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Abstract: Marine ecosystem monitoring requires observations of its attributes at different spatial 

and temporal scales that traditional sampling methods (e.g., RGB imaging, sediment cores) struggle 

to efficiently provide. Proximal optical sensing methods can fill this observational gap by providing 

observations of, and tracking changes in, the functional features of marine ecosystems non-

invasively. Underwater hyperspectral imaging (UHI) employed in proximity to the seafloor has 

shown a further potential to monitor pigmentation in benthic and sympagic phototrophic 

organisms at small spatial scales (mm–cm) and for the identification of minerals and taxa through 

their finely resolved spectral signatures. Despite the increasing number of studies applying UHI, a 

review of its applications, capabilities, and challenges for seafloor ecosystem research is overdue. 

In this review, we first detail how the limited band availability inherent to standard underwater 

cameras has led to a data analysis “bottleneck” in seafloor ecosystem research, in part due to the 

widespread implementation of underwater imaging platforms (e.g., remotely operated vehicles, 

time-lapse stations, towed cameras) that can acquire large image datasets. We discuss how 

hyperspectral technology brings unique opportunities to address the known limitations of RGB 

cameras for surveying marine environments. The review concludes by comparing how different 

studies harness the capacities of hyperspectral imaging, the types of methods required to validate 

observations, and the current challenges for accurate and replicable UHI research. 

Keywords: imaging spectroscopy; marine pigments; benthic habitat; remotely operated vehicle 

(ROV); spectral analysis; mapping; seafloor 

 

1. Introduction 

1.1. Background 

The rapid and extensive effects of anthropogenic activities on marine seafloor 

ecosystems range in scales from global to local to individual organisms [1–3]. The state of 

marine ecosystems is accelerating towards a similar tipping point in biodiversity and 

ecosystem functioning first observed in terrestrial ecosystems before the Industrial 

Revolution [4,5]. The consequences of such a transition in ecosystem services provided to 

human communities are still uncertain [6–8]. Ecosystem-based management requires 

cost-efficient monitoring methods that guarantee accurate observations about the state 
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and functioning of seafloor ecosystems and that are capable of synthesizing information 

at multiple spatial and ecological scales [9–11]. 

Satellite and air-borne (drone or aircraft) imaging spectroscopy at high spectral 

resolutions (< 10 nm bands), also referred to as hyperspectral imaging, has been 

advantageous for collecting observations over broad areas (100 s m2 to 100 s of km2) about 

the extent and condition of different types of coastal marine ecosystems (< 15 m depth) 

[11–13]. Imaging spectroscopy, in general, aims to obtain the spectrum for each pixel in 

the image of a scene to classify objects, identify materials, or detect and quantify processes 

[14,15]. Multi- and hyperspectral applications over coastal marine ecosystems have 

proven to be an efficient and accurate tool as they have enabled detailed benthic features 

to be mapped, such as benthic habitat type, macro- and micro-algae cover, coral health, 

and structural forms [16,17]. Yet, it remains challenging to accurately classify targets that 

have similar spectral signatures (e.g., bleached coral vs. white sand, macroalgae species), 

and a limitation is that deeper ecosystems (>10 m) are neglected [18–20]. 

Most of the ocean is in fact “optically deep” to satellite or aerial platforms (i.e., the 

signal from the substratum is insignificant or undetectable). This is of particular concern 

for unexplored seafloor ecosystems where human impacts are pervasive yet can go 

unnoticed, such as: a) mesophotic reef systems (found from 40 m to 150 m in depth), which 

in some areas, extend for approximately 2000 km and are being discovered in every ocean 

[21]; b) deep ocean habitats (up to3000 m depth) that cover a total 50% extent of the world’s 

ocean with less than 0.01% being sampled or studied [1,22]; and c) polar oceans, where 

seasonal darkness or ice cover limit measurements and human observations are restricted 

or impossible [23,24].  

Proximal (or close-range) imaging spectroscopy (from 1 to 150 m distance from the 

target) can provide imagery at high spatial (from 1 to 100 mm) and spectral (from 1 to 15 

nm) resolutions [25]. Within the past decade (since 2013), marine ecosystem researchers 

have tested taking hyperspectral imaging systems underwater using waterproof 

enclosures referred to as underwater hyperspectral imaging (UHI) [26]. In particular, UHI 

has shown promise as a bio-optical tool for automated identification of benthic organisms, 

biogeochemical features, and habitat classification [26,27]. However, along with the range 

of opportunities that this new methodology provides, there are also technical challenges 

associated with working in an optically complex and difficult-to-access underwater 

environment that still requires considerable research effort. Over the past five years, UHI’s 

adaptability to marine surveying has witnessed extensive progress through development 

in several seafloor ecosystem studies (Figure 1). 
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Figure 1. Present spatial scales of observation for hyperspectral imaging platforms in a marine 

context. This highlights the spatial extent to which each system can optimize its observations, 

plotted against the depth range of the system. Acronyms are defined by: unmanned surface vehicle 

(USV), diver units or systems (DU), autonomous underwater vehicle (AUV), remotely operated 

vehicle (ROV), and fixed stations (FS). Airborne includes drones and manned aircraft. 

