
remote sensing  

Article

Improving Accuracy of Herbage Yield Predictions in Perennial
Ryegrass with UAV-Based Structural and Spectral Data Fusion
and Machine Learning

Joanna Pranga 1,2, Irene Borra-Serrano 1 , Jonas Aper 1, Tom De Swaef 1 , An Ghesquiere 1, Paul Quataert 1 ,
Isabel Roldán-Ruiz 1,3 , Ivan A. Janssens 2, Greet Ruysschaert 1 and Peter Lootens 1,*

����������
�������

Citation: Pranga, J.; Borra-Serrano, I.;

Aper, J.; De Swaef, T.; Ghesquiere, A.;

Quataert, P.; Roldán-Ruiz, I.; Janssens,

I.A.; Ruysschaert, G.; Lootens, P.

Improving Accuracy of Herbage Yield

Predictions in Perennial Ryegrass

with UAV-Based Structural and

Spectral Data Fusion and Machine

Learning. Remote Sens. 2021, 13, 3459.

https://doi.org/10.3390/rs13173459

Academic Editor: David M. Johnson

Received: 20 July 2021

Accepted: 27 August 2021

Published: 1 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO),
9090 Melle, Belgium; joanna.pranga@ilvo.vlaanderen.be (J.P.);
irene.borra-serrano@ilvo.vlaanderen.be (I.B.-S.); jonas.aper@ilvo.vlaanderen.be (J.A.);
tom.deswaef@ilvo.vlaanderen.be (T.D.S.); an.ghesquiere@ilvo.vlaanderen.be (A.G.);
paul.quataert@ilvo.vlaanderen.be (P.Q.); isabel.roldan-ruiz@ilvo.vlaanderen.be (I.R.-R.);
greet.ruysschaert@ilvo.vlaanderen.be (G.R.)

2 Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium; ivan.janssens@uantwerpen.be
3 Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
* Correspondence: peter.lootens@ilvo.vlaanderen.be

Abstract: High-throughput field phenotyping using close remote sensing platforms and sensors for
non-destructive assessment of plant traits can support the objective evaluation of yield predictions
of large breeding trials. The main objective of this study was to examine the potential of unmanned
aerial vehicle (UAV)-based structural and spectral features and their combination in herbage yield
predictions across diploid and tetraploid varieties and breeding populations of perennial ryegrass
(Lolium perenne L.). Canopy structural (i.e., canopy height) and spectral (i.e., vegetation indices)
information were derived from data gathered with two sensors: a consumer-grade RGB and a 10-band
multispectral (MS) camera system, which were compared in the analysis. A total of 468 field plots
comprising 115 diploid and 112 tetraploid varieties and populations were considered in this study. A
modelling framework established to predict dry matter yield (DMY), was used to test three machine
learning algorithms, including Partial Least Squares Regression (PLSR), Random Forest (RF), and
Support Vector Machines (SVM). The results of the nested cross-validation revealed: (a) the fusion of
structural and spectral features achieved better DMY estimates as compared to models fitted with
structural or spectral data only, irrespective of the sensor, ploidy level or machine learning algorithm
applied; (b) models built with MS-based predictor variables, despite their lower spatial resolution,
slightly outperformed the RGB-based models, as lower mean relative root mean square error (rRMSE)
values were delivered; and (c) on average, the RF technique reported the best model performances
among tested algorithms, regardless of the dataset used. The approach introduced in this study can
provide accurate yield estimates (up to an RMSE = 308 kg ha−1) and useful information for breeders
and practical farm-scale applications.

Keywords: high-throughput field phenotyping (HTFP); pasture; forage; RGB sensor; multispectral
sensor; close remote sensing; partial least squares regression (PLSR); random forest (RF); support
vector machines (SVM)

1. Introduction

Grasslands cover up to 40% of the earth’s landmass. Grasslands have great ecological
and economical relevance, as they supply essential goods and services at the local, regional,
and global levels [1,2]. The main provisioning service of managed temperate grasslands
is to supply feed for livestock ruminants [3,4], either by grazing or in the form of hay or
silage. Monitoring the spatio-temporal dynamics of changes in the above-ground biomass
quality and quantity of grasslands is important [5] and can help to adjust management
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decision-making, such as stocking density, mowing time or fertiliser application rates [6].
For instance, optimisation of harvesting time requires a good balance between quality
parameters (digestibility) and the highest possible yield [6].

Managed grasslands are sown or regenerated with high yielding grass and legume
varieties that have been bred to deliver biomass of excellent quality [7–9]. Rates of genetic
improvement are typically low due to the perennial nature of dominant grassland species
and the need for complicated breeding schemes [10,11]. In recent years, improvements in
the high-throughput field phenotyping (HTFP) technologies that support novel methods
for determining phenotypic parameters have demonstrated great potential for improving
selection efficiency in breeding [12]. In addition, progress and innovations in remote and
proximal sensing, computer sciences, and electronics fill the gap between genomic and
phenotypic data [13], and it is anticipated that the development and implementation of
high-throughput phenotyping technologies will promote the acceleration of the breeding
progress in forage species [14]. This situation has created high demand for rapid, non-
destructive and HTFP protocols [15]. Particularly, the use of remotely sensed data to
monitor spectral responses can help optimize breeding and grassland management [16].

HTFP platforms can be either ground-based or aerial-based. Ground-based platforms
consist of vehicles equipped with proximal sensors (including hand-held sensors). The
main advantages of such platforms lie in their design flexibility, large payload potential and
high resolution [17]. In contrast, ground-based platforms have restricted portability and
are more suitable for smaller trials [15], as measurements on larger scales would require
considerably more time [18]. Aerial-based HTFP platforms can cover a larger area in a
shorter time, simultaneously minimising the impact of changing environmental conditions
that might affect the physiology of the plant or influence the measurement, such as cloud
cover, wind speed or solar radiation [18,19]. This enables the rapid assessment of thousands
of plots using synchronised measurement of several traits. On the other side, aerial-based
HTPF platforms still require computer-intensive image postprocessing steps [20] before
relevant data can be extracted.

Unmanned aerial vehicles (UAV), also known as drones or unmanned aerial/aircraft
systems (UAS), have become commonplace in recent years and have undergone extraor-
dinary developments in a short time [19]. When equipped with special sensors, UAVs
can become powerful close remote sensing (RS) systems, capturing low-cost imagery at a
high spatial and temporal resolution [21]. Currently, UAV technologies are being used for
a wide range of applications in agriculture, forestry and ecology as they can fill the gap
between ground-based platforms and satellite observation missions [22]. Commercial on-
board visible light (RGB), multispectral (MS), hyperspectral, and thermal sensors have been
successfully employed to monitor different types of agricultural experiments [5,23,24]. RGB
digital cameras are the most commonly installed sensors on UAV platforms [21] due to their
operational simplicity and affordability [25]. Despite their higher cost, multispectral sensors
are also frequently used [21]; the Multiple Camera Array (MCA) with four or six bands
was the first popular multispectral camera [22]. In recent years, more compact systems
have been developed, such as the four-band Parrot Sequoia+ [26]. Other commonly used
sensors are MAIA WV, based on an array of nine sensors operating simultaneously [27],
Dual Camera Kit by MicaSense (containing RedEdge-M and RedEdge-MX) with coverage
of ten spectral bands, or Sentera 6X, which delivers eight channels of image data [28].

To process and utilise the large amounts of data collected with UAV-based sensors, ma-
chine learning (ML) techniques are becoming increasingly popular. Various ML algorithms
have been implemented to monitor grasslands and crops, such as Random Forest [29,30],
Support Vector Machines [31,32], Partial Least Squares Regression [33,34], or extreme
learning regression [32]. Such learning algorithms can be used via regression to model
and predict above-ground biomass in grasslands. Overall, ML provides an alternative to
classical statistical modelling approaches [35], as it allows more effective exploration of
both linear and nonlinear relationships [30] and variable interactions.
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Grasses of the Festuca-Lolium group (tribe Poeae, subfamily Pooideae) are the main
components of cultivated grasslands in Europe. The high yield potential, exceptional
feed quality, and rapid establishment [36] of perennial ryegrass (Lolium perenne L.) have
made it one of the most frequently sown species [37]. Diploid and tetraploid varieties are
bred. The main objectives of perennial ryegrass breeding, independent of ploidy level or
maturity, are to increase the annual and seasonal dry matter yield while improving frost
or drought tolerance, persistence, forage quality and disease resistance [36,38]. Breeding
activities in perennial ryegrass include biomass sampling, drying and weighing, among
others. Traditionally, biomass samples are taken either manually or mechanically [15].
Such evaluations are labour-intensive, time-consuming, and costly: this perennial species
is mown several times per year and the evaluations must be repeated over several seasons
and years [15]. These factors hinder the development and the upscaling of breeding
programmes [12,15]. To answer the need for alternative, faster monitoring, several studies
have investigated the potential of data derived from UAV-based platforms to monitor
biomass yield in perennial ryegrass field trials in the context of breeding. For example, in a
study conducted by Borra Serrano et al. [29], an affordable RGB camera was used to monitor
canopy height evolution and to estimate the yield. For this purpose, different models and
variable combinations comprising height data, vegetation indices and environmental
features were applied. Aper et al. [39] further explored an RGB sensor for yield estimations
considering multiple linear regression only. The findings showed that by incorporating
mean intensity as a proxy of bent leaves in plots, predictions can be improved. Conversely,
Karunaratne et al. [30] used features derived from a five-band multispectral sensor to
generate empirical dry matter yield (DMY) prediction models, and investigated the effect
of four flying altitudes on model quality. Random Forest models developed by Karunaratne
et al. [30] used structural (height) information only, or spectral variables only, as well as
a combination of both models. Wang et al. [15] correlated NDVI information obtained
from multispectral sensors with biomass and visual scores using three types of ryegrass
breeding trials (individual plants, row plots, and swards). They concluded that NDVI can
replace visual scoring of biomass in spaced plants and that it is a helpful proxy for biomass
estimations in different breeding trials. NDVI was also correlated with the yield in row
plots and sward trials. In a follow-up study [40], a large number of individual ryegrass
plants were used to examine DMY estimation through NDVI and plant height data. While
these studies [15,29,30,39,40] demonstrate the potential of features derived from RGB and
multispectral sensors in DMY predictions of extensive breeding trials, most of these studies
were limited either in the diversity of growth stages considered, the number of analysed
vegetation indices or regression techniques used.

