST CHL . . Cube 250
89.0%

220
78.9%

470 83.9%
80.9% 87.6%

8 (8) Size WND . . BAT . log10 247
87.9%

223
79.9%

470 83.9%
81.5% 86.8%

9 (9) Size WND SST CHL BAT . None 243
86.5%

226
81.0%

469 83.8%
82.1% 85.6%

Hierarchy (Rank) Size Metoc Geo-Loc Transf. Oil Spills Slick-Alikes All Features

10 (10) Size WND . . . CST Cube 247
87.9%

220
78.9%

467 83.4%
80.7% 86.6%

11 (11) Size WND . . . CST None 239
85.1%

227
81.4%

466 83.2%
82.1% 84.4%

12 (12) Size WND . . . CST log10 247
87.9%

219
78.5%

466 83.2%
80.5% 86.6%

13 (13) Size WND . . . . Cube 242
86.1%

223
79.9%

465 83.0%
81.2% 85.1%

14 (14) Size WND . . BAT . Cube 243
86.5%

222
79.6%

465 83.0%
81.0% 85.4%

15 (15) Size . SST CHL BAT . Cube 250
89.0%

215
77.1%

465 83.0%
79.6% 87.4%

16 (16) Size WND . . . . None 237
84.3%

226
81.0%

463 82.7%
81.7% 83.7%

17 (17) Size WND . . BAT . None 237
84.3%

226
81.0%

463 82.7%
81.7% 83.7%
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Table 3. Cont.

Hierarchy (Rank) Size Metoc Geo-Loc Transf. Oil Spills Slick-Alikes All Features

# 18 (18) Size WND SST CHL . . log10 244
86.8%

218
78.1%

462 82.5%
80.0% 85.5%

19 (19) Size . SST CHL . . None 246
87.5%

216
77.4%

462 82.5%
79.6% 86.1%

20 (20) Size . SST CHL . CST Cube 250
89.0%

212
76.0%

462 82.5%
78.9% 87.2%

21 (21) Size . SST CHL . . log10 246
87.5%

214
76.7%

460 82.1%
79.1% 85.9%

22 (22) Size . SST CHL . . Cube 245
87.2%

213
76.3%

458 81.8%
78.8% 85.5%

23 (23) Size . SST CHL . CST None 244
86.8%

214
76.7%

458 81.8%
79.0% 85.3%

24 (24) Size . SST CHL BAT . None 243
86.5%

215
77.1%

458 81.8%
79.2% 85.0%

$ 26 (25) Size . SST CHL BAT . log10 247
87.9%

209
74.9%

456 81.4%
77.9% 86.0%

$ 27 (26) Size WND . . . . log10 240
85.4%

216
77.4%

456 81.4%
79.2% 84.0%

$ 29 (27) Size . SST CHL . CST log10 248
88.3%

206
73.8%

454 81.1%
77.3% 86.2%

(B)

Hierarchy (Rank) Size Metoc Geo-Loc Transf. Oil Spills Slick-Alikes All Features

$ 25 (1) Size . . . BAT . Cube 245
87.2%

211
75.6%

456 81.4%
78.3% 85.4%

$ 28 (2) Size . . . BAT . log10 245
87.2%

210
75.3%

455 81.3%
78.0% 85.4%

30 (3) Size . . . . CST Cube 248
88.3%

205
73.5%

453 80.9%
77.0% 86.1%

# 31 (4) Size . . . . . log10 237
84.3%

215
77.1%

452 80.7%
78.7% 83.0%

32 (5) Size . . . . CST log10 245
87.2%

205
73.5%

450 80.4%
76.8% 85.1%

Hierarchy (Rank) Size Metoc Geo-Loc Transf. Oil Spills Slick-Alikes All Features

33 (6) Size . . . BAT . None 240
85.4%

207
74.2%

447 79.8%
76.9% 83.5%

# 34 (7) Size . . . . . None 233
82.9%

213
76.3%

446 79.6%
77.9% 81.6%

# 35 (8) Size . . . . . Cube 233
82.9%

213
76.3%

446 79.6%
77.9% 81.6%

36 (9) Size . . . . CST None 241
85.8%

203
72.8%

444 79.3%
76.0% 83.5%

Hierarchy (Rank) Size Metoc Geo-Loc Transf. Oil Spills Slick-Alikes All Features

37 (1) . WND SST CHL BAT . log10 220
78.3%

199
71.3%

419 74.8%
73.3% 76.5%

38 (2) . WND SST CHL . CST log10 219
77.9%

199
71.3%

418 74.6%
73.2% 76.2%

# 39 (3) . WND SST CHL . . Cube 217
77.2%

200
71.7%

417 74.5%
73.3% 75.8%
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Table 3. Cont.