Studies of marine ecosystems are increasingly embracing or proposing UHI to be able 

to deliver ecological information of diverse biogeochemical processes across multiple 

spatial scales (from mm2 to 100 s km2) at high spectral resolutions, in a non-invasive 

manner, opening possibilities to relate the measurements to other attributes in the 

immediate environment [28,29]. Appropriate monitoring of seafloor ecosystems calls for 

the development of underwater proximal observations, also referred to as “close-range” 

observations, (~ 1–5 m distance from the seafloor) capable of covering geographical 

extents from small to broad areas of the seafloor. Recent proximal applications of 

hyperspectral imaging of seafloor ecosystems reveal small-scale patterns (~ mm2 to m2) 

that would not have been recognized in previous broad scale aerial observations (Figure 

1). Understanding how global environmental changes impose selective pressures on the 

local and individual scale and modify ecosystem processes, such as productivity, 

organism interactions and recruitment, and nutrient cycling, is required not only for 

determining species biodiversity but also for integrating the complexities of ecosystem 

functioning and environmental change [2,30]. In the next section of this review, we present 

an in-depth analysis of the role of traditional underwater imaging for seafloor ecosystem 

studies, demonstrating how the lack of spectral resolution has led to a “bottleneck” in 

seafloor research. We explore the increasing need for hyperspectral resolution to automate 

benthic classification and increase our monitoring capabilities. 

1.2. Marine Benthic Imaging—A Tale of Three Bands  

Underwater platforms equipped with traditional RGB cameras for the acquisition of 

high spatial resolution (<1 cm) digital images of benthic organisms and environments 

have shown considerable advantages through being non-invasive, by reducing in-water 

survey time and providing a useful permanent archive of surveyed ecological data [31–

33]. The continuous development of optical cameras and sensors mounted on underwater 

platforms capable of proximal sensing surveys of the seafloor includes towed cameras and 

unmanned vehicles comprising both remotely operated vehicles (ROVs) and autonomous 
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underwater vehicles (AUVs). Close-range platforms are enabling small-scale (~cm) obser-

vations with co-located physical sample collection (e.g., specimens or sediment) on new 

environments such as the deep seafloor, as well as increasing the geographical extent of 

these surveys (m–km) [34]. An ROV or AUV survey can collect datasets of thousands of 

images from a single deployment [35,36]. Similarly, cameras fixed to the seafloor for stud-

ying seafloor processes of variable temporal scale (days to years, i.e., time-lapse studies) 

provide thousands of images and videos from one deployment [37]. 

However, advances in the data acquisition stage (i.e., number of images and dataset 

sizes) have surpassed the analysis capacities of human operators to translate the benthic 

images into ecological data ready for statistical analysis (i.e., image annotation) (Figure 2), 

causing a “bottleneck” in marine ecological research [38]. Estimates are that only 1–2% of 

image data is actually processed [39,40]. Furthermore, human annotators can introduce 

subjective errors into the analysis [36,41]. Standardized image annotation protocols (e.g., 

CATAMI) [42], tools (e.g., BiiGle) [43], machine learning algorithms [44,45], and marine 

object-based image analysis of photomosaics [46–48] are alleviating different problems 

within the image-analysis workflow (e.g., image annotation, different pixel size). How-

ever, the analysis of large image datasets still relies on manual methods because: (1) there 

are occasions where benthic heterogeneity and complex morphologies of underrepre-

sented taxa demand human attention and cognition for image annotation [38] and (2) ma-

chine learning algorithms still require large training datasets of manual annotations to 

generate accurate estimates [38,44]; both reasons restrict full automation in the analysis of 

benthic images. 

 

Figure 2. Seafloor image annotation bottleneck attributed to the large RGB image datasets and the 

limited automated capabilities. 

Automating benthic image annotation is a complex challenge as accurate species 

identification often requires human experts to observe microscopic or contextual features. 

The taxa, feature, or process identification could be improved by increasing the image 

spectral resolution. For example, standard benthic imaging surveys typically rely on cam-

eras with a high spatial resolution (~cm) but a low spectral dimension, as only three “spec-

tral” bands are acquired per pixel (red, green, and blue, or RGB) with a specific sensitivity 

inherent to each camera model (Figure 3) [31]. RGB bands are often broad, comprising 

wavelength information over 60–100 nm wide in the visible region of the electromagnetic 

spectrum and are not radiometrically corrected [12]. As such, the lack of spectral detail 

per pixel demands manual annotations due to “colour” confusion between pixels [48]. 

Color correction of underwater images is currently under development through the ad-

vancement of image restoration and computer vision algorithms [29]. 
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Using RGB images for seafloor ecological studies is also limited by the analyst’s ca-

pacity to evaluate and process them as well as the capability to detect small-scale ecolog-

ical processes including phototrophic activity, biogeochemical properties of sediments, 

and other sediment–water interface interactions [28,31]. We, therefore, require the ability 

to integrate multiple instruments and physical sampling approaches to correlate fine-scale 

benthic processes with surrounding environmental variables [28,49]. For instance, benthic 

RGB time-lapse cameras qualitatively illustrate the seasonal supply of phytodetritus in 

polar oceans, with massive pulses of fresh organic material arriving over a few days or 

weeks [50,51]. Yet, current RGB image-based observations are described as “varying from 

white to green,” or “ranging from pale yellow-green to dark green” [52], which can be 

considered subjective, difficult to standardize, and incapable of providing information 

about the timing and biogeochemical composition of phytodetritus that determines its 

nutritional value and carbon burial [53–55]. Both the lack of automation capacity and sub-

jectivity compels for integrating multiple spectral bands in seafloor ecosystem studies.  

 

Figure 3. Comparison in the amount of information provided by an RGB image and a hyperspec-

tral image cube from a heterogenous seafloor area. 

2. Methods and Scope of This Review 

Increasing advances in the ecological theory and observation capacity granted by hy-

perspectral imaging in terrestrial environments [56,57] compel us to examine the capaci-

ties and implications for seafloor ecosystem research. We review the main contributions 

and recent developments of UHI research for benthic organism quantification, identifica-

tion, and mapping applications for marine ecosystem research [28,29,49]. Along the pro-

cess, we discuss the platforms available for deploying UHI systems and the trade-offs be-

tween them for surveying different environments. We also highlight promising applica-

tions of UHI in automated benthic organism identification, ecosystem process studies, and 

an overview of the challenges for repeatable and accurate UHI data collection.  