Our study improves upon these aspects and builds further upon the high-throughput
field phenotyping procedures for perennial ryegrass breeding developed by Borra-Serrano
et al. [29] and Aper et al. [39]. Those studies demonstrate that canopy height (CH), either
measured on-ground or using RGB-based imagery, is a good predictor of DMY. The
objectives of the present study are: (a) to investigate the potential of using UAV-derived
canopy height information, spectral features obtained with two different sensors (RGB and
MS), and their fusion for yield predictions in diploid and tetraploid perennial ryegrass
(Lolium perenne L.), (b) to compare the models developed per ploidy level and per sensor,
(c) to assess the predictive performance of different machine learning algorithms.

2. Materials and Methods
2.1. Experimental Site and Field Trial Design

The experimental site used is located in Merelbeke, Belgium (50.98 N, 3.77 E) (Figure 1a)
on sandy loam soil. In 2020, the mean daily temperature and annual precipitation measured by
the on-farm weather station were 12 ◦C and 795 mm, respectively. The monthly precipitation
from April until October 2020 was 28.8, 10.9, 81.8, 38.8, 59.6, 125.9, 88.4 mm, respectively, and
the mean monthly temperature reached 11.7, 13.7, 17.4, 17.4, 20.8, 16.1, 11.7 ◦C, respectively,
with a prolonged period of warm and dry weather during spring.
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A breeding trial established to test the performance of 115 diploid and 112 tetraploid
varieties and breeding populations of perennial ryegrass (Lolium perenne L.) was monitored
(Figure 1b). Diploid and tetraploid accessions were spatially segregated (Figure 1b). Within
each group the accessions were arranged in a randomised block design with at least two
replicates, rendering a total of 468 plots of 5.80 × 1.35 m (Figure 1b). Such a trial captures a
broad genetic and phenotypic variation of perennial ryegrass. In addition, it generates a
large disparity in fresh and dry matter yield production.

The trial was established and sown on the 7 May 2019. In the same year, it was
mown multiple times and subsequently fertilised: on 27 June (65 kg ha−1 N, 30 kg ha−1

P2O5 and 115 kg ha−1 K2O), on 24 July (34 kg ha−1 N and 20 kg ha−1 K2O), on 29 August
(26 kg ha−1 N, 12 kg ha−1 P2O5 and 46 kg ha−1 K2O) and 5 November (without fertilisation).
In the subsequent year (2020), the trial was mown five times, following the regional
standard cutting regime. It was also fertilised, on 17 March (88 kg ha−1 N and 140 kg ha−1

K), on 5 May (80 kg ha−1 N, 23 kg ha−1 P and 115 kg ha−1 K); on 2 July (74 kg ha−1 N and
80 kg ha−1 K); and on 3 August (60 kg ha−1 N, 17 kg ha−1 P and 85 kg ha−1 K).
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2.2. Data Acquisition
2.2.1. UAV Data Acquisition

Before each harvest, a UAV flight was performed. The flight mission was carried
out as close to the scheduled mowing date as possible, considering the optimal weather
conditions (no rain, little to no wind and stable illumination conditions). We used two
different sensors: (1) an RGB camera system (α6000, Sony Corporation, Tokyo, Japan)
and (2) a 10-band multispectral camera (Dual Camera System, MicaSense, Seattle, USA)
(Table 1). A UAV DJI Matrice 600 Pro (DJI, Shenzhen, China) platform with a mounted
sensor was navigated along a pre-defined flight path. The flight altitude was set to
40 and 30 m above the ground level for the RGB and MS camera, respectively. The sensor
speed for the two cameras was fixed at 6 m s−1 and 3.9 m s−1, respectively. These flight
parameters and camera settings resulted in 70–70% and 80–80% side and forward overlap
for the RGB and MS imagery, respectively. Images were taken in the morning and around
solar noon (9 a.m.–2 p.m.). Flights with both sensors were executed on the same dates
(4 May, 15 September, and 4 November 2020; Table 2). Per flight with the RGB camera,
almost 200 nadir images were captured versus about 750 nadir images per spectral band
for the MS sensor.

The sensors used differ in the number of bands, width along the visible/near-infrared
region of the spectrum and ground sample distance. The Sony α6000 is a standard
(consumer-grade) digital camera generating three channels that overlap the red, green,
and blue regions of the spectrum. The MicaSense’s Dual Camera System offers double
the number of bands of a standard multispectral camera by integrating the power of two
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sensors: the RedEdge-MX and the RedEdge-MX Blue. The reach of ten narrow bands, with
additional green, red and red-edge bands, provides significantly more spectral information
for advanced remote sensing of vegetation than simple RGB cameras. While the RGB
camera can reach a pixel size of around 0.4 cm, the multispectral sensor provides a coarser
resolution of approximately 1.8 cm. High side and forward overlap are needed to build
a high-quality canopy height model (CHM) based on the Structure from Motion (Sf M)
principle (see Section 2.6).

Table 1. Unmanned aerial vehicle (UAV) data acquisition details.

Sensor Type Sensor Brand Sensor Bands (nm) Ground Sample
Distance (GSD)

Flight
Altitude

Side-Forward
Overlap

RGB Sony α6000
35 mm red, green, and blue ~0.4 cm 40 m 70–70%

Multispectral
RedEdge-MX and
RedEdge-MX blue
(Dual Camera Kit)

coastal blue (444), blue (475),
green (531), green (560), red

(650), red (668), red edge (705),
red edge (717), red edge (740),

NIR (842)

~1.8 cm 30 m 80–80%

2.2.2. Biomass Sampling

The trial was mown five times over the year 2020. For the purpose of this study, we
considered the three cuts/growing periods (Table 2) with the higher yield production which
are traditionally the cuts in spring and autumn. Above-ground biomass samples were
collected with a grass plot harvester (Haldrup F-55, Haldrup, Løgstør, Denmark). The
stubble height was set to 5 cm. The plot fresh matter yield (FMY) was directly measured
by the plot harvester. A sub-sample of between 150 and 500 g was taken automatically by
the machine. Later it was oven-dried for at least 72 h at 70 ◦C to determine its dry matter
content (DMC). To obtain the DMY, the dried material was weighed and then extrapolated
to kg ha−1.

Table 2. Biomass sampling information (* information on one sample missing).

Cut/Growth Period (GP) Harvest Date Number of Samples UAV Flight Date

1 November 2019–May 2020 4/5 May 2020 467 * 4 May 2020
4 July 2020–September 2020 21/22 September 2020 468 15 September 2020

5 September 2020–November 2020 5/6 November 2020 468 4 November 2020

Due to limiting weather conditions for UAV flights (strong wind, changing cloud
cover, which occur frequently in Belgium), constrains from the breeders that are bound
to an “ideal” harvesting moment and the size of the trial (long harvesting time), optimal
execution of subsequent flight and cut was not always possible. The gap between the
flight and harvest date was the largest in September (cut 4). The grass stalks were already
bending across the whole field on the day of the flight, but this did not change until the
harvest. Even though slight changes in vegetation growth (and produced yield) between
flight and cut are possible, we asume that main growth patterns and within-field variability
were captured.

2.3. Schematic Overview of the Workflow

A schematic overview of the workflow (Figure 2) shows the steps and procedures
applied for data collection, processing and modelling. The UAV-derived data were first
pre-processed and stitched (blue). Generated mosaics and digital elevation models were
used to calculate selected Vegetation Indices (VIs) and the Canopy Height Model (CHM)
(green). To extract structural and spectral information for every plot, an integrated Python
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console for scripting was used to automate workflows (red). Afterwards, the obtained
information was fused with biomass data (yellow). Data analysis, including principal
component analysis (PCA), model calibration and validation, was performed in the last
step (grey).

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 29 
 

 

cut are possible, we asume that main growth patterns and within-field variability were 
captured. 