Hierarchy (Rank) Size Metoc Geo-Loc Transf. Oil Spills Slick-Alikes All Features

40 (4) . WND SST CHL . CST Cube 217
77.2%

200
71.7%

417 74.5%
73.3% 75.8%

# 41 (5) . WND SST CHL . . log10 217
77.2%

199
71.3%

416 74.3%
73.1% 75.7%

42 (6) . WND SST CHL BAT . Cube 216
76.9%

198
71.0%

414 73.9%
72.7% 75.3%

Hierarchy (Rank) Size Metoc Geo-Loc Transf. Oil Spills Slick-Alikes All Features

43 (7) . WND . . . CST Cube 215
76.5%

198
71.0%

413 73.8%
72.6% 75.0%

44 (8) . WND SST CHL BAT . None 209
74.4%

204
73.1%

413 73.8%
73.6% 73.9%

45 (9) . WND . . BAT . log10 214
76.2%

198
71.0%

412 73.6%
72.5% 74.7%

46 (10) . WND SST CHL . CST None 210
74.7%

202
72.4%

412 73.6%
73.2% 74.0%

# 47 (11) . WND SST CHL . . None 208
74.0%

203
72.8%

411 73.4%
73.2% 73.6%

48 (12) . WND . . . CST log10 217
77.2%

193
69.2%

410 73.2%
71.6% 75.1%

49 (13) . WND . . BAT . Cube 211
75.1%

197
70.6%

408 72.9%
72.0% 73.8%

50 (14) . WND . . . CST None 208
74.0%

198
71.0%

406 72.5%
72.0% 73.1%

51 (15) . WND . . BAT . None 204
72.6%

197
70.6%

401 71.6%
71.3% 71.9%

Hierarchy (Rank) Size Metoc Geo-Loc Transf. Oil Spills Slick-Alikes All Features

*! 52 (16) . . SST CHL BAT . Cube 223
79.4%

152
54.5%

375 67.0%
63.7% 72.4%

*! 53 (17) . . SST CHL . . Cube 221
78.6%

153
54.8%

374 66.8%
63.7% 71.8%

*! 54 (18) . . SST CHL BAT . log10 209
74.4%

162
58.1%

371 66.3%
64.1% 69.2%

*! 55 (19) . . SST CHL . CST log10 210
74.7%

159
57.0%

369 65.9%
63.6% 69.1%

*! 56 (20) . . SST CHL . CST Cube 216
76.9%

153
54.8%

369 65.9%
63.2% 70.2%

*! 57 (21) . . SST CHL . . None 212
75.4%

151
54.1%

363 64.8%
62.4% 68.6%

*! 58 (22) . . SST CHL . CST None 211
75.1%

148
53.0%

359 64.1%
61.7% 67.9%

*! 59 (23) . . SST CHL . . log10 197
70.1%

158
56.6%

355 63.4%
61.9% 65.3%

*! 60 (24) . . SST CHL BAT . None 206
73.3%

145
52.0%

351 62.7%
60.6% 65.9%

The best classification accuracy had an overall accuracy of 84.6%, in which 474 samples
were correctly identified: 251 oil spills and 223 look-alike slicks. This was achieved



Remote Sens. 2021, 13, 3466 16 of 30

with good levels of other performance metrics (sensitivity (89.3%), specificity (79.9%),
positive- (81.8%), and negative-predictive (88.1%) values), and was identified from a
combination of ten cube-transformed attributes: six pieces of size information (area, CMP,
LtoW, PtoA, FRA, and NUM) plus the three metoc variables (WND, SST, and CHL), with
one geo-location parameter (BAT). In contrast, the poorest classification accuracy resulted
from a combination of three non-transformed variables (SST, CHL, and BAT): 62.7%—
351 successful predictions (206 oil spills and 145 look-alikes). The classification accuracy
difference between the poorest and the best classifier is ~22% (123 samples). However, the
result of the poorest classifier was considered void because its specificity was below 60%
and it had an unbalanced identification rate (Section 3.2.3). Consequently, the lowest “valid”
classification accuracy was reached with only two non-transformed variables: WND and
BAT. The performance metrics were ~70%—sensitivity (72.6%), specificity (70.6%), positive-
(71.3%), and negative-predictive (71.9%) values. Its overall accuracy (71.6%—401 good
decisions: 204 oil spills and 197 look-alikes) is 13% (73 samples) lower than the best of
all classifications.

An inclusive hierarchy based on the classifier’s overall accuracies is provided in
Table 3A,B: running from 1 to 60. These are assembled into “hierarchy blocks”, color-coded
as in Figure 3. All combinations are grouped in three major blocks corresponding to
the three proposed attribute-type subdivisions with and without one of the two geo-loc
parameters: size information plus metoc variables (1 to 29: blue), Size Set (25 to 36: green),
and Metoc Set (37 to 60: gray)—in Table 3A,B. See Remark 1 below. The averaged values
per block are presented in Table 4. Each of these color-coded blocks was also ranked
within attribute-type subdivisions. These define the “subdivision ranks” which are given
in parentheses in Table 3A,B: 1–27 (Size Plus Metoc Set: blue), 1–9 (Size Set: green), and
1–24 (Metoc Set: gray). Each major block was further divided in “subgroups” (Table 3A,B),
based on the characteristics of the variables. The averaged subgroup information is also
given in Table 4. See Remark 2 below.

Table 4. Averaged overall accuracies of Experiment 1 (Data Information). Three hierarchy blocks and their respective
subgroups (as color-coded in Table 3A,B): size information plus Meteorological-Oceanographic (metoc) variables (blue: 1–29),
“Size Set” (green: 25–36), and “Metoc Set” (gray: 37–60), all of which were analyzed with or without at least one geo-location
(geo-loc) parameter and were subjected to the same data transformations. Averaged number of correctly classified samples
is provided in parentheses. Blocks match the proposed attribute-type subdivisions (Figure 3). + indicates the range of
accuracies (and samples) in these blocks. * indicates unbalanced identification rate: algorithms correctly identifying 30% or
more oil spills than look-alike slicks. ! indicates void algorithms: at least one performance metric below 60%, i.e., specificity.
See also Section 4.2.