This literature review encompasses underwater applications of hyperspectral imag-

ing from 2013 to November 2020, focusing on peer-reviewed journals in English. The 

search was performed with Google Scholar and PubMed using a combination of key-

words, namely underwater hyperspectral, spectroscopy, imaging, benthos, marine, mapping, and 
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seafloor. Several articles have used “hyperspectral imaging” for marine biological studies; 

however, we only included literature where the hyperspectral system was submerged in 

an aquatic medium studying spectral signatures of marine organisms in vitro and situ. 

Studies that used imaging spectroscopy without submerging the instrument but for sim-

ilar research objectives were included for discussion purposes. We have excluded infor-

mation and studies targeting underwater mineral spectral signatures [58,59], archeology 

[60], and aquaculture [61]. 

3. Analysis of Underwater Hyperspectral Imaging (UHI) 

Compared to RGB cameras, or other multispectral sensors, where each pixel samples 

broad discrete digital values associated with portions of the electromagnetic spectrum (see 

Section 1.2), the “contiguous” spectral sampling is a key feature that differentiates hyper-

spectral imaging from other broad band sensors. A hyperspectral image consists of a 

three-dimensional (x, y, λ) data cube where x and y represent the spatial dimension and 

λ the spectral dimension (Figure 3) [14,26]. 

Objects, or any surface of interest, absorb and scatter light at specific wavelengths (or 

frequencies) of the electromagnetic spectrum based on their molecular and structural 

properties, along with the directional components of the light source to the object [62]. 

Sampling hundreds of contiguous spectral bands enables researchers to distinguish ob-

jects and their attributes by their characteristic reflectance spectrum—also called the 

“spectral signature” or “optical fingerprint.” The spectral resolution achieved by UHI (~ 

1–15 nm) permits the retrieval of information about the biogeochemical composition of 

the seafloor [26,27,63], and the specific absorption wavelengths of natural pigments or 

other molecules found in marine organisms [64]. When enough spectral signatures of the 

same type of object are acquired, they can be grouped to build “spectral libraries.” These 

in turn facilitate automated identification of benthic features and organisms through sta-

tistical learning techniques [64,65]. 

3.1. Applied UHI Systems and Sensor Architectures 

Currently, seafloor UHI applications have only employed a sensor architecture re-

ferred to as a push-broom sensor, aptly named because it captures one line of pixels at a 

time and, through a straight-line movement of the mounting platform, renders a transect 

image [26]. Due to the considerable attenuation of light compared to above-surface appli-

cations, either due to scattering and absorption of particles or the water itself, a critical 

consideration is typically made to equip the system with appropriate light sources able to 

illuminate the seafloor to achieve an adequate signal-to-noise ratio. This “active” sensing 

approach also helps to evenly illuminate complex seafloor topographic heterogeneities, 

particularly when the sun is at an angle off the nadir direction. In other words, there must 

be enough light for it to be transmitted through the water medium, reach the seafloor, be 

reflected, and then refracted or dispersed into multiple wavelengths while still retaining 

a meaningful signal from the seafloor object [12,66]. The illumination source should emit 

light over the study spectrum (i.e., visible range) in a uniform manner. Ideally, the whole 

study area should be illuminated without shadows to acquire seafloor spectral signatures 

that provide reliable information about its biogeochemical composition. As such, an “ac-

tive” approach with platforms carrying high-power light sources is usually preferred [26]. 

However, recent studies have shown it is possible to acquire high-quality underwater 

spectral signatures relying only on solar irradiance (i.e., a “passive” approach) as done in 

particular in environments such as sea-ice where imagery was acquired in the transmis-

sion mode [67,68]. 

The appropriate platform, sensor, and illumination required for UHI applications 

will depend on the research question, available resources, and the environment in which 

the survey will be conducted (see options in Figure 1). Miniaturization and automation of 

remote-sensing payloads are always preferable but are inevitably associated with in-
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creased cost and/or complexity [69]. Current UHI platforms include motorized rails, un-

manned underwater vehicles (UUVs; ROVs and AUVs), unmanned surface vehicles 

(USV), diver-operated units, under-ice sliding units, and geo-stationary platforms (Table 

1). Positioning instruments (e.g., ultra-short baseline) or inertial measurement units pro-

vide high-quality navigational data to permit the rows of hyperspectral pixels to be spa-

tially referenced whilst retaining the geometric accuracy of the surveyed area [26,67]. The 

platform of choice will also be influenced by the spatial scale of the features to be mapped 

(cm–m), the resolution required for classification, and engineering specifics of the system 

(e.g., processing and storage capacity, payload power supply, etc.). 

Table 1. Overview of current UHI systems for data acquisition along with their seafloor mapping capabilities and tradeoffs. 

System/Plat-

form 

Achieved 

Transect 

Length (m) 

Possible Sur-

vey Area 

(~m2) per De-

ployment 

Spatial Reso-

lution 

Achieved 

(cm/pix) 

Distance to 

Target (m) 

Deployment 

Depth (m) 

Operation 

Mode 
Reference 

Underwater 

rail 
1–5 10 0.1 1 5–20 

MO from sur-

face, A capac-

ity 

[26,27] 

AUV Not defined 1 x 109 0.6 8.5 2300 A [26,70] 

ROV 1–20 < 500 0.1 1 30–4000 MO from boat [71–73] 

USV 1–20 < 500 0.5 1.5 Surface A [67] 

Under-ice 

slider 
10–30 < 40 0.1 1.2 1.5 MO above ice [68] 

Diver units 50 500–650 0.4 1 30 
MO underwa-

ter 
[74] 

Fixed stations 1 < 2 0.1 1 ~ 3500 

MO from 

boat, A capac-

ity 

[75] 

Lab systems 0.01 to 1 N/A 0.05 < 1 - MO or A [27,72,76,77] 

Autonomous underwater vehicle (AUV), remotely operated vehicle (ROV), unmanned surface vehicle (USV), manual operation 

(MO), autonomous (A). 