2.3. Schematic Overview of the Workflow 
A schematic overview of the workflow (Figure 2) shows the steps and procedures 

applied for data collection, processing and modelling. The UAV-derived data were first 
pre-processed and stitched (blue). Generated mosaics and digital elevation models were 
used to calculate selected Vegetation Indices (VIs) and the Canopy Height Model (CHM) 
(green). To extract structural and spectral information for every plot, an integrated Python 
console for scripting was used to automate workflows (red). Afterwards, the obtained in-
formation was fused with biomass data (yellow). Data analysis, including principal com-
ponent analysis (PCA), model calibration and validation, was performed in the last step 
(grey). 

 
Figure 2. A schematic workflow illustrating the procedures of data collection, processing and modelling. 

2.4. UAV Imagery Pre-Processing 
Due to differences between the RGB and multispectral sensors, derived data were 

processed in the appropriate software following the procedures described in detail below. 

2.4.1. RGB Camera 
First, images acquired with the RGB sensor were corrected and adjusted for white 

balance and exposure in Lightroom v.6.5. (Adobe Systems Incorporated, San Jose, USA). 
For this purpose, a grey reference card (18% reference grey, Novoflex Präzisionstechnik 
GmbH, Memmingen, Germany) was placed in the field during the flight campaign. The 
raw images were converted to jpeg files. Photogrammetric processing of these images was 
completed with Agisoft Metashape Professional v1.5.5 software (Agisoft LLC, St. Peters-
burg, Russia). In this study, we followed a similar processing workflow as presented in 
previous research [6,29]. The initial stage of photo alignment was set to a “high” quality 
setting, as it helps to get more accurate camera position estimates (User Manual v1.5). The 
key and tie point limit was set to 40,000 and 4000, respectively. Subsequently, nine Ground 
Control Points (GCPs), evenly spread across the field, were used for precise 
georeferencing to scale the model and to enhance photo alignment. The coordinates of the 
GCPs were determined on-site with an RTK GPS (Stonex S10 GNSS, Stonex SRL, Paderno 
Dugnano, Italy). Next, the optimize cameras command was selected. This executes an 
adjustment procedure by fine-tuning interior and exterior camera orientation parameters 
and correcting possible distortions. Dense point cloud generation was applied next, with 
“aggressive” depth filtering and “medium” quality parameter setting. To build a Digital 
Elevation Model (DEM), the dense cloud created in the preceding step was selected as the 
source data. The dense cloud data were also used to generate a polygonal mesh model 

Figure 2. A schematic workflow illustrating the procedures of data collection, processing and modelling.

2.4. UAV Imagery Pre-Processing

Due to differences between the RGB and multispectral sensors, derived data were
processed in the appropriate software following the procedures described in detail below.

2.4.1. RGB Camera

First, images acquired with the RGB sensor were corrected and adjusted for white
balance and exposure in Lightroom v.6.5. (Adobe Systems Incorporated, San Jose, CA, USA).
For this purpose, a grey reference card (18% reference grey, Novoflex Präzisionstechnik
GmbH, Memmingen, Germany) was placed in the field during the flight campaign. The
raw images were converted to jpeg files. Photogrammetric processing of these images was
completed with Agisoft Metashape Professional v1.5.5 software (Agisoft LLC, St. Petersburg,
Russia). In this study, we followed a similar processing workflow as presented in previous
research [6,29]. The initial stage of photo alignment was set to a “high” quality setting,
as it helps to get more accurate camera position estimates (User Manual v1.5). The key
and tie point limit was set to 40,000 and 4000, respectively. Subsequently, nine Ground
Control Points (GCPs), evenly spread across the field, were used for precise georeferencing
to scale the model and to enhance photo alignment. The coordinates of the GCPs were
determined on-site with an RTK GPS (Stonex S10 GNSS, Stonex SRL, Paderno Dugnano,
Italy). Next, the optimize cameras command was selected. This executes an adjustment
procedure by fine-tuning interior and exterior camera orientation parameters and correcting
possible distortions. Dense point cloud generation was applied next, with “aggressive”
depth filtering and “medium” quality parameter setting. To build a Digital Elevation Model
(DEM), the dense cloud created in the preceding step was selected as the source data. The
dense cloud data were also used to generate a polygonal mesh model with the Build Mesh
command. In the last step, the mesh was chosen as a surface onto which the original images
are projected and merged together to generate a georeferenced orthomosaic.

2.4.2. Multispectral Camera

To process the images obtained with the MicaSense Dual Camera System, we used
Pix4D Mapper 4.5.6 software (Pix4D S.A., Prilly, Switzerland). As new 10-band imagery is
not included in the Pix4D database, processing can take a long time, and reflectance maps
might not be aligned. Therefore, a Rig add-on was used. A new rig model with translation
values for the X and Y axis of each band was saved and used in each imagery processing
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session. Three main stages of image processing can be distinguished: (1) Initial Processing,
(2) Point Cloud and Mesh, and (3) DSM, Orthomosaic and Index. In the first step, key
points from images are automatically extracted to determine external and internal camera
parameters. Similar to the Align Photos tool in Agisoft Metashape Professional, a sparse
point cloud is computed. Next, to enhance the project’s global accuracy, GCPs are added
and marked using rayCloud interface. The exact position of the GCP was marked on at least
eight images, and automatic marking was then selected. This process was repeated for all 9
GCPs. Afterwards, the camera parameters needed to be reoptimized (external and internal
locations). In the second step, a 3D point cloud and a 3D textured mesh were generated.

The last step consisted of choosing processing options for the DSM and orthomosaic
generation. DSM noise filtering was applied to filter and smooth the obtained point cloud
with the median altitude of neighbouring points. The surface smoothing parameter was set
to “medium”. The aim of this setting is to keep features sharp while flattening nearly planar
areas. The DSM was generated with the triangulation method as suggested for flat areas such
as agricultural lands. The crucial setting to define is radiometric processing and calibration.
The correction type was set to “Camera and Sun Irradiance” to correct the camera parameters
and the sun irradiance information provided by the light sensors. The radiometric calibration
target (also called the reflectance panel) was used during flight campaigns. The radiometric
calibration image was taken immediately before and after each flight so that lighting and
weather conditions were similar to the ones observed during the flight. The pictures of the
calibration target were automatically recognised and the target region was automatically
marked by the software. The reflectance factor values linked to each band were manually
entered based on values provided by the target manufacturer. The reflectance panels were
used for illumination adjustment, to calibrate and correct the reflectance values of images
(according to the calibration target values). By applying radiometric calibration it is possible
to compare data obtained with different cameras or flights.

2.5. Vegetation Indices Calculation

To calculate a set of Vegetation Indices (VIs), we used the open-source QGIS 3.12.3
with GRASS 7.8.3. software (QGIS Geographic Information System, QGIS Development
Team, Open Source Geospatial Foundation). As the procedure had to be repeated multiple
times over different flight dates, we used a graphical modeller interface to create a chain
of VIs calculations. Models were created separately for data derived from RGB and the
multispectral camera. Either a raster calculator tool or an i.vi function from the GRASS
module was applied for calculations of vegetation indices.

2.5.1. RGB

Based on the RGB-derived spectral data, we selected and computed 9 VIs as candidates
for biomass predictions (Table 3). Most of these VIs were developed to highlight the
orthomosaic’s green component [41] and to indicate spectral variability within vegetation
canopies [42]. The Excess Green Index (ExG) is one of the commonly used VIs for crop
monitoring and soil masking. Combining ExG with canopy height information, especially
with physical height measurements, provides good estimates of grass biomass [6]. The
Excess Red index (ExR) is negatively correlated with biomass. The Excess Green minus
Excess Red index (ExGR) is calculated by subtracting the ExR from the ExG index. This
VI performs well when detecting green vegetation from soil and dead plant material,
as it showed low sensitivity to various soil-residue backgrounds [43]. The Normalized
Green-Red Difference Index (NGRDI) distinguishes vegetation from the other land cover
types [44]. The Green Leaf Index (GLI) provides reliable ground cover estimates that can
be used in studying persistency [45]. The Visible Atmospherically Resistant Index (VARI)
was developed on the concept of the Atmospherically Resistant Vegetation Index (ARVI) to
initiate an atmospheric self-correction [46]. VARI has a more linear relationship with and
was more sensitive to vegetation fraction than NGRDI [46].
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In addition, RGB raster map layers were transformed to an alternative colour space
of hue, intensity and saturation (HIS) using the i.rgb.his tool with the GRASS module.
This colour space was established to provide further representations of subjective human
perceptions [47].

Table 3. List of Vegetation Indices (VIs) derived from the RGB camera system.