Blocks Subdivisions Percentages (Samples) Subgroups Percentages (Samples)

Top-
Blue
(1–29)

Size Plus
Metoc Set

83.0% (465)
Top

Group
WND,

SST, and
CHL

84.1% (471)

3.6% (20) +

Middle
Group WND 83.0% (465)

Bottom
Group

SST
and CHL 81.9% (459)

Middle-
Green
(25–36)

Size Set
80.3% (450) First

Group
log10 or

cube root 80.9% (453)

2.1% (12) + Second
Group

Original
set 79.6% (446)

Bottom-
Gray

(37–60)
Metoc Set

70.5% (395)

Top
Group

WND,
SST, and

CHL
74.4% (417)

12.1% (68) +

Middle
Group WND 73.1% (410)

Bottom
Group

SST
and CHL 65.2% (365) *!
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The thick lines in the table show a subtle characteristic displayed in Table 3A,B that
link combinations with equal overall accuracies. See Remark 3 below. Even though the
hierarchy blocks and subdivision ranks are interchangeably used when we refer to blocks,
hierarchies run from 1 through 60, whereas references to ranks match the attribute-type
subdivision count given above. A series of findings apparent in Table 3A,B and Table 4 is
discussed by subdivision rank below.

4.2.1. Size Plus Metoc Set, with or without Geo-Location (Blue: 1–27)

Within this top hierarchy block, three subgroups are identified. The top ranked
nine combinations are primarily formed by the combinations of the Size Plus Metoc Set.
As stated above, the best accuracy is 84.6%. The middle group has eight combinations
predominantly based on size plus WND combinations. The lowest subgroup has ten
combinations mostly formed by size plus SST and CHL combinations. More details are
given in Remark 3 below.

Although the difference between the best and worst classification rate is 3.6% (20 sam-
ples; Table 4), there is a demonstrable synergy in combining different attributes: firstly,
the six pieces of size information plus the three metoc variables (size + WND, SST, and
CHL) out-performed size with only one metoc (size + WND), and secondly, size + WND
surpassed size plus the other two metoc (size + SST and CHL). Regarding the use of
geo-location parameters, when either of them was included, there was a gain in accuracy.
In this hierarchy block, there was no improvement of the data-transformed combinations
over the non-transformed set.

4.2.2. Size Set, with or without Geo-Location (Green: 1–9)

There are two subgroups in the middle hierarchy block. The first has five combinations,
all of which were transformed: cube root or log10. The best combination was the six
size plus BAT cube transformed: 81.4% (456 samples correctly classified; Table 3B). The
second subgroup has four combinations (ranks 6–9) and most of them are non-transformed
combinations: size with and without geo-loc. The exception was a cube-transformed
combination (rank 8: size without geo-loc) that was not within the first subgroup, but in
the second.

While the averaged overall accuracy of the first group was ~81% (453 samples), the
second group average was ~80% (446 samples); Table 4. The inclusion of geo-loc parameters
promoted an improvement of the classification accuracies. The difference between the
most and least accurate classification in this block is 2.1% (12 samples; Table 4), but
data-transformed combinations have better outcomes than those without transformation—
indeed this is the basis for the formation of groups in this block.

4.2.3. Metoc Set, with or without Geo-Location (Gray: 1–24)

The lowest hierarchy block has three subgroups. The top subgroup has six combi-
nations using all three metoc variables (with and without one geo-loc) that have been
transformed: cube root or log10. The most successful combination in this block has three
metoc variables with log transformed BAT: 74.8% (419 samples). The middle subgroup has
nine combinations (ranks 7–15) that include the three non-transformed combinations of
three metoc variables (with and without one geo-loc), and the six combinations only using
WND plus either of the geo-loc parameters. The lowest subgroup has nine combinations
(ranks 16–24) using SST and CHL, with or without geo-loc. However, they were all con-
sidered void for the two reasons given in Section 3.2.3: (i) their specificity was below 60%
(Table 3B); and (ii) they had unbalanced classification rates.

The averaged overall accuracies of these groups are ~74%, ~73%, and ~65%, respec-
tively with the number of samples correctly identified per group being 417, 410, and 365
(Table 4). The highest and lowest classification rate had a difference of 12.1% (68 samples).
There was an evident synergy in using all metoc variables together, as they improved
the ability of the classifier to discriminate oil spills from look-alike slicks. Likewise, the
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sole use of WND (with any geo-loc) produced better classifiers than those using the other
two metoc variables, i.e., SST and CHL (with or without geo-loc). The use of geo-loc
parameters improved the classification accuracy. There was a clear dependence on the use
of data transformations in the top and middle groups, with the absence of transformations
producing the least accurate classifications.

4.2.4. Comparative Classification Accuracy

In this section we compare the results of nine data combinations that have been
analyzed by Carvalho et al. [42] that are indicated in Figure 3. Table 5 shows the main clas-
sification accuracy differences extracted from Table 3A,B and Table 7 in Carvalho et al. [42];
see Remark 4 below. Two differences in percentages (Diff.) are reported in Table 5, com-
paring (i) our results with those of Carvalho et al. [42] and (ii) the inclusion of geo-loc
parameters. These are described below:

• Comparisons with Earlier Results of Carvalho et al. [42]: Although the classification
accuracy is improved compared with earlier results by using subdivision of the Size
Plus Metoc Set in nearly all combinations, there was one exception: log10 without
geo-loc (82.5% − 83.0% = −0.5%). Likewise, all accuracies of the Size Set increased
(log10 transformation without geo-loc: 80.7% − 78.0% = 2.7%). On the contrary, all
combinations of the Metoc Set showed decreased accuracy, and this was independent
of the inclusion of geo-loc (no transformation and no geo-loc: 73.4% − 76.9% = −3.5%).
See Remark 5 below. Table 5 contains a local ordering of the three data transforma-
tions of each attribute-type subdivision. This ordering confirmed that there was no
clear consistency to show which data transformation was best; in Table 5, asterisks
indicate best accuracies per subdivision. An example of the lack of consistency is
seen in the subdivisions of the Size Set that indicated different best transformations
in each study: the overall accuracy without any transformation (79.1%) reported by
Carvalho et al. [42] surpassed the application of transformations, while here, the most
successful transformation without geo-loc was log10 (80.7%), but the best outcome
including a geo-loc parameter (BAT) was with the cube-transformed combination
(81.4%). See Remark 6 below.