3.1.1. Fixed Underwater Motorized Rails 

Due to the complexity of acquiring UHI imagery using a push-broom sensor archi-

tecture, initial deployments of UHI systems began mostly as a “proof of concept” by being 

deployed on camera rails mobilized using small electric motors (example in Figure 4a). 

These platforms demonstrated that the images obtained could be useful in providing ev-

idence of micro-scale processes on the seafloor (cm) [27], as well as habitat and organism 

identification over small areas of interest (< 10 m survey line) [26,64]. The strength of these 

“stationary acquisition platforms” has been to test hypotheses before being “scaled up” 

to moving platforms [61,66,72,77]. Placing these electric rails at a single location on a set 

of stable tripods, for example, reduces any need for complicated platform motion tracking 

(x, y, z, pitch, roll, heading). It, therefore, minimizes the need for any geometric rectifica-

tion and geolocation algorithms inherent to push-broom image acquisition and processing 

[78].  

3.1.2. Underwater Unmanned Vehicles (UUVs) 

UUVs, such as AUVs or ROVs, provide the means to efficiently acquire hyperspectral 

imagery at spatial scales ranging from 1 m2 to 1000 km2 [26] (Table 1). AUVs have been 

suggested as “the best platform for UHI mapping over large areas (1000 km2) of seafloor” 

[26] (Figure 4g); however, their widespread adoption as an imaging platform for UHI is 

yet to be demonstrated. Few studies have used AUVs for hyperspectral sampling of the 
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benthos [63,70,79]. Within the published literature, the most used platform for UHI stud-

ies of marine environments over smaller-scale areas are ROVs deployed from a ship (Fig-

ure 4b). These platforms are convenient as they have an unlimited power supply for en-

ergy-demanding onboard light sources and are easier to operate compared to larger AUVs 

[63]. UHI systems mounted on ROVs have proven useful for acquiring deep-sea benthic 

data (~4000 m) and for automated organism detection and classification [71]. ROV em-

ployment, advantages, and requirements for quality UHI measurements have been dis-

cussed in detail by [26,63]. 

 

Figure 4. Photographs of platforms employed for in situ UHI studies. From (a–g), (a) electric rail, (b) remotely operated vehicle 

(ROV), (c) under-ice sled, (d) diver-operated unit (DU), (e) unmanned surface vehicle (USV), (f) fixed stationary platform (FS), 

and (g) autonomous underwater vehicle (AUV). 

3.1.3. Unmanned Surface Vehicles (USVs) 

USVs represent an advantageous platform for collecting UHI data in very shallow 

water environments that are difficult to access by other platforms with a larger draft (e.g., 

boats) (Figure 4e) or that have not been previously navigated so survey lines cannot be 

pre-planned (e.g., as required for an AUV) [67]. These platforms can theoretically map 

areas of a similar extent as ROVs (Table 1). Advantages of navigational data provided by 

above-water GPSs and a USV as an imaging platform presented by [67] provided evidence 

of how to map a shallow marine habitat with overlapping hyperspectral imaging tran-

sects. Despite complex water optical properties in near-coastal regions (e.g., chlorophyll 

a, dissolved organic matter), [67] explains that UHI data comprises enough signal for ac-

curate benthic organism classification. 

3.1.4. Under-ice Sliding Platforms 

Tailored systems for UHI can and have been developed for monitoring marine habi-

tats that require customized solutions. For example, [68] demonstrated an inverted under-

ice sliding platform for surveying photosynthetic sympagic microalgae beneath land-fast 
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sea-ice in Antarctica (Figure 4 and Table 1). In this study, the under-ice surface was rela-

tively flat, allowing deployment of a slider and “skiing” platform to retrieve straight UHI 

transects without the complexities of positioning corrections and georectification algo-

rithms (Figure 4c). An important difference of this system from other UHI applications is 

that light is being captured in transmittance mode (i.e., solar irradiance passing through 

the ice and interacting with microalgae and the water column before reaching the sensor). 

[68] discusses that adding a high-spatial-resolution RGB camera maximizes the infor-

mation collected by the platform, as it enables the reconstruction of the under-ice surface 

via Structure-from-Motion photogrammetry, which could eventually support push-broom 

imagery georectification [68,78]. 

3.1.5. Diver Operated Units (DU) 

Chennu et al. [74] demonstrated the capabilities of a diver-operated unit to collect 

underwater hyperspectral data on shallow coral reefs (Figure 4d). This platform could 

detect individual spectra of mixed benthic assemblages that were otherwise difficult to 

discriminate from aerial or satellite images. Furthermore, the integration of different in-

struments on the platform (e.g., bathymetry, pH, O2) maximizes the information gathered 

during the survey by one person. Yet, [74] explains that diver-operated UHI systems are 

“large and require miniaturization to be integrated into autonomous vehicles,” as well as 

technical training to operate. Compared to other platforms, diver units can easily be inte-

grated into standard diver-based surveys and can bridge the link between field ecologists 

and the remote-sensing community [74]. 