Vegetation Index Formula Reference

(Normalized) Excess Green ExG = (2∗G−R−B)
(R+G+B)

[48]

(Normalized) Excess Red ExR = (1.4∗R−G)
(R+G+B)

[49]

Excess Green—Excess Red ExGR = ExG − ExR [50]
Normalized Green-Red Difference Index NGRDI = (G−R)

(G+R)
[44]

Green Leaf Index GLI = (2∗G−R−B)
(2∗G+R+B)

[51]

Visible Atmospherically Resistant Index VARI = (G−R)
(G+R−B)

[46]

Normalized Green Intensity NGI = G
(R+G+B) [48]

Colouration Index CI = (R−B)
R

https://www.indexdatabase.de/search/
?s=color (acessed on 1 December 2020)

2.5.2. Multispectral

Criteria for selecting VIs were (i) general applicability in vegetation monitoring and
(ii) quantitative assessments of growth dynamics (Table 4). The Normalized Difference
Vegetation Index (NDVI), computed as a ratio in the near-infrared (NIR) and red spec-
tral bands [52], is the most commonly used VI, including the assessment of grassland
biomass [53]. Nevertheless, previous research confirms its limitations, as it saturates in
dense vegetation and at high biomass [54]. By applying a weighting coefficient a, Gitel-
son [55] proposed the Wide Dynamic Range Vegetation Index (WDRVI) that improves
the range of NDVI while still using the same spectral bands. This index is sensitive to
changes at high biomass levels [56] and enhances correlation with vegetation fraction [55].
Since NDVI is also susceptible to changes in soil background and is dependent on soil
brightness [57], indices like Soil Adjusted Vegetation Index (SAVI) [58], Second Modi-
fied Soil Adjusted Vegetation Index (MSAVI) [59], and Perpendicular Vegetation Index
(PVI) [60] were added. They were established to reduce soil effects on canopy spectra [59]
and avoid soil background noise [56]. Another essential VI that compensates for some of
the NDVI shortcomings is the Enhanced Vegetation Index (EVI) [61]. EVI is computed
with a combination of three reflectance bands from the NIR, red and blue regions of the
spectrum. It offers a vegetation greenness measure [62], which simultaneously minimises
canopy background (soil) variations and atmospheric influences such as residual contami-
nation [61,63]. In a search for an alternative and additional index resistant to atmospheric
effects, we also applied the Green Atmospherically Resistant Vegetation Index (GARI). This
index is based on the ARVI concept [64], but should be more responsive to a broad range
of chlorophyll (Chl-a) concentrations [65].

The Modified Chlorophyll Absorption in Reflectance Index (MCARI) proposed by
Daughtry et al. [66] is a measure of chlorophyll absorption depth [67]. Previous research
demonstrated its sensitivity to chlorophyll concentration changes. However, at low chloro-
phyll concentrations, MCARI is affected by non-photosynthetic elements [67]. To the best
of our knowledge, no previous study has investigated the applicability of the Photochemi-
cal Reflectance Index (PRI) in biomass predictions of forage grasses with UAV-mounted
multispectral sensors. The PRI formula is analogous to that of NDVI, but here two narrow
bands from the green part of the spectrum are used. PRI indicates photosynthetic radiation
efficiency [68]; however, recent studies also examined its potential for Light Use Efficiency
(LUE) estimations [69]. The green Chlorophyll Index (CLg), proposed by Gitelson et al. [70]
is reported to be a very good indicator of chlorophyll content. Finally, the Simple Ratio
Index (SR) is a basic VI that can help distinguish green vegetation from other objects.

https://www.indexdatabase.de/search/?s=color
https://www.indexdatabase.de/search/?s=color
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Table 4. List of Vegetation Indices (VIs) derived from the multispectral sensor. Abbreviations besides each band correspond
to centre wavelengths in nm.

Vegetation Index Formula Use Reference

Normalized Difference
Vegetation Index NDVI = NIR842−red668

NIR842+red668
to detect plants greenness, green

biomass and phenology [52]

Green Normalized Difference
Vegetation Index GNDVI = NIR842−green531

NIR842+green531
to detect green biomass, nitrogen

concentration, LAI estimation, [65]

Wide Dynamic Range
Vegetation Index WDRVI = αNIR842−red668

αNIR842+red668 sensitive at high LAI [55]

Soil Adjusted Vegetation
Index

SAVI =
(1+0.5)∗(NIR842−red650)
(NIR842+red650+0.5)

to correct for the soil brightness
influence when vegetative cover

is low
[58]

Second Modified Soil
Adjusted Vegetation Index

MSAVI = (1/2) ∗ (2 ∗ NIR842
+ 1 − sqrt((2 ∗ NIR842 +1)2 −

8 ∗ (NIR842 − red668)))
to minimize the effect of soil [59]

Perpendicular Vegetation
Index

PVI = sin(a)NIR842 −
cos(a)red668 to correct for the soil influence [60]

Enhanced Vegetation Index EVI =
2.5∗(NIR842−red650)

(1+NIR+6∗red650−7.5∗blue444)

to detect green biomass, canopy
greenness and phenology [61]

Green Atmospherically
Resistant Vegetation Index

GARI =
NIR842−(green531−(blue444−red650)
NIR842+(green531−(blue444−red650)

to sense the chlorophyll
concentration, the photosynthesis

rate and to monitor plant stress
[65]

Modified Chlorophyll
Absorption in Reflectance

Index

MCARI = ((rededge705 −
red668) − 0.2 ∗ (rededge705 −

green560)) ∗
(rededge705/red668)

to measure chlorophyll
concentration, canopy phenology

and senescence
[66]

Photochemical Reflectance
Index PRI = green531− green560

green531+ green560
to measure of the light-use

efficiency, water stress detection [71]

Chlorophyll Index Green CLg = NIR842/green531 − 1 to estimate chlorophyll content [70]

Simple Ratio SR = NIR/rededge717 to detect green vegetation [72]

2.6. Canopy Height Model Calculation

Digital Surface Models (DSM), representing the top of the canopy surface, were
generated using data derived from the two sensors and during three flight campaigns.
The procedures and selected parameters used to create DSM are described in greater
detail above (Section 2.4). In both cases, the Structure from Motion (Sf M) technique was
implemented to process the images. Sf M has become a standard solution for a wide array
of mapping applications [73], as it employs several 2-dimensional images to reconstruct
the 3-dimensional structure of a selected landscape. To compute the Digital Terrain Model
(DTM), we applied the Delauney Triangular Irregular Network (TIN) using TIN interpolation
tool within the QGIS 3.12.3 with GRASS 7.8.3. software (QGIS Geographic Information
System, QGIS Development Team, Open Source Geospatial Foundation). For this purpose,
33 ground points, evenly spread across the experimental field, were georeferenced on-site
with an RTK GPS (Stonex S10 GNSS, Stonex SRL, Paderno Dugnano, Italy).

Even though all DSMs were computed using the same parameters, slight differences
in the flight altitude and the overlap resulted in minor differences in pixel size. Hence,
prior to Canopy Height Model (CHM) calculations, all DSM rasters were aligned to the
reference DTM. We applied the Align Raster tool with the Nearest Neighbour resampling
method. The canopy height (CH) was calculated by subtracting the DTM from the DSM at
the pixel level. As we used two different sensors in this study, CH based on RGB camera
(CHRGB) and CH based on MS sensor (CHMS) are distinguished and compared. For this
purpose, the coefficient of determination (R2) using linear regression was calculated, while
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for error estimations root mean square error (RMSE) and relative RMSE were computed
(explained in Section 2.10.1).

2.7. Data Extraction and Dataset Preparation

Polygonal shape files for each plot were created in QGIS 3.12.3 with GRASS 7.8.3.
software (QGIS Geographic Information System, QGIS Development Team, Open Source
Geospatial Foundation). A margin of 0.2 m and 0.3 m was excluded from the plot’s boundary
to account for border effects. In the next step, we extracted median (p50) and interquartile
range (IQR) statistics from VI layers and p50, p90 and IQR from CH raster layers for each
plot using the v.rast.stats tool in the GRASS module. An integrated Python console for
scripting was used to automate the procedure.

UAV-based canopy structural (CH) and spectral information (VIs) and their fusion
were employed to predict dry matter yield (dependent variable) on a plot per plot basis.
As a result, eight feature combinations were tested and compared. First, we built simple
regression models (linear model, LM) with median height as the only variable separately
for RGB (1.CHRGB) and MS sensor derived data (2.CHMS). These became reference models
used for further comparison. Next, only spectral information was used to generate three
different datasets: Vegetation Indices based on the RGB sensor data (3.VIRGB); VIs relying
on RGB sensor data combined with information from HIS colour space (4.VIRGB + HIS),
and VIs based on the MS sensor data (5.VIMS). In the last stage, we fused structural (canopy
height) and spectral information according to the implemented sensor to build three new
models: (a) 6.CHRGB + VIRGB, (b) 7.CHRGB + VIRGB + HIS, and (c) 8.CHMS + VIMS.

2.8. Principal Component Analysis

To understand relationships and uncover patterns in this complex dataset and to better
understand the relations between the different VIs, a principal components analysis (PCA)
was implemented. We used the FactoMineR [74] and factoextra [75] packages in R. The results
were visualised using a biplot that combines score and loading plots in a single graph. A
score plot projects samples (points), while a loading plot projects the variable information
(vectors) over the first two PCs. Consequently, biplots highlight the most prominent patterns
on how phenotypic elements vary [17]. The median value (p50) of each predictor variable
per plot, both RGB and MS-based, was applied in the PCA. To make variables comparable,
data were standardised before the analysis. In the analysis, ploidy level and cut were added
as categorical (qualitative) supplementary variables, while measured dry matter yield was
set as a continuous (quantitative) supplementary variable. These supplementary variables
had no influence on the determination of the principal components.