• Including Geo-Location: In nearly all cases, combinations including at least one
geo-location parameter had better performance than those without; the exception
being the Metoc Set cube-transformed that remained the same with or without geo-
loc: 74.5%. The largest overall accuracy increases when geo-loc parameters were
considered was ~2%: the Size Set combination with cube root transformation (from
79.6% to 81.4%) and the Size Plus Metoc Set combination with log10 transformation
(from 82.5% to 84.3%). See Remark 7 below. In the combinations including geo-loc,
BAT was preferable to CST. In only two of nine cases CST achieved superior accuracy.
Indeed, among the combinations, the best classifier (cube transformed Size Plus Metoc
Set) was improved by ~1% with the use of BAT: from 83.9% to 84.6% (Tables 3 and 5).
See Remark 8 below.

4.3. Experiment 2: Data Transformation

Fifty-four data combinations were considered in the third part of our research (Figure 2).
The analyses of the UPGMA dendrograms showed that the correlation of these combi-
nations of variables were within the recommended similarity threshold: 0.3 > r > −0.3.
Tables 6 and 7 condense the classifications of the two distinct assemblages: Metoc Assem-
blage and Size Assemblage; each of which having 3 variables subjected to 3 transformations—
27 LDAs each. See Remark 9 below. These Results are presented below.
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Table 5. Classification accuracy comparisons between our results (see the # symbol in Figure 3 and Table 3A,B) and those
in Carvalho et al. [42]—see their Table 7. Attribute-type subdivision (Section 3.1.2): size information plus Meteorological-
Oceanographic (metoc) variables, “Size Set”, and “Metoc Set”. In both studies, variables have been subjected to the same
data transformation (Transf.). Herein, combinations were analyzed with or without at least one geo-location (geo-loc)
parameter: bathymetry (BAT) or distance to coastline (CST). Overall accuracies are shown in bold font. A pair of differences
in percentages (Diff.) are reported: (i) this study compared to Carvalho et al. [42]; and (ii) present study: with minus without
geo-loc. A local order is provided per subdivision. The hierarchy (shown in parentheses) has been taken from Table 3A,B
and Table 7 in Carvalho et al. [42]. * indicates the best accuracy within subdivisions. See also Section 4.2.4.

Carvalho et al. [42] This Paper (without Geo-Loc) This Paper (with Geo-Loc)

Sub
Division Transf.

Overall Order Overall Order Diff.
i

Overall Order Diff.
ii

Geo-
LocAccuracy (Hierarchy) Accuracy (Hierarchy) Accuracy (Hierarchy)

Size Plus
Metoc Set

None 83.1% 2 (5) 83.9% * 1 (6) 0.8% 84.1% 3 (4) 0.2% CST
Cube Root 83.7% * 1 (2) 83.9% 2 (7) 0.2% 84.6% * 1 (1) 0.7% BAT

log10 83.0% 3 (7) 82.5% 3 (18) −0.5% 84.3% 2 (2) 1.8% BAT

Size Set
None 79.1% * 1 (19) 79.6% 2 (34) 0.5% 79.8% 3 (33) 0.2% BAT

Cube Root 78.9% 2 (21) 79.6% 3 (35) 0.7% 81.4% * 1 (25) 1.8% BAT
log10 78.0% 3 (24) 80.7% * 1 (31) 2.7% 81.3% 2 (28) 0.6% BAT

Metoc Set
None 76.9% 2 (27) 73.4% 3 (47) −3.5% 73.8% 3 (44) 0.4% BAT

Cube Root 77.1% * 1 (26) 74.5% * 1 (39) −2.6% 74.5% 2 (40) 0.0% CST
log10 76.7% 3 (29) 74.3% 2 (41) −2.4% 74.8% * 1 (37) 0.5% BAT

4.3.1. Metoc Assemblage (WND, SST, and CHL) with Different Data Transformations

Unlike the 27 combinations of the Size Assemblage (see below: Section 4.3.2), those
with variables from the Metoc Assemblage did not form identifiable blocks (Table 6).
Additionally, there was no combination being deemed void in the Metoc Assemblage
(Tables 3 and 7). See Remark 10 below.

Table 6. Classification accuracy hierarchy of the 27 algorithms using three variables subjected to
different data transformations in the same analysis—Meteorological-Oceanographic data (metoc:
“Metoc Assemblage”—wind speed (WND), sea surface temperature (SST), and chlorophyll-a con-
centration (CHL)). Bold font indicates baseline combinations with the same transformation. For the
interpretation of thick table lines see Section 4.3.1. Detailed statistical information is found in Figure 4.
See also Tables 1 and 7, and Section 4.3: Experiment 2 (Data-Transformation).