3.1.6. Fixed Stations & Networks 

Initial steps towards deep-sea UHI stations by [75] state that these are mainly suitable 

for small area studies (seafloor coverage of a few m2) and that a flat seafloor for the safe 

landing of the platform is key (Figure 4f). Once landed it acquires measurements free from 

variations in altitude, pitch, roll, and heading that are inevitable from a moving vehicle 

[71]. Further, the biggest premise of deploying UHI on stationary platforms may become 

popular for underwater observatory networks [29]. Networks of stationary observatories 

in remote and deep benthic ecosystems could push UHI research to be integrated into 

protocols for autonomous data acquisition, automated processing for real-time analysis, 

storage, and access via internet connections [29,49]. 

3.1.7. In Vitro and Ex Situ-Based Systems  

Electric rails from which the imaging system can be mounted (Section 3.1.1.) are suit-

able for analyzing samples extracted from the natural environment (ex-situ) or grown in 

an artificial medium (in vitro), permitting the calibration and validation of UHI observa-

tions [27,66], or for deployment in field laboratories in remote regions (e.g., polar study 

sites or at sea where working indoors in a lab is preferential) [76]. Laboratory setups for 

UHI systems also grant efficient temporal quantitative analysis of seafloor processes and 

their interactions under specific light intensities and spectral qualities (e.g., photosyn-

thetic activity) [80] and capture dimensions that are not visible from the in situ surface 

perspective. For example, [27] and [76] have demonstrated the vertical variability found 

in natural and artificial mediums (e.g., soft substrates, sea-ice), and its influence on UHI 

analysis and interpretation. Furthermore, ex-situ systems allow the acquisition of spectral 

information of living organisms for them to be taxonomically identified [64], describe their 

pigment composition [64,72], or assess individual physiological responses [77]. 

4. Breakdown of Applications and the Importance of Pigments for UHI 

Light (electromagnetic energy) availability and its spectral quality represent im-

portant elements to consider in our understanding of how current marine ecosystems 

have evolved, respond to, and contain relevant information that we can retrieve with UHI 
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[62]. Ecological diversification can be driven by features that, for example, favor abiotic 

resource acquisition [81]. As an abiotic resource, sunlight reaching the seafloor is ex-

tremely variable over space and time [82]. Multiple factors have determined light availa-

bility to marine ecosystems through evolutionary time, diversifying the strategies of en-

ergy acquisition and exploitation [83–85]. In this review, beyond changes in the diel cycle 

and atmospheric conditions (e.g., clouds or winds influencing surface properties), we con-

sider three main components that determine light availability to seafloor ecosystems. 

First, the water body itself absorbs and attenuates wavelengths of light increasingly to-

wards the reds (> 550 nm). In clear ocean waters, red light disappears at a depth of 15 m; 

as depth increases, only blue wavelengths remain [62,86]. Secondly, colored dissolved or-

ganic matter contains diverse absorption features mainly captured by the yellow wave-

lengths (~575 nm) [87]. Third, phytoplankton concentration attenuates the photosynthetic 

active radiation (400–700 nm) available to the benthos through light-absorbing pigments 

[26].  

Once light reaches the seafloor, pigmentation of marine organisms plays a central 

role in defining the spectral signature acquired with any UHI sensor. In biology, a pigment 

(or biochrome) is any molecule that, through selective absorption of light, results in the 

representation of colour in micro- and macro-organisms. Pigments occur in virtually 

every taxonomic group, from bacteria to animals. Green algae (Chlorophyta and Charo-

phyta), for example, utilize chlorophyll (Chl) a and b together with different carotenoids 

that sharply absorb red and blue wavelengths for photosynthesis [83]. The least absorbed 

and most reflected wavelengths are the green ones that are transmitted to the sensor. 

Other marine photosynthetic organisms use other pigments that absorb other wave-

lengths, such as Chl c, fucoxanthin, and phycobilins [85]. On the other hand, pigments in 

marine heterotrophic organisms (e.g., invertebrates) serve different purposes such as 

mimicry, advertisement, or warning, to name a few [88]. In shallow marine environments 

that are exposed to solar radiation, bright organism colouration is widespread (e.g., coral 

reefs), even for organisms in darker areas where colours are only visible to humans with 

artificial illumination. For instance, compared to the human eye that is sensitive to three 

colors (i.e., RGB), marine organisms such as the mantis shrimp possess cells sensitive to 

13 wavelengths covering from the UV range to the reds [89]. Alternatively, certain polar 

photosynthetic organisms present unique pigmentation and photophysiological strate-

gies that allow them to survive seasonal darkness or rapid changes in under-ice irradiance 

[90–92]. 

In the following sections, we summarize and explain the role of pigments in UHI 

data analysis and its applications for seafloor ecosystem studies (Figure 5). UHI data anal-

ysis can be grouped into two categories: 1) classification on a per-pixel basis of discrete 

features (e.g., benthic habitat mapping) and 2) regression and prediction of a biogeochem-

ical feature (e.g., photosynthetic pigments) on a per-pixel basis (Table 2). Classification 

algorithms can be supervised or unsupervised [14]. Supervised algorithms make maps 

using input variables (e.g., spectral signatures), which are then translated into categorical 

features useful for assessing benthic cover, organism abundance, or physiological status 

[93]. Regression algorithms estimate a mapping function based on a feature from input 

variables (e.g., wavelength absorption, spectral indices) to produce an output variable 

(e.g., Chl a content, a continuous variable) [94]. Applications of hyperspectral imaging for 

marine environments and organisms are still in the early stages of development; here, we 

report the findings of all studies in our knowledge as they all have something to add to 

this new field. Further, we address the type of data analysis used for each environment or 

taxa, trade-offs between the type of analysis performed, and the challenges of UHI for 

obtaining replicable and verifiable pigment-specific signatures for seafloor ecosystem 

studies (Table 2). 
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Figure 5. A summary of studies using UHI focusing on marine environments or organisms (left column). The bands shown 

on this figure have been employed for organism detection, or classification*, or estimation of pigment abundance. The 

differ-ent biota are indicated by different colours/patterns. Wavelengths were binned down to 10 nm intervals ranging 

from 390 to 710 nm. Presentation of binned wavelengths of pigment absorption is a variation from [57]. 