2.9. Modelling Methods

In the modelling framework, the dry matter yield (DMY) was set as the target vari-
able. In order to compare the sensitivity of the biomass estimation concerning ploidy
level, models were built separately for diploids, tetraploids and all the plots together. We
compared three machine learning algorithms: Partial Least Squares Regression (PLSR),
Random Forest (RF), Support Vector Machine (SVM) with a linear model (LM). The algo-
rithms were selected based on the differences in their mathematical approach. PLSR is a
dimensionality reduction technique that performs predictor reduction to a simpler set of
uncorrelated components [76]. RF is an ensemble-based classifier predicting a combination
of decision trees [77]. SVM builds hyperplanes to separate classes of points with a maximal
margin [78]. Mean centring and scaling of variables (data standardisation) was performed
before the modelling procedure and embedded in the inner resampling loop of a nested
cross-validation approach as described below.

To understand the relevance of the predictor variables used to generate an RF model
and to define how such a model uses these variables to generate an accurate prediction, a
variable importance measure (VIMs) was applied. Random Forest importance measures
(e.g., Gini importance or permutation) have frequently been used [79] but recent research
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has shown that VIMs in RFs are unreliable, especially when variables differ in the number
of categories or the measurement scale [79]. Bias is also present towards correlated variables
with dependence structures as they are preferred in splits, thus they are assigned more
importance [80,81]. To address this a new conditional permutation importance (CPI)
scheme was applied with enhanced methodology from the permimp package using R v4.0.2
in RStudio v1.3.1093 (RStudio: IDE for R, R Studio Inc., Boston, MA, USA). This method
improves computation stability and its interpretability [82]. To check whether the results
were reliable, the procedure was repeated three times (with different seeds), and the mean
variable importance measure was reported.

2.10. Model Performance Assessment
2.10.1. Nested Cross-Validation

The simplicity of cross-validation (CV) makes it a popular and widespread strat-
egy [83] for evaluating the prediction error [84]. In k fold cross-validation, a dataset is
divided into k folds, also known as partitions. A model is refitted k times, where each
fold is withheld and used for model testing (validation), while all the remaining folds are
utilised for model training (calibration) [83,85]. Despite all the benefits, the proper use of
CV requires that all the steps like parameter tuning and model selection are incorporated in
the procedure of data partitioning [84,86]. This requires a repeated nested CV technique to
assess and compare model performances. Previous studies [84,85,87] have demonstrated
the need for repeated CV and confirm that this approach produces robust estimates while
limiting overfitting effects.

In this study, we applied the nested CV method with 10 folds in the outer resampling
loop and 5 folds in the inner resampling loop with random partitioning. We repeated
the process five times as a compromise between computational time requirements and
randomness influence reduction. The inner resampling loop was used for hyperparameter
tuning and model selection. The outer resampling loop was used for predictive perfor-
mance evaluation. We implemented the procedure of nested CV in the R software, using
the mlr package [88].

The performance of model predictions was quantified by computing root mean square
error (RMSE) (1) and relative root mean square error (rRMSE) (2).

RMSE =

√
1
n

n

∑
i=1

(yi − xi)
2 (1)

rRMSE =
RMSE

x
(2)

where yi is the measured variable, xi is the predicted variable, n is the number of samples,
and x is the average measured variable (DMY). Final performance estimates are not only
across ten outer folds but also across five repetitions, totalling fifty estimate measures.
Therefore, in addition to mean errors, we also report the standard deviation of errors (that
relate to precision). Box plots presented in the results section are based on a summary of
first quartile (Q1), median, third quartile (Q3), and upper/lower extremes with the outliers.

Pairwise comparison using Wilcoxon’s Signed Rank Test was performed to identify
whether a statistically significant difference exists between the rRMSE of compared models
(datasets). We selected a significance level of α = 0.05.

2.10.2. Hyperparameter Tuning

The default hyperparameter settings cannot ensure optimal model performance in
a machine learning algorithm. Therefore, the hyperparameters should be optimised to
achieve robust estimates [89,90]. In general, automatic optimisation should be implemented,
instead of manual selection, to find the best and optimal parameter setting [90]. Hence, in
this study, a grid search was applied, as it is the most commonly used approach [91].
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Several hyperparameters should be set for the RF algorithm, including the number of
randomly drawn variables for each split (mtry), the number of trees in a forest (num.trees), the
minimum observation numbers in a node (min.node.size) or the splitting rule (splitrule) [89].
For the mtry parameter, we selected a default value that is the square root of the number
of variables (rounded down). The num.trees parameter incorporated a combination of the
default 500 trees, with 1000 and 1500 trees in a model. Default min.node.size parameter was
set to 1 for classification, 5 for regression, and 10 for probability. We used all these values
in the grid search. For the PLSR algorithm, only the ncomp parameter was tuned by using
1, 2, 4, or 6 components. It represents the maximum number of components to consider
when defining the global minimum in the CV. The most critical parameters to tune in the
SVM algorithm are kernel functions, degree, cost and gamma. The choice of the kernel
function is the main decision [78]. Kernel function was polynomial, radial basis, or sigmoid,
while degree was set to 1 (to obtain a linear approach) and 3 (as the default value for a
polynomial function). The cost value controls how “soft” the margin is. Thus, low values
accept more cases inside the boundary (wider margins), while higher values impose a greater
penalty on including cases in the margin. Here, we optimised the cost hyperparameter using
0.1, 1, 10 and 100 values. The gamma parameter controls the influence of individual cases on
the shape of the decision boundary. Here, tuning among gamma = 0.001, 0.1, 1, 3 was applied.

3. Results
3.1. Distribution of Measured Dry Matter Yield

Measured dry matter yield (DMY) ranged between 433 kg ha−1 and 6506 kg ha−1 in
diploids with a mean of 2112 kg ha−1 when all three cuts were considered. For tetraploids,
DMY ranged between 733 kg ha−1 and 7595 kg ha−1 with a mean of 2905 kg ha−1 when all
three cuts were taken into account (Table S1).

On average, tetraploids produced more biomass than diploids across all cuts analysed.
The highest yield production was observed during the first cut, in May; 4058 kg (±854) and
5520 (±761) kg ha−1 were collected on average in the first cut for diploids and tetraploids,
respectively.

Figure 3 shows that in the first cut there was the highest variability in DMY for both
diploids and tetraploids. In contrast, the lowest DMY and the lowest variability was noted
during the fifth cut. At this cut, on average, 882 (±160) and 1193 (±185) kg ha−1 were
collected for diploids and tetraploids, respectively.
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3.2. Comparison of UAV-Based Canopy Height Models Derived from Two Sensors

To generate accurate DSMs, nine GCPs were evenly distributed across the field area.
The average and standard deviation error estimates (calculated as RMSE) across these
GCPs for the XY-plane were 0.044 ± 0.015 and 0.035 ± 0.010 m and 0.012 ± 0.002 and
0.009 ± 0.002 m for the Z-plane for the RGB and MS imagery, respectively, showing a
slightly better result for the MS sensor data.

Good agreement was found between mean CHRGB and mean CHMS (R2 = 0.93,
Figure 4a), with an RMSE of 0.02 m and rRMSE of around 11%. In general, lower canopy
height values (approx. −27%) were obtained with MS imagery (Figure 4b), especially for
the flight taken before the fifth cut, when canopy height barely reached 0.2 m. Those CHs
also yielded lower correlation values, while the highest correlation value was observed for
the first cut. CH just before the first cut reached the highest values with high variability
between different plots.
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3.3. Principal Component Analysis

A PCA was carried out to evaluate the relation of all variables (CH and VIs) considered
(Figure 5). A considerable fraction of the variation (92.7%) in the multi-dimensional data
was explained by the first two principal components. The first axis (PC1) captured 72.5%
of the present variation, while the second axis (PC2) described 20.2%. These two PCs were
evaluated as a sufficient outline of the essence of the data and were retained for further
data projection and visualization in a low-dimensional space.