Hierarchy WND SST CHL Oil Spills Slick-Alikes All Features

1 None Cube log10 214
76.2%

205
73.5%

419 74.8%
74.3% 75.4%

2 None None log10 215
76.5%

203
72.8%

418 74.6%
73.9% 75.5%

3 None log10 log10 213
75.8%

205
73.5%

418 74.6%
74.2% 75.1%

4 log10 None log10 218
77.6%

200
71.7%

418 74.6%
73.4% 76.0%

5 log10 None Cube 219
77.9%

199
71.3%

418 74.6%
73.2% 76.2%

6 Cube Cube log10 218
77.6%

200
71.7%

418 74.6%
73.4% 76.0%

7 Cube Cube Cube 217
77.2%

200
71.7%

417 74.5%
73.3% 75.8%
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Table 6. Cont.

Hierarchy WND SST CHL Oil Spills Slick-Alikes All Features

8 Cube log10 log10 217
77.2%

200
71.7%

417 74.5%
73.3% 75.8%

9 Cube log10 Cube 217
77.2%

200
71.7%

417 74.5%
73.3% 75.8%

10 log10 Cube log10 218
77.6%

199
71.3%

417 74.5%
73.2% 76.0%

11 log10 log10 log10 217
77.2%

199
71.3%

416 74.3%
73.1% 75.7%

12 log10 None None 216
76.9%

200
71.7%

416 74.3%
73.2% 75.5%

13 log10 Cube Cube 218
77.6%

198
71.0%

416 74.3%
72.9% 75.9%

14 Cube None log10 216
76.9%

200
71.7%

416 74.3%
73.2% 75.5%

15 Cube None Cube 216
76.9%

199
71.3%

415 74.1%
73.0% 75.4%

16 log10 Cube None 214
76.2%

201
72.0%

415 74.1%
73.3% 75.0%

17 None log10 Cube 214
76.2%

201
72.0%

415 74.1%
73.3% 75.0%

18 Cube None None 213
75.8%

201
72.0%

414 73.9%
73.2% 74.7%

19 None None Cube 213
75.8%

201
72.0%

414 73.9%
73.2% 74.7%

20 None Cube Cube 214
76.2%

200
71.7%

414 73.9%
73.0% 74.9%

21 log10 log10 Cube 218
77.6%

196
70.3%

414 73.9%
72.4% 75.7%

22 Cube Cube None 212
75.4%

201
72.0%

413 73.8%
73.1% 74.4%

23 Cube log10 None 211
75.1%

201
72.0%

412 73.6%
73.0% 74.2%

24 None None None 208
74.0%

203
72.8%

411 73.4%
73.2% 73.6%

25 None Cube None 209
74.4%

202
72.4%

411 73.4%
73.1% 73.7%

26 None log10 None 209
74.4%

202
72.4%

411 73.4%
73.1% 73.7%

27 log10 log10 None 213
75.8%

198
71.0%

411 73.4%
72.4% 74.4%
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The minimum (73.4%) and maximum (74.8%) overall accuracy rate difference was
only 1.4% (8 samples; Table 6). Within this classification range, there were six values that
had many combinations with similar performance, 73.4% to 74.6%, these are delineated
in Table 6 by thick lines. A characteristic of most of them is that they did not correctly
identify the same samples; this is apparent in Table 6 in the number of correctly classified
oil spills and look-alike slicks—for instance, hierarchies 19, 20, and 21 all identified 414 sam-
ples (73.9%) but their classifications per class varied: spill (213, 214, and 218 samples,
respectively) and look-alikes (201, 200, and 196, respectively). See Remark 11 below.

If we consider the baseline combinations with the three variables subjected to the
same transformation (bold font in Tables 1 and 6), the cube root (74.5%) surpassed the
log-transformed (74.3%), as well as the non-transformed (73.4%). These are hierarchies 7,
11, and 24, in Table 6. Note that the non-transformed version was worse by ~1% compared
to the two with a transformation.

4.3.2. Size Assemblage (Area, LtoW, and NUM) with Different Data Transformations

The key outcomes of the 27 LDAs of the Size Assemblage (Table 7) are as follows:
(i) two combinations reached best classification accuracy (80.9%): area (log10) and NUM
(non-transformed) with LtoW (either log- or cube-transformed) (see Remark 12 below); (ii)
the poorest combination was area (without transformation), LtoW (without transformation),
and NUM (log10 transformed)—67.0%. Nonetheless, this was considered void because
specificity <60% and unbalanced identification rate differing by >30% (see Remark 13
below); and (iii) the lowest valid classification accuracy was reached with area (cube
transformed), LtoW (log10 transformed), and NUM (log10 transformed): 76.1%.

A remarkable accuracy improvement was observed from worst to best classifiers
with different data transformations: 13.9% (78 samples; Table 7). Considering the baseline
combinations with the three variables subjected to the same transformation (bold font in
Tables 1 and 7), the log-transformed (78.6%) surpassed the cube-transformed (77.3%), and
the non-transformed (70.2%; void). These are hierarchies 10, 14, and 20, in Table 7. The
non-transformed version was poorer by >7% and voided. See Remark 14 below.

The 27 combinations within the Size Assemblage were divided into three major blocks
mostly guided by a specific attribute: area (Table 7). A secondary group, apparent in these
blocks, is controlled by another variable: NUM—these are shown in Table 7 by thick lines.
In the blocks guided by the area variable, the application of the log transformation forms
the top block, followed by combinations subjected to the cube transformation, and lastly by
non-transformed versions. On the other hand, the groups controlled by the NUM variable
had the non-transformed assemblage being more accurate than those with the application
of cube root and log transformations. See Remark 15 below.