4.1. Microphytobenthos and Sediment Phytodetritus 

Microphytobenthos (MPB) are unicellular eukaryotic algae (e.g., diatoms) and cya-

nobacteria that inhabit the top few millimeters of shallow sediments (i.e., the sediment–

water interface) [53,95]. In some cases, the primary production of these organisms can be 

greater than that of phytoplankton in the water column, providing an important food 

source for benthic organisms [95]. The spatio-temporal variability of microphytobenthos 

is influenced by multiple abiotic and biotic factors that require small-scale observations 

(~cm). The need for non-destructive standardized methods that provide information on 

the abundance and distribution of phytobenthic cells has led to the development of UHI 

methods to detect and quantify Chl a (Table 2) [27,80].  

In situ UHI research by [27] focused on the small-scale (1 m2) temporal variability of 

primary productivity caused by MPB organisms in intertidal sediments. Tailored spectral 

indexes based on Chl a absorption features were used to quantify daily differences of in 

situ Chl concentrations at a sub-millimeter scale. These observations revealed the role of 

polychaetes (annelid worms) in enhancing primary productivity at small spatial scales 

(~cm). For example, sediments bioturbated by Arenicola marina displayed a heterogeneous 

MPB distribution as to where: the polychaete feeds and removes most MPB cells from the 

sediment and its interspersed, while Chl a concentrations are elevated between mounds 

where grazing has not occurred [27].  

On the other hand, ex-situ close-range hyperspectral imaging of subtidal MPB has 

also illustrated how the invasive gastropod species Crepidula fornicata, now widespread 

along European shallow coasts, enriches the sediment at small spatial scales (1 cm2) with 

organic excretions and by modifying micro-hydrodynamics [80].  

The non-invasive nature of close-range hyperspectral imaging demonstrated by [27] 

and [80] can lead to an improved understanding of microphytobenthic ecology, including 

regulation mechanisms, such as bioturbation, grazing, nutrient enrichment, and circadian 

cycles with proper sediment validation samples. 

4.2. Coral Reefs 

Warm- and cold-water corals are known to create reefs that provide a critical habitat 

for thousands of species in shallow and deep environments. Despite the benefits provided 

to ocean ecosystems, these environments are being damaged by human activities both at 
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local and global scales [21]. The diversity of species found within small spatial scales in 

coral reefs requires tools able to cover the vast extent of these environments without com-

promising the observation of small-scale features. Ongoing UHI research has shown the 

potential to overcome the challenges of surveying both warm- and cold-water coral habi-

tats. 

4.2.1. Warm-Water Corals 

Warm-water coral reefs are dominated by scleractinian (stony) corals that rely on 

their symbiotic relationship with zooxanthellae, a group of photosynthetic dinoflagellate 

protists from the genus Symbiodinium [96]. Coral spectral signatures are determined by 

differences in zooxanthellae pigment composition and concentration, which show con-

sistent spectral signatures across biogeographic regions [97]. Furthermore, overall health 

(e.g., bleaching) can be spectrally determined by the loss of pigmentation of the host 

[98,99]. 

In their research using a diver-operated UHI system, [74] demonstrated that the spec-

tral resolution of UHI permits 1) the production of benthic habitat maps with accurate 

species identification and 2) estimates of photosynthetic activity at small spatial scales 

(e.g., 1 cm2). Both observations are generated by specific wavelength absorption (Figure 

5). For example, the second derivative of the wavelength of maximum absorption of in 

vivo chlorophyll pigments (670 nm) was used for calculating the concentration of Chl at 

each pixel. Similarly, the first derivative of the infrared shoulder of Chl absorption (700 

nm) was used to discriminate coral from sand and algae. Furthermore, the second deriv-

ative at 580 nm was found to be consistent over certain species of stony corals. Finally, the 

second derivative at 605 nm, the absorption peak of phycoerythrin (accessory pigment of 

cyanobacteria and chryophytes), was found to be consistent with sediment regions. [74] 

explains that although these spectrometric values provided good results, the quantitative 

aspect of this research remains to be validated and calibrated (Table 2). 

In vitro proximal hyperspectral imaging has emerged as a tool to evaluate coral health 

(e.g., overgrowth of algae or bleaching) [99,100]. Early research by [100] combined spectral 

analysis with dissolved oxygen measurements to understand interactions between corals 

and algae. While hyperspectral imagery successfully distinguished different photosyn-

thetic organisms through their characteristic spectral signatures, oxygen profiles identi-

fied the type of competitive interaction between benthic reef organisms (e.g., fleshy algae 

create hypoxic zones detrimental for coral survival) [100]. Recently, [101] evaluated in 

vitro the fluorescence emission spectra of several warm-water coral species to quantify 

the spectral signal of coral bleaching. Samples were exposed to increasing temperatures 

whilst being imaged with a hyperspectral camera every 24 h. Through this process [101] 

were able to spectrally detect the expulsion of the algal symbiont (Table 2). Although [101] 

explains that underwater platforms, like ROVs, would require powerful ultra-violet and 

blue light sources to excite fluorescence emission of corals from the surveying altitude 

(approx. 1 m). However, this demonstrates the potential of UHI for automatic and rapid 

physiological assessments of coral reef health. 