Notable in the PCA biplot is the difference among clusters of observations associated
with different cuts. Data collected at the first, fourth and fifth cut differ from each other.
For data collected at the first cut, there was a considerably larger variation present for both
principal components compared to the other cuts. For the fourth cut, samples showed low
values for PC1 and high values for PC2, while for the fifth cut there were lower values both
on the first and second PC. When considering individual cuts, one can observe similarities
among plotted samples. The distances among points were greater only for the first cut, as
observations spread diagonally across two dimensions (PC1 and PC2). This indicates more
differences and a larger variation across observations. Differences in sample clustering were
also noticeable on the ploidy level, as diploids and tetraploids grouped separately with some
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overlap (Figure 5). These differences between diploids and tetraploids are pronounced, for
instance, in the fifth cut, as points represent different values on the PC1 axis.
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A PCA biplot also projects the variable information through vectors and represents
the correlation among variables. VIs grouped together with small angles, like PVI, WDRVI,
HUE, NDVI or GNDVI, GARI and SR717 were all positively correlated. In contrast, PRI
and CI were negatively correlated, as they were placed on opposite quadrants. The angle
of 90◦ suggests that variables such as MSAVI and ExGR, or ExR and EVI, are not correlated
and are either independent or complementary. Variables that are further away from a PC
origin indicated higher quality and better representation on the factor map and thus had a
bigger effect on a specific PC. Values of quality of representation (cos2) and contribution
of variables (contrib) for both axes were the greatest for VIs grouped closely together,
including GLI, ExGR, NGI, and ExG. Other essential variables explaining high variability
in analysed PCs are WDRVI, GARI, and NDVI. NDVI and VARI variables correlated best
with the PC1. This implies that high PC1 values indicate greener plants, higher vegetation
vigour and coverage. Even though not closely aligned to the PC2 axis, two VIs (EVI and
PRI) were positively correlated with this axis. Higher EVI values generally point out
healthy vegetation and a higher leaf area index. In contrast, MCARI pointed towards lower
PC2 values, which implies that in general high MCARI values signal low leaf chlorophyll
content. This was in accordance with the opposite direction of the CLg vector describing the
chlorophyll content. The intensity arrow points towards lower PC1 and higher PC2 values,
and also in the opposite direction to the saturation arrow, indicating that the variables
are negatively correlated. Observations plotted for the first cut spread out parallel to the
intensity and saturation arrow, with tetraploids reaching generally higher intensity and
lower saturation values than diploids. For the first cut, bending of the leaves was observed
in a relatively high number of tetraploid plots. Bent leaves appeared lighter on an image
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(Figure 6) due to near specular light reflection, thus reaching higher intensity and lower
saturation values. This was also visible in the orthomosaic of the spring cut (Figure 6).
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Figure 6. Close-up view of bending plots for some tetraploid varieties just before the first spring cut.

3.4. Model Building for Dry Matter Yield Predictions

DMY was modelled using canopy structural and spectral information. The framework
integrated models developed for different ploidy levels (all plots, diploid, tetraploid) and
three machine learning algorithms (PLSR, RF, and SVM). As predictive performances
were quantified with RMSE and rRMSE estimates across 50 repetitions, the results are
demonstrated as distribution box plots (Figure 7) and as mean values (Table S2).

Independent of ploidy level, CHMS proved to be a better DMY predictor variable in
linear regression than CHRGB (Figure 7). The CHMS dataset also reached similar mean rRMSE
values (around 30%) independent of ploidy level. This was not the case for the CHRGB dataset,
where results vary among groups of observations. In general, the mean RMSE for the CHRGB
dataset accounted for 897 kg ha−1 (rRMSE of 35.9%), 654 kg ha−1 (rRMSE of 31%), and
986 kg ha−1 (rRMSE of 34%) for all plots, diploids, and tetraploids, respectively.

Both PLSR and SVM share a number of similarities in their performance (Figure 7).
For instance, PLSR and SVM models built with RGB-based spectral variables only (dataset
3 and 4) performed worse in yield predictions than any other feature set compared. For
tetraploids only, it provided better mean error metrics than a simple linear regression
built with CH information only. Visual comparison of error distribution in those feature-
algorithm pairs also often indicates much more variability in predictions with a larger
estimate spread. This pattern was similar for diploid, tetraploid and all varieties considered.
Additionally, with both PLSR and SVM models, there was a considerable improvement in
yield predictions when spectral VIs derived from the multispectral sensor were used.

Among the tested machine learning algorithms, RF performed the best on average,
irrespective of the ploidy level or the dataset used. We focus on this algorithm for fur-
ther comparison. In general, adding hue, intensity and saturation (HIS) features, either
to RGB-based VIs or their combination with CH, produced either slightly worse, simi-
lar or slightly better average error estimates across ploidy levels. The Wilcoxon Signed
Rank Test (Figure S1) for the comparisons dataset 3 vs. 4, and dataset 6 vs. 7 reached a
p-value > 0.05. Thus, we failed to reject the null hypothesis that tested groups have the
same predictive error and can conclude that the inclusion of HIS information did not result
in substantial model improvements. Comparison of models built with spectral data derived
from the RGB (3.VIRGB or 4.VIRGB + HIS) and the multispectral sensor (5.VIMS), indicates
that MS-based VIs are better predictors of DMY regardless of ploidy level. In all cases,
the p-value was lower than the threshold value of 0.05, meaning that the differences are
statistically significant (Figure S1). For the VIMS dataset, the mean rRMSE values reached
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17.2%, 19.6%, 14.9% for all plots, diploids, and tetraploids, respectively. For the VIRGB + HIS
dataset, these values were higher and accounted for 21.1%, 21.1%, and 17.2%, respectively.
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based (1.CHRGB) and MS-based canopy height model information (2.CHMS) was used as a reference model. Vegetation
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colour space (4.VIRGB + HIS), and finally, Vegetation Indices based on MS sensor (5.VIMS) were selected as spectral features.
In the last step, structural and spectral information were fused together (6.CHRGB + VIRGB), (7.CHRGB + VIRGB + HIS), and
(8.CHMS + VIMS). Models were built with data collected separately before all three cuts for diploid, tetraploid and both
ploidy levels combined (all plots).

We also examined whether combining structural (CH) and spectral features (VIs) im-
proved the predictions of DMY. By fusing structural and spectral information, better results
were obtained for both RGB and MS sensor derived data. The results of the pairwise compar-
ison using Wilcoxon’s Signed Rank Test demonstrated that model predictions of compared
datasets (dataset 4 vs. 7, and dataset 5 vs. 8) were statistically significant (p < 0.001). Even
though the improvement was more clear for the RGB-based dataset (based on the difference
between mean rRMSE values), the combination of MS-based variables (8.CHms + VIms)
proved to be the best DMY predictor of all (Table S2, estimates marked in red). When
considering all plots in combination, the mean RMSE reached 382 kg ha−1 and rRMSE was
approximately 15.3%. For diploids, the RMSE averaged 308 kg ha−1 and rRMSE 14.6%. For
tetraploids, this best performing feature-algorithm pair produced the lowest rRMSE of 13.1%
(mean RMSE of 380 kg ha−1). Even though MS-based predictors (CHMS + VIMS) reached
the lowest mean rRMSE values, results of the Wilcoxon test for tetraploids showed that
it was inconclusive whether a statistical difference exists between models built with RGB
(6. CHMRGB + VIRGB) or MS-based (8.CHMS + VIMS) data (p-value = 0.27).

Another important factor to consider while comparing models is error distribution
information (e.g., through box plots). Such an approach can help to understand whether
(a) models are precise or not, and whether (b) the model performance is variable and
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dependent on the random data split. It means that it should perform well, regardless of the
random data split. The interquartile range (IQR) value of error distribution (rRMSE) for the
model built with the RF algorithm and CHMS + VIMS variable combination was only 2.8%
(all plots), 2.4% (diploids) and 2.6% (tetraploids). In contrast, the highest IQR value of 8%
was recorded for the SVM model built with RGB-based spectral data (3.VIRGB) and diploid
samples, which highlights a much larger spread and variability in predictive performance.
In Figure 7, it is apparent that adding MS-based CH information to MS-based VIs improved
predictions (i.e., 5.VIMS vs. 8.CHMS + VIMS). However, this improvement was lower for
tetraploids. It seems that datasets containing spectral features from the MS sensor only
(5.VIMS) already provided very good results across all tested algorithms. Averaged rRMSE
of 16.4%, 14.9% and 15.3% was reached for the PLSR, RF, and SVM algorithms, respectively.

3.5. Variable Importance

To interpret which predictor variables were relevant while generating a Random
Forest model, a new conditional variable importance technique was implemented [82]. The
higher the importance score presented below, the more influential the predictor variable is.
Figure 8 provides the results for the spectral features (a), and the changes when CH data
were added (b) based on the RGB sensor. The top five important variables were similar
across the analysed groups (hue, VARI, intensity, ExR, NGRDI). However, the value of the
importance measure and thus the ranking varied among the groups.
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For tetraploids, hue (p50), VARI (both p50 and IQR), intensity (IQR) and ExR (p50)
were among the topmost important variables when building the RF model. For diploids,
the most relevant features were hue (both p50 and IQR), followed by VARI (p50 and
IQR), ExR (p50), NGRDI (p50), and intensity (p50 and IQR). When both ploidy levels were
combined to build the RF model, intensity (both p50 and IQR), hue (p50 and IQR) and VARI
(p50 and IQR) showed the most importance. While variables such as ExR and NGRDI are
relevant for models built for tetraploids and diploids, they have only limited importance
when all plots are taken into account.

As compared to the RGB-based variables, features derived from the multispectral
sensor (Figure 9a) indicated fewer similarities between ploidy levels. When considering
models built for tetraploids, EVI (IQR) and SAVI (IQR) show the most relevance in gen-
erating accurate predictions. SAVI (p50), SR717 (IQR), and EVI (p50) are the next in the
ranking with lower importance values. In contrast, for diploids PVI (IQR), SR717 (p50) and
GNDVI (p50) are the most relevant spectral features when predicting DMY. Comparable
importance values were also obtained for SR717 (IQR), CLg (p50), EVI (p50), MSAVI (p50),
and WDRVI (IQR). When all the spectral observations belonging to both diploids and
tetraploids were used in the RF model, the computed importance was the highest for the
SAVI (IQR) and EVI (IQR) vegetation indices. SAVI (p50), SR717 (IQR), and MSAVI (IQR)
are the next in the ranking as they showed similar importance values.