5. Discussion

Other than the oil-slick classification studies described in Carvalho et al. [38–40,42],
involving LDA algorithms to discriminate surface ocean slicks detected in RADARSAT
measurements, there are few publications in the literature (to our knowledge) classifying
satellite-detected features using LDAs in a similar fashion as reported here. Most papers
using LDAs to classify oil slicks differ from our research in that: (i) they were only successful
once LDAs were postulated with another machine learning technique (e.g., [34]), while
we reached successful discriminations solely based on the use of conventional LDAs; (ii)
they fail to report essential accuracy metrics (e.g., [35]), thus ignoring the importance of
reporting a full algorithm’s accuracy assessment in a more efficient and effective manner;
(iii) they explored marine radar images (e.g., [36]), rather than SAR satellite imagery. A
pair of other characteristics set our study apart from these earlier investigations: the
pre-selection of specific data (Experiment 1) and combination of attributes subjected to
several data transformations in the same algorithm form (Experiment 2). In addition, of
the 114 LDA algorithms tested here, only nine have been previously examined, with these
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being modified here. The remainder of this section discusses the 15 remarks previously
introduced in the results section.

Table 7. Classification accuracy hierarchy of the 27 algorithms using three attributes subjected to dif-
ferent data transformations in the same analysis—morphological characteristics (“Size Assemblage”:
area, aspect ratio (length-to-width ratio: LtoW), and number of parts of each feature (NUM)). The
explanation of the hierarchy blocks: 1–6, 7–18, and 19–27 is given in the text. * indicates unbalanced
identification rate: algorithms correctly identifying 30% or more oil spills than look-alike slicks.
! indicates void algorithms: at least one performance metric below 60%, i.e., specificity. Bold font
indicates baseline combinations with the same transformation. For the interpretation of thick table
lines see Section 4.3.2. Detailed statistical information is found in Figure 4. See also Tables 1 and 6,
and Section 4.3: Experiment 2 (Data-Transformation).

Hierarchy Area LtoW NUM Oil Spills Slick-Alikes All Features

1 log10 log10 None 250
89.0%

203
72.8%

453 80.9%
76.7% 86.8%

2 log10 Cube None 251
89.3%

202
72.4%

453 80.9%
76.5% 87.1%

3 log10 None None 250
89.0%

201
72.0%

451 80.5%
76.2% 86.6%

4 log10 log10 Cube 247
87.9%

200
71.7%

447 79.8%
75.8% 85.5%

5 log10 None Cube 246
87.5%

199
71.3%

445 79.5%
75.5% 85.0%

6 log10 Cube Cube 246
87.5%

199
71.3%

445 79.5%
75.5% 85.0%

Hierarchy Area LtoW NUM Oil Spills Slick-Alikes All Features

* 7 Cube None None 269
95.7%

175
62.7%

444 79.3%
72.1% 93.6%

* 8 Cube log10 None 266
94.7%

175
62.7%

441 78.8%
71.9% 92.1%

* 9 Cube Cube None 267
95.0%

174
62.4%

441 78.8%
71.8% 92.6%

10 log10 log10 log10 239
85.1%

201
72.0%

440 78.6%
75.4% 82.7%

11 log10 None log10 240
85.4%

198
71.0%

438 78.2%
74.8% 82.8%

12 log10 Cube log10 239
85.1%

199
71.3%

438 78.2%
74.9% 82.6%

* 13 Cube log10 Cube 251
89.3%

183
65.6%

434 77.5%
72.3% 85.9%

* 14 Cube Cube Cube 251
89.3%

182
65.2%

433 77.3%
72.1% 85.8%

* 15 Cube None Cube 250
89.0%

181
64.9%

431 77.0%
71.8% 85.4%

16 Cube None log10 243
86.5%

188
67.4%

431 77.0%
72.8% 83.2%

17 Cube Cube log10 241
85.8%

185
66.3%

426 76.1%
71.9% 82.2%

18 Cube log10 log10 242
86.1%

184
65.9%

426 76.1%
71.8% 82.5%
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Table 7. Cont.

Hierarchy Area LtoW NUM Oil Spills Slick-Alikes All Features

*! 19 None log10 None 246
87.5%

149
53.4%

395 70.5%
65.4% 81.0%

*! 20 None None None 247
87.9%

146
52.3%

393 70.2%
65.0% 81.1%

*! 21 None Cube None 247
87.9%

146
52.3%

393 70.2%
65.0% 81.1%

*! 22 None log10 Cube 230
81.9%

158
56.6%

388 69.3%
65.5% 75.6%

*! 23 None None Cube 234
83.3%

153
54.8%

387 69.1%
65.0% 76.5%

*! 24 None Cube Cube 230
81.9%

157
56.3%

387 69.1%
65.3% 75.5%

*! 25 None log10 log10 221
78.6%

158
56.6%

379 67.7%
64.6% 72.5%

*! 26 None Cube log10 219
77.9%

160
57.3%

379 67.7%
64.8% 72.1%

*! 27 None None log10 219
77.9%

156
55.9%

375 67.0%
64.0% 71.6%

5.1. Data-Information Experiment

• Remark 1: Considering the hierarchy blocks, when variables from Size Plus Metoc
Set were combined, the algorithms were more accurate than those using variables
from one type alone. Additionally, when comparing the sole use of size information,
the classification accuracies were superior to those using only the metoc variables. A
corresponding hierarchical pattern was also observed among the 61 data combinations
reported in Carvalho et al. [40]. The hierarchy block formation was only disrupted by
two combinations of the Size Set (hierarchies 25 and 28: green group) that were more
accurate than a few combinations of the Size Plus Metoc Set (hierarchies 26, 27, and
29: blue group).