4.2.2. Cold-Water Corals 

Cold-water stony corals also create reefs but at depths where they rely solely on par-

ticle feeding, rather than photosynthetic symbionts. Lophelia pertusa is the most abundant 

deep-water coral and is known for forming deep-water reefs that are considered biodiver-

sity hotspots [22]. The role of underwater digital imaging systems has been critical in re-

vealing their widespread distribution, their ecological role in providing habitat to many 

species in deep ocean environments, and the extent of human impacts to these ecosystems 

[22,102]. As such, recent research has demonstrated how ROVs represents an essential 

platform for UHI surveys of cold-water coral habitats to evaluate incremental anthropo-

genic disturbances to these habitats [71,77]. 
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In their in vitro UHI research, [77] explained how oil spills and mining represent a 

direct threat to these habitats and explored the utility of UHI classification methods for 

detecting L. pertusa physiological status after weeks of pollutant exposure in experimental 

tanks (Figure 5). To achieve this, [77] evaluated the reflectance spectra of coral samples 

exposed to different concentrations of a toxic hydrocarbon. The successful classification 

of coral polyp health and mortality based on their reflectance spectral signature demon-

strates the potential for spectral signatures to be used to monitor the physiology of differ-

ent benthic organisms (Table 2). Furthermore, [77] claim this work is the first step towards 

non-invasive automated methods for in situ mapping of cold-water coral physiological 

conditions. However, further studies should involve more species and pollutants to con-

sider them robust or operational as a method. 

An upshot of recent UHI research in cold-water coral reefs by [73] is that if significant 

reference spectra have been catalogued, spectral libraries can become a quick and reliable 

benthic habitat classification tool (Table 2).  

4.3. Coralline Algae 

Coralline algae are a cosmopolitan group of calcifying red algae (Rhodophyta, Cor-

allinaceae), acting as ecosystem engineers in almost every coastal ecosystem [103]. A 

growing concern about climate change impacts on coralline algae (e.g., ocean acidifica-

tion) has led to increased efforts to determine their functional roles [104] and distributions 

[105,106]. Their characteristic colouration attributed to pigments that absorb in the blue-

green wavelengths (Figure 5), along with the challenges associated with determining their 

key functional roles for coastal ecosystems have led to hyperspectral imaging applications 

as a bio-optical tool for crustose coralline species classification (4.3.1.) and to reveal milli-

meter-scale variability of branching coralline communities (4.3.2.) (Table 2). 

4.3.1. Non-Geniculate (crustose) Coralline Algae 

Foglini et al. [72] demonstrate UHI as a developing technology for identifying and 

estimating crustose coralline algae (CCA) abundance based on their spectral signature. 

Despite the low sample number (n = 4), the authors explain that the photosynthetic acces-

sory pigment R-phycoerythrin (R-PE) makes CCA a spectrally conspicuous group that can 

be distinguished in their natural habitat with UHI. In the investigation in [72], all four 

species displayed similar spectral signatures, with R-PE and Chl a representing the pri-

mary light absorption components. However, [72] found differences in spectral intensity 

between species. In other words, all CCA species assessed absorbed light similarly, result-

ing in similar spectral signatures; yet, there were consistent differences in the amount of 

light absorbed by each coralline taxa, possibly caused by the amount of R-PE per speci-

men. Interestingly, the in situ classification accuracy of CCA versus non-coralline sub-

strates was enhanced when considering the average spectral signature of different CCA 

species, rather than the individual species signature (Table 2). 

The study by [72] draws attention to the fact that the green wavelengths (500–565 

nm) provided most of the variability in the principal component analysis. This coincides 

with the absorbance spectrum of R-PE, resulting in the conclusion that “coralline algal R-

PE content could serve to separate species spectrally” (Figure 5). Additionally, other de-

scriptors of CCA morphotypes, like tissue/crust thickness or pigment packaging effects 

should be explored with UHI to provide functional approaches to this benthic group [107].  

4.3.2. Geniculate Coralline Algae 

Branching (i.e., geniculate) coralline algae serves as an important habitat to multiple 

macro- and micro-epiphytes. In vitro hyperspectral imaging has shown unique capacities 

to reveal micro-spatial patterns (~1 mm2) of these complex communities. [108] demon-

strated that specimens from different light environments (lower and upper shore) host 
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different communities of epiphytes and that even within an algal specimen, epiphyte den-

sities compositions vary. By performing double derivative analysis of each wavelength 

corresponding to specific absorption wavelengths of diatoms (546 nm) and Chlorophyta 

(648 nm), [108] found a spatial pattern in their distributions, with abundances increasing 

from the base to the apex of the frond (Figure 5). As such, they found a decrease in the 

inherent red algae pigment of C. officinalis (phycoerythrin, 568 nm) along the frond caused 

by epiphyte cover (Figure 5). Their results demonstrate the effectiveness of UHI for the 

detection of photosynthetic microbiome pigments. However, the presence of epiphytic 

communities associated with macroalgae may influence overall photosynthetic activity 

estimates. Further studies are required to examine the influence of epiphyte cover on hy-

perspectral imaging estimates of coralline algae productivity.  

4.4. Sponges 

Marine sponges (Porifera) occur at all water depths. Still, uncertain effects cause vast 

sponge aggregations composed of a single species or mixed assemblages. Aggregations 

can extend hundreds of km2, increasing the three-dimensional structure of the benthos, 

modifying the small-scale hydrodynamics of the sediment-boundary layer, and enabling 

a myriad of organisms to inhabit sponge fields [109,110]. Sponge habitats are vulnerable 

to persistent disturbances such as oil drilling, long-line, and trawl fishing activities, which 

have the potential to discharge sediments and chemicals, and/or destroy the habitat. Yet, 

we know little about sponge-dominated systems as they are understudied, resulting in 

many regions lacking sufficient information for determining their protection status [109].  