By adding CH data to the spectral features (Figures 8b and 9b), variable importance
values change and CH features become the most dominant. This was similar across
different ploidy levels and sensors used to derive the data. Even though the importance of
VIs becomes very low, the pattern in their ranking remains similar.
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4. Discussion
4.1. UAV-Derived Height Data: Accuracy and Characteristics

Previous work has shown that canopy height (CH) is positively correlated with
grass biomass [92]. It is not surprising that a rising plate meter (RPM) is one of the
tools most commonly used for physical measurements of grassland sward height [93]
and the assessment of standing biomass, as it cleverly assesses both canopy height and
density. However, linear relationships between RPM-based measurements and biomass
are restricted in accuracy caused by canopy density, architecture and plant developmental
stage [31]. Furthermore, RPM measurements do not work well in non-uniform grass
swards with sparse and poor growth [6]. Borra-Serrano et al. [29] found that models
built with UAV-derived canopy height information based on an RGB sensor achieved
lower rRMSE values (27.6%) than models based on RPM data (31%). Hence, UAV-based
canopy height estimations can replace the RPM method for biomass predictions [29]. In this
study, we created CHMs separately from imagery obtained from RGB and multispectral
sensors. A very good correlation was found between the CH derived from both sensors
(R2 = 0.93), but the MS-derived CHM delivered better predictions of DMY (rRMSE of 29.7%,
all samples) than RGB-based CHM (rRMSE of 35.9%, all samples), irrespective of the ploidy
level used to build the model.

This result might be explained by differences in the photogrammetric reconstruction
by Structure from Motion (Sf M) in the software used. Even though Agisoft Metashape and
Pix4Dmapper follow a generic and similar workflow, different settings and parameters
need to be selected in the image processing which are inherent to the software. Variation of
the viewing geometry or defined flight altitude between tested sensors provides another
possible explanation. For both sensors, sufficient overlap was set while planning the flight.
However, for the RGB system a lower side and forward overlap (70%) was achieved. In
addition, there were fewer RGB images where the GCPs were visible, and in some parts
of the model, there was a lower number of overlapping images. This may be caused by
problems with camera triggering or blurry images.

4.2. Structural and Spectral Data Fusion and Its Impact on Predictive Performance

The primary aim of this study was to investigate the potential of UAV-derived canopy
height information, spectral features (VIs) and their fusion for the prediction of dry matter
yield (DMY) in perennial ryegrass using two sensor types. Combining structural and
spectral features delivered better performance estimates compared to models where either
CH data or VIs were used alone, irrespective of the ploidy level used to build the model.
By adding RGB-based height information to VIs, average rRMSE improved from 21.1% to
16.5%, from 21.1% to 16.3%, from 17.2% to 13.6% for all plots, diploids, and tetraploids,
respectively. For MS-based data, similar model improvements were found: from 17.2% to
15.3% for both ploidy levels combined, from 19.6% to 14.6% for diploids, and from 14.9%
to 13.1% for tetraploids.

Other studies have also tested different structural and spectral feature combinations
for modelling biomass. For example, Michez et al. [94] examined the potential of im-
agery acquired with a UAV at a very fine spatial scale. Their experiment on mixtures
of perennial ryegrass and white clover showed (as in this study) that combining sward
height with spectral information (VIs and reflectance) provided the best performing model
(RMSE = 900 kg ha−1). The complementarity of spectral and structural information was
highlighted, even though 45% of the model variance was associated with sward height.
Michez et al. [95] also utilised two sensors: an RGB and a four-band multispectral sensor.
The RGB sensor was only used to obtain the height model, and the multispectral sensor
was used to derive four bands and four VIs. In the present study, in which we considered a
large number of plots (468 in total) and three cuts across the growing season, we confirmed
the main findings of Michez et al. [95], who only collected 40 samples at one point in time.
Furthermore, here, we did not only explore different predictor combinations or ploidy levels,



Remote Sens. 2021, 13, 3459 20 of 27

but we also compared different learning algorithms, while Michez et al. [95] implemented
simple linear regression modelling with stepwise selection to test three feature combinations.

Viljanen et al. [6] also demonstrated that prediction models of DMY based on the
combination of height (referred to as 3D) and VI features achieved the best results in a
timothy-meadow fescue mixture. They compared multiple linear regression (MLR) and
Random Forest (RF) approaches. For the first technique, the RMSE and rRMSE (referred
to as nRMSE) reached 340 kg ha−1 and 12.9%, while for the second algorithm RMSE and
rRMSE were 370 kg ha−1 and 14.1%. In comparison, the lowest mean rRMSE estimates
reported in our analysis for the RF regression (CH + VIs combination) was 382 kg ha−1

(15.3%), 412 kg ha−1 (16.5%) for MS-based and RGB-based variables, respectively (when all
plots were considered). Thus, the models developed in both studies perform on a similar
level (range), with those of Viljanen et al. [6] working slightly better. All features (CH,
VIs, and bands combined) provided very good results with rRMSE of 15.1% for the RF
method. In their case study, they used data collected from two sensors, including RGB and
hyperspectral (red and NIR region), to compute VIs. However, the VIs were not compared
but rather fused together.

A recent study by Karunaratne et al. [30] examined a series of RF models fitted
with structural information (referred to as Sf M in [30]), spectral information (referred to
as VI in [30]), and the fusion of both (Sf M + VI). They generated features from a five-
band multispectral sensor in a research design very similar to that in our study. They
also demonstrated that fusion of spectral and structural features outperformed the other
tested models at all flying altitudes (flights at 25, 50, 75 and 100 m were compared). In
general, data collected at 25 m flying altitude, which also had the highest resolution,
delivered the best result, with an RMSE of 327 kg ha−1 and an rRMSE of 16.6%. For
each flight altitude, the best predictive model reached an RMSE lower than 440 kg ha−1

(rRMSE values lower than 23%). In our study, the flight altitude for the multispectral
sensor was set to 30 m (minimum height recommended by the sensor manual). Hence,
it may be compared with the best performing model fitted with data collected at 25 m
(rRMSe of 16.6%) reported by Karunaratne et al. [30]. Comparable models built in the
present study with structural and spectral features reached an RMSE of 382 kg ha−1 and
rRMSE of 15.3% for all samples. This implies that we achieved a slight improvement in
the predictive performance, even when combining information from three cuts throughout
the growing season. Another aspect similar to both compared studies is the size of the
calibration dataset. In this study, a breeding trial with a wide range of varieties/populations
was used to generate variation in the forage crop growth. For the experiment designed
by Viljanen et al. [6], variation was achieved with different nitrogen fertilizer levels and
cutting dates (96 plots in total in timothy-meadow fescue mixture). DMY reported by
Viljanen et al. [6] ranged between approximately 200 kg ha−1 and 6100 kg ha−1. In a study
by Karunaratne et al. [30], a number of sub-paddocks sown with perennial ryegrass were
selected and weekly measurements were performed to capture spatio-temporal variability
and heterogeneous nature of an analysed pasture. The pasture DMY ranged between
approximately 500 kg ha−1 and 3500 kg ha−1.

4.3. Key Predictor Variables Linked to DMY Estimations

In the current study, 23 spectral variables were computed from UAV datasets compris-
ing 11 features derived from the RGB (VIRGB and HIS), and 12 features from the MS sensor
(VIs). We identified the most important predictor features within the best performing ML
technique (RF) using a new conditional permutation importance (CPI) scheme [82]. VARI,
intensity, hue and ExR were among the topmost important spectral variables derived from
the RGB sensor (independent of the ploidy level). Features obtained from the MS sensor
showed fewer similarities between ploidy levels. Overall, SAVI, EVI, SR717, PVI, and
GNDVI were found to be among the most important spectral features. It is also important
to note that a PCA biplot (Figure 6) showed the highest positive correlations between
DMY and the following indices: MSAVI, SAVI and EVI. Results also demonstrated that CH
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variables become the most dominant, with the highest importance values, when fused with
spectral features. These findings are similar to some extent to those reported by Viljanen
et al. [6] and Karunaratne et al. [30]. The former study showed that CH features performed
better than the analysed VIs when fused together in a dataset. In the latter study, it was
found that at higher flying altitudes (50, 75, and 100 m), CH features were among the
most important variables. For the 25 m model, no CH features were recorded among
the top ten most important variables. This could be attributed to a better separation of
canopy elements at higher altitudes and a better field of view useful in 3D point cloud
generation [30]. Viljanen et al. [6] also noted that NIR-based VIs provided better results
than the RGB-based VIs. Similarly, our models built with MS-based variables provided
better results than those based on the RGB camera. Importantly, NDVI was not found
across the top most important variables in the analysed modelling framework, irrespective
of the ploidy level. This conclusion is therefore similar to that of Karunaratne et al. [30]
and Alckmin et al. [31] who argued that predicting DMY with NDVI alone (as performed
in past studies) is suboptimal. This is probably due to the saturation phenomenon when
the crop reaches higher leaf area index levels. In contrast, EVI and GNDVI saturate less at
higher leaf area index values and were identified as major predictor variables.