• Remark 2: Regarding the subgroups, it is noteworthy that some data combinations
achieve classifications better than others (Table 3A,B). Table 4 shows the top-blue
(Size Plus Metoc Set) and middle-green (Size Set) blocks have an average difference
of ~1% between each of their groups: ~84% to ~80%. The differences between the
middle-green and lowest-gray (Metoc Set) blocks were greater, as were those within
the groups in the last block.

• Remark 3: Of the many combinations that had the same overall accuracies (to the
number of decimal places indicated), most of them did not correctly identify the same
samples—this is seen in Table 3A,B: the number of correctly classified oil spills and
look-alike slicks. Only hierarchies 34 and 35 (79.6%—Size Set without geo-loc: non-
transformed and cube root, respectively) and hierarchies 39 and 40 (74.5%—Metoc Set
with and without CST, both cube-transformed) identified the same samples.

5.1.1. Comparative Classification Accuracy

• Remark 4: Although nearly all accuracies were improved in the Size Plus Metoc Set
and Size Set subdivisions described by Carvalho et al. [42], the same did not hold
for the Metoc Set subdivision that had its overall accuracies reduced (Table 5). While
the largest improvements were ~3% in two log-transformed Size Set combinations:
without geo-loc (from 78.0% to 80.7%) and with geo-loc (from 78.0% to 81.3%), the best
of all combinations (cube transformed Size Plus Metoc Set) had its accuracy increased
by ~1% by the inclusion of one geo-loc parameter (BAT): from 83.7% to 84.6% (Table 5).
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These improvements demonstrate the success of the removal of samples that are
unlikely to contribute to the classification and the addition of geo-loc attributes.

5.1.2. Comparisons with Earlier Results

• Remark 5: The Metoc Set combinations did not produce high-ranking accuracies in
comparison with the earlier results of Carvalho et al. [42] (Table 5). This may be due
to many records having been removed based on the WND thresholds: lower (<3 m/s:
105 samples) and upper (>6 m/s: 94 samples)—i.e., 25.5% of the original dataset
(Table 2), even though the exclusion of these cases was based on physical reasoning.

• Remark 6: There was not a clear pattern to indicate which data transformation was
best. The non-transformed set and log10 had only two cases each as the best combina-
tion among the nine compared, and the cube-transformed combinations were more
accurate in five cases (Table 5).

5.1.3. Geo-Location Inclusion

• Remark 7: Two geo-loc parameters available in the original dataset were studied
here, but they were not considered together because they are highly correlated. The
inclusion of geo-loc parameters results in improved accuracies (Table 5).

• Remark 8: Combinations using Bathymetry (BAT, ranging from 5 m to ~4 km) tended
to have improved accuracies compared to those using the distance to coastline (CST,
186 m to ~435 km); Table 5.

5.2. Data-Transformation Experiment

• Remark 9: The investigation of two assemblages of only three variables subjected
to three data transformations indicated that the Metoc Assemblage did not show
an advantage of using the different transformations, however, the results of using
different data transformations within the variables of the Size Assemblage were
promising; see below Remarks 12 and 15, and Future Work Recommendations.

5.2.1. Metoc Assemblage: WND, SST, and CHL

• Remark 10: There was a lack of hierarchy blocks in the Metoc Assemblage subjected
to different transformations. This may be due to the relatively small range among the
analyzed features (WND (3 to 6 m/s), SST (11.44 to 29.43 ◦C), and CHL (0.003 and
9.7 mg/m3)).

• Remark 11: Even though there was a span of 1.4% (8 samples) between the best
and worst accuracy among the 27 combinations of the Metoc Assemblage, if we
compare the baseline combinations of three pieces of metoc variables with the same
transformation (shown in bold in Table 6), we notice that subjecting variables to
different data transformations in the same analysis slightly improved the accuracies
of the LDA algorithms.

5.2.2. Size Assemblage: Area, LtoW, and NUM

• Remark 12: The use of three pieces of size information subjected to different trans-
formations (i.e., the two combinations that tied with 80.9%—area (log10), LtoW (log-
or cube-transformed), and NUM (non-transformed); hierarchies 1 and 2 in Table 7)
reached an equivalent accuracy to the best combination of six pieces of size infor-
mation log-transformed without geo-loc or metoc (80.7%; hierarchy 31 in Table 3B).
Clearly, the combination of various attributes subjected to several data transformations
in the same analysis, can lead to improving the LDA algorithm accuracy.

• Remark 13: The combinations using non-transformed areas were void—hierarchies
19 to 27 in Table 7. The lack of data transformation may also be negatively influencing
other combinations of variables using the non-transformed area, for example, those
among the 60 depicted in Figure 3, and presented in Table 3A,B. As such, other
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variables may also be suffering from using non-transformed areas, and this should be
further investigated. See also Remark 15 below.

• Remark 14: The best of the three baseline combinations of three pieces of size informa-
tion with the same transformation (shown in bold font in Tables 1 and 7) was subjected
to log10—78.6% (hierarchy 10 in Table 7). However, nine other combinations were
better, the best being 80.9% (hierarchies 1 and 2 in Table 7). This improvement of 2.3%
is another indication that the combined use of attributes subjected to different data
transformations improves the LDA classification accuracy.