The relationship between the spectral signature and the pigment composition of 

sponges was evaluated by [64] to use UHI as a bio-optical taxonomic tool (Table 2). Their 

study focused on using different pigment extraction methods to (1) identify unknown 

pigments, (2) determine the organism pigment composition, and (3) relate the UHI spec-

tral signature to the different pigments. The results of [64] showed that UHI is a poten-

tially powerful benthic identification tool only with a priori knowledge of the pigment 

composition of the organism. They noted that for accurate classifications, care should be 

taken as “certain taxa may have diverse colourations and optical signatures across geo-

graphical or ecological areas,” meaning that standardising a spectral signature for one 

species may be difficult if not impossible.  

Pettersen et al. [64] found five pigments in the sponge Isodictya palmata, which is an 

interesting observation as sponge pigments come from different sources and may serve 

or reflect different biological purposes (Figure 5). For example, sponges are known to host 

symbiotic organisms that can endure both the digestive and immune processes of their 

sponge host [88]. Some species of bacteria are pigmented and able to synthesize carote-

noids, which absorb in the visible spectrum and contribute to the colour of the organism 

[111]. By performing pigment extraction along with UHI analysis, [64] found that deriva-

tives from the pigment 2,6 benzathiazolediol, produced by the bacteria Micrococcus sp., 

were present in I. palmata. Another pigment found in this sponge was erinacean, which is 

known to be an antibiotic and a cytotoxic substance in the Antarctic sponge I. erinacean. In 

addition, two other pigments were detected, Calicogorgin B, which is also documented to 

have anti-predatory activity, and Aspergamide B, which is produced by marine fungus 

and absorbed through filter feeding. 

Recent UHI studies by [71] showed that spectral signatures proved useful to discern 

whether sponge individuals of different morphologies belong to the same species; how-

ever, their identifications were based on RGB video inspection, not on pigment extraction 

validations. Furthermore, recent UHI studies by [73] disclosed that different sponge spe-

cies have similar spectral signatures to each other, even those with different morphotypes; 

thus, it was not possible to determine a species solely based on the reflectance spectral 

values captured by the UHI. Therefore, [73] used previous publications to infer the most 

likely species presence and kept four different sponge classifications. As such, [64] high-
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lights that knowledge about host/epibiont distribution must be considered when compar-

ing UHI spectral libraries from multiple study sites with different environmental condi-

tions. In our view, UHI has the potential to acquire additional information on sponge 

trophic ecology from a non-destructive survey sampling method; yet, extensive sampling 

or in vitro studies are required to further test host/epibiont spectral signatures. 

4.5. Oyster Reefs 

Aggregations of oysters on coastal areas form three-dimensional structures that serve 

as habitats to multiple species and perform important biogeochemical processes, such as 

biofiltration and nutrient recycling, which are of social and economic importance [112]. 

Their shell morphology and filtering activity modify local hydrodynamics, and they en-

rich the sediment through their excretions, which in turn are available to primary produc-

ers. Like other ecosystem engineers (see Section 4.3.2), oyster shells host photosynthetic 

micro-epibionts on their shells, the diversity of which is spatially variable, that may con-

tribute to local-scale primary productivity, which is compelling for scalable methods able 

to characterize the heterogeneity found in these environments. 

Barillé et al. [113] illustrated through the use of spectral index analysis (normalized 

difference vegetation index) that all oyster shells host photosynthetic micro epibionts 

(Table 2). In [113], hyperspectral imaging enabled identification of the epibiont composi-

tion via a derivative analysis of reflectance of the indicative absorption wavelengths of 

photosynthetic pigments of diatoms (462 nm), cyanobacteria (524 nm), rhodophytes (571 

nm), and chlorophytes (647 nm) (Figure 5). Like other photosynthetic microbiomes (see 

3.1. and 3.3.2.), UHI holds potential for revealing the complexity of oysters enhancing local 

productivity. 

4.6. Sympagic Environments 

Environmental change is modifying sea-ice physical properties (e.g., ice thickness 

and snow depth) concomitantly with its biological properties (e.g., biomass and photo-

physiology of its associated sympagic communities). Changes in sea-ice biophysical prop-

erties are expected to have cascading effects on polar marine food webs, primary produc-

tivity, and biogeochemical cycling [114]. Sea-ice supports diverse and often abundant 

communities of primary producers and consumers that sustain in part these ecological 

functions. Sea-ice algae are a key food source for higher trophic levels and display vertical 

and horizontal variations that range from the meso- to the millimeter-scale, fluctuating on 

a daily, weekly, monthly, and seasonal basis [114]. UHI payloads are expected to fill a 

niche gap in mapping fine-scale sea-ice biophysical properties in a non-invasive manner 

at sub-mm spatial resolutions.  

Cimoli et al. [68] first retrieved in situ proxies of sea-ice algae biomass on a sub-

mm/pixel spatial resolution over 20 m long transects. This study showed that sea-ice algae 

biomass measurements can be made without destructive core sampling, which is also lim-

ited by being point-based and labour-intensive. The authors used an “inverted” ice sled 

as a platform for a coupled UHI-RGB system to improve the resolution for sea-ice algae 

biomass monitoring through (1) spectral indices as proxies of biomass and (2) under-ice 

topography of fast-ice environments in Antarctica (Table 2).  

Further, Cimoli et al. [68] adds that the system capabilities and the “inverted” ap-

proach could provide information on more biological features than first thought, such as 

photo physiology, algae species composition, and habitat features of under-ice grazers. 

Recently, [76] discussed how UHI approaches combining both in vitro and in situ studies 

hold great potential for quantitive mapping of sea-ice algae variability, especially when 

the ice matrix is evaluated both vertically and horizontally to untangle the complexities 

of sea-ice primary productivity. 
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4.7. Seafloor Areas with Mineral Resources 

Marine mineral exploration has moved from shallow coasts to off-shore deep seafloor 