4.4. Transferability and Generality of a Model—Limitations

The essential goal of predictive modelling of forage DMY in a breeding context is
to develop robust and accurate models that can capture and predict yield variability in
space (over other locations/within plots) and time (over different seasons/years). Besides
assessing spatial variation in the field, it should also make it possible to uncover genetic
variation available in the breeding gene pool (applicability to a large set of varieties and
populations). Hence, a suitable set of predictor variables must be generated that perform as
explanatory model drivers [30]. In the current study, several combinations of structural and
spectral features were tested with three machine learning techniques. In general, diploids
and tetraploids in perennial ryegrass differ not only in anatomical aspects (e.g., larger
cells and higher water content in tetraploids) but also in plant morphology. Tetraploids
have larger and more intensely green leaves, but also a lower number and density of
tillers than diploids [95]. These characteristics can be distinguished through remotely
sensed data. Therefore, models were fitted separately for diploid and tetraploid varieties,
as well as both ploidy levels combined (all plots). Models developed for diploids and
tetraploids differed slightly. On average, models built with tetraploids achieved lower
mean rRMSE values across all tested feature combinations and algorithms (e.g., 13.1% for
the best performer) than models fitted with diploids (e.g., 14.6% for the best performer).
When all varieties and populations were included in the modelling framework, the results
were either slightly worse or better as compared to diploid models. Differentiating models
based on the ploidy degree might be useful in the breeding programmes, as these two
groups are bred separately. Nevertheless, for practical farm-scale applications, the use
of more general models that encompass a wide range of varieties, and even species is
necessary. Grasslands are often sown with a mixture of diploid and tetraploid cultivars or
even different species. Hence, in practical terms, integrating and applying a general model,
despite its slightly lower accuracy, can provide substantial benefits for farmers.

Although this study focused on different growth periods, we only considered one-year
data and just three of the growth periods (three cuts). Future work should explore adding
information collected in other seasons/years and locations/conditions. The methods used
in this study for model performance assessment measure in- or out-of-sample accuracy,
but do not allow to evaluate model generality or transferability (to other locations) [96].
Therefore, future studies will need to accommodate the factors mentioned. A modelling
and validation framework with multi-year data across different field trials and independent
samples should be considered and the developed models might need updating. Additional
features, related to weather or soil conditions could also be tested and evaluated as model
drivers in DMY predictions.
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4.5. RGB vs. Multispectral Sensor for Perennial Ryegrass DMY Predictions

Due to the variation of above-ground biomass in forage grasses over space and time,
it is very important to compute robust predictor variables that will perform well as model
drivers. In the present study, we used a consumer-grade RGB camera and a ten-band
multispectral system. As the multispectral camera provides higher spectral resolution,
it could be assumed that it will also enable better DMY estimates. The results presented
here demonstrate that models fitted with MS-based features provide lower mean rRMSE
estimates than those based on the RGB camera. This outcome was independent of the
machine learning algorithm applied. However, for the best performing algorithm (RF),
the differences between data derived from two sensors were relatively smaller than for
the other two algorithms. The exception to this pattern was noted for tetraploids, where
models built with RGB-based features (dataset 6 and 7) and models built with MS-based
features (dataset 8) statistically performed equally (p-value = 0.27). Nevertheless, it is
important to note that multispectral data can be utilised in different ways, and not only
for the calculation of spectral indices. Therefore, future studies should explore alternative
approaches (e.g., spectral mixture analysis) and other VIs (e.g., from the red and red-edge
region of the spectrum) to check the full potential of MS sensors.

Overall, there were pros and cons to using either RGB or MS-derived data. Both
sensors achieved satisfactory accuracy. On one hand, consumer-grade RGB cameras are
an affordable option compared with other sensors available on the market [97], and this is
a considerable benefit, especially for farm-scale applications. In addition, it is possible to
achieve a high spatial resolution using RGB sensors, even at relatively high flying altitudes.
On the other hand, RGB cameras are limited in their spectral resolution as they provide
information only from the red, green and blue parts of the spectrum. Additionally, the
processing time of the RGB-based imagery takes longer than the processing of MS imagery.
Common digital cameras record the reflectance as the digital numbers (DN) (ranging
between 0 and 255). Even though the imagery in this study was corrected and adjusted for
white balance and exposure, for multitemporal analyses of vegetation it is recommended to
calibrate the DN into physical and comparable units [16]. In contrast, multispectral sensors
deliver higher spectral resolution. The MS sensor used in this study captures 10 spectral
bands with pixel-aligned imagery. Bands in the green, red, red edge and NIR region allow
identification of unique spectral signatures. One of the main advantages of MS imagery
is the presence of a downwelling light sensor, radiometric calibration target and a GPS.
This makes it possible to radiometrically calibrate the images for repeatable and precise
measurements without being affected by changes in environmental conditions. On the
other hand, MS cameras are clearly more expensive than digital RGB cameras [98] which
could be a disadvantage in practical farm-scale applications. However, distributing and
sharing costs, sensors, or processing procedures among different stakeholders (e.g., local
farmers, universities, government institutions) might reduce the initial investment needed
and make multispectral sensors more accessible.

4.6. Comparison of Modelling Techniques

The implementation of ML algorithms in remote sensing applications (including
precision agriculture) has increased recently [98]. Considering the large volumes of data
collected from UAV-based sensors, ML approaches seem the proper solution as they can
handle: (a) high dimensional datasets, (b) complex linear and nonlinear relationships, and
(c) highly correlated features (multicollinearity issue) [30,99]. Machine learning techniques
have also been used recently to generate prediction models of yield in grass swards [6,29,31].

The comparison of ML techniques carried out in this study showed that PLSR and
SVM share key features in their predictive performance. When spectral variables derived
from the RGB sensor (3.VIRGB) were used in the model, PLSR and SVM yielded the highest
rRMSE values (33.0% and 30.7%, respectively; all samples were included in the analysis)
while RF reached rRMSE of 21.5%. On average, the RF algorithm achieved the lowest error
values, irrespective of the dataset used. A key study comparing similar ML regression
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algorithms is that of Maimaitijiang et al. [32]. In their analysis, PLSR, RF, and SVM were
tested together with an extreme learning regression (ELR) to predict leaf area index, biomass
and leaf nitrogen concentration in soybean. The findings demonstrated that ELR stably
achieved the best performance for above-ground biomass, while SVM and RF provided
comparable accuracies. At the same time, PLSR was outperformed by other models in most
of the cases. Several other studies have also explored and incorporated different algorithms
to estimate DMY [6,29,31,33]. Both Viljanen et al. [6] and Borra-Serrano et al. [29] reported
that RF provided one of the lowest rRMSE values. Nevertheless, in both cases, RF was not
the best performer, as MLR (which included all variable set combinations) provided lower
error estimates. To develop above-ground biomass prediction models for legume–grass
mixtures, Grüner et al., [33] used two ML algorithms: PLSR and RF. Their results showed
that the best performing model (rRMSE of 10%) was built with an RF learner and a whole
dataset (with texture features). A recent study by Alckmin et al. [31] also tested several
regression algorithms for biomass estimations in perennial ryegrass and found that in terms
of average accuracy, RF (RMSE of 405.8 hg ha−1) and STACK (RMSE of 407.6 hg ha−1)
models were equivalent, with the latter rendering more precise estimations. In general, the
results of the current study were similar to those reported by Alckmin et al. [31] and Grüner
et al. [33]. On average, we noted a better accuracy for RF compared to other modelling
techniques. In addition, an important advantage of using RF is the computation time
requirements, as RF modelling was approximately three times faster than SVM modelling.

5. Conclusions

Monitoring biomass yield of perennial ryegrass is crucial in breeding and grassland
management. This study investigated the potential of UAV-based structural and spectral
features and their fusion to predict dry matter yield in perennial ryegrass. Models built with
features derived from two sensors (RGB and multispectral) using diploid and tetraploid
accessions and three machine learning techniques (PLSR, RF, SVM) were assessed and
compared. Overall, combining structural (CH) and spectral (VIs) variables enhanced DMY
estimations and outperformed “CH only” and “VIs only” models, regardless of the sensor
or machine learning technique applied. Our modelling framework approach demonstrated
that RF outperformed other algorithms (PLSR and SVM) in terms of lower mean RMSE
estimates and reduced processing time. While the robustness of the methods developed
needs to be validated using independent data (other accessions, other locations, other
years, etc.), we demonstrated that the combination of multispectral imagery collected from
a UAV with RF modelling approaches can deliver accurate predictions of DMY in perennial
ryegrass.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13173459/s1. Table S1: Descriptive statistics for measured dry matter yield (DMY [kg ha−1])
across different ploidy levels and three different cuts; reported DMY mean values over the cuts were
used as a reference for relative root mean square error (rRMSE). Table S2: Results of Linear Model
(LM), Partial Least Square Regression (PLSR), Random Forest (RF), and Support Vector Machines
(SVM) methods for DMY estimation. Lowest root mean square error (RMSE) and relative RMSE per
group are underlined. Figure S1: Wilcoxon Signed Rank Test results showing significance levels of
adjusted p-value between compared datasets for (a) all plots, (b) diploid, and (c) tetraploid plots.
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