• Remark 15: Considering the major hierarchy blocks and secondary groups, among
the 27 combinations that use three pieces of size information with three data trans-
formations (Table 7), one reason is given for this ranking: among the 560 analyzed
features, areas have a large range of continuous values (from oil spills with 0.45 km2 to
look-alikes with 8177.24 km2 cause by upwelling events), whereas the NUM variable
with its discrete values had features with only 1 part up to look-alike slicks with 24
different parts caused by biogenic films.

6. Summary and Conclusions

We report on successful differentiation of oil spills from look-alike slicks using sim-
ple, linear discriminant analyses (LDAs) of satellite-based information (RADARSAT-1,
QuikSCAT, AVHRR, SeaWiFS, and MODIS) from the Campos Basin, Brazil (Figure 1). A
series of effective classification algorithms was produced based on the combination of
characteristics of three attribute types: (i) morphological characteristics (size information:
area, compact index (CMP), aspect ratio (length-to-width ratio: LtoW), perimeter-to-area
ratio (PtoA), fractal index (FRA), and number of feature’s parts (NUM)); (ii) Meteorological-
Oceanographic (metoc) variables (wind speed (WND), sea-surface temperature (SST), and
chlorophyll-a concentration (CHL)); and (iii) geo-location (geo-loc) parameters (bathymetry
(BAT) and distance to coastline (CST)). Two data transformations were considered in ad-
dition to non-transformed: cube root and log10. The quantitative accuracy of 114 LDA
algorithms was evaluated and ranked with five performance metrics: overall accuracy,
sensitivity, specificity, positive-, and negative-predictive values (Figure 4). This study was
built upon the ability to distinguish sea-surface features in SAR images using LDAs—oil
spills vs. look-alike slicks [42], as well as oil spills vs. oil seeps [38–40]—and included de-
velopments beyond past research [33–37]. Our two objectives have been achieved through
two separate experiments (Figure 2):

6.1. Objective 1

The “Data-Information Experiment” sought the most effective combination of vari-
ables among 60 combinations (Figure 3). Three proposed attribute-type subdivisions
were hierarchized in major blocks: “Size Plus Metoc Set”, “Size Set”, and “Metoc Set”
(Table 3A,B). These were considered with or without at least one geo-loc parameter and
all variables were subjected to the same data transformations. The best accuracies were
reached with all variables from each subdivision. Each block was further stratified in sub-
groups related to the variable’s characteristics (Table 4). Bathymetry (BAT) was generally
better than distance to coastline (CST). The main developments used here—sample re-
moval (data filter) and inclusion of geo-loc information—improved classification accuracy
(Table 5). The main results regarding the LDA accuracies (Table 3A,B) are summarized as:

• if all variables are available, the best accuracy is 84.6% (hierarchy 1; cube-transformed);
• without geo-loc parameters, the best accuracy is 83.9% (hierarchy 6; non-transformed);
• if Oceanographic data are not available, the best accuracy is 83.9% (hierarchy 8;

log-transformed);
• if Meteorological data are unavailable, the best accuracy is 83.0% (hierarchy 15;

cube-transformed);
• if only size information is given, the best accuracy is 80.7% (hierarchy 31; log-transformed);
• without size information, the best accuracy is 74.8% (hierarchy 37; log-transformed);
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• if only Meteorological data and geo-loc are used, the best accuracy is 73.8% (hierar-
chy 43; cube-transformed); and

• if only Oceanographic data are accounted for (with or without geo-loc), the results are
considered void (hierarchies 52–60).

6.2. Objective 2

The “Data-Transformation Experiment” sought the most effective combination of data
transformations to improve accuracy. This experiment is a development over published
binary classification papers, as here we combined variables undergoing different data
transformations in the same analysis. Two distinct assemblages of 27 data combinations
each with three variables were tested with three data transformations (Table 1). In the
first assemblage (“Metoc Assemblage”: WND, SST, and CHL—Table 6), there was no
noteworthy classification improvement as revealed by the small range of ~1.5% (8 samples)
from its best (74.8%) to worst (73.4%) overall accuracies. On the contrary, the second
assemblage (“Size Assemblage”: area, LtoW, and NUM—Table 7) showed accuracy im-
provements from different transformations—the best (80.9%) to worst (67.0%) accuracy
had a remarkable difference of ~14.0% (78 samples). Two combinations subjected to three
transformations tied as the most effective LDA—80.9% (453 samples): area (log10), LtoW
(log- or cube-transformed), and NUM (non-transformed). These two best combinations of
three variables vs. three transformations were superior to the best baseline combination
with the same transformation applied to all variables—78.6% (440 samples): area (log10),
LtoW (log10), and NUM (log10); Tables 1 and 7. Moreover, they achieved a comparable
outcome to the best combination using the six pieces of size information (without metoc or
geo-loc) all being subjected to log10 transformation (80.7%; 452 samples). The framework
of combining different data transformations in the same classification algorithm simplifies
and optimizes the LDA classification as fewer attributes were used to reach the same result.

6.3. Future Work Recommendations

Future work could apply other linear and non-linear methods (e.g., decision tree,
random forest, support vector machine, artificial neural network) to guide the development
of improved classifiers. A continuation of this research could include a larger collection
of variables being subjected to different data transformations in the same classification
algorithm, as it would be interesting to investigate if the behavior observed in the Data-
Transformation Experiment also occurs with other attributes, i.e., testing different data
transformations on a greater number of variables. For instance, what would happen if in
the best Size Set combinations that accounts for six variables (without metoc or geo-loc) all
of which were subjected to log10 (i.e., 80.7%; 452 samples; hierarchy 31 in Table 3A,B) had
been subjected to different transformations?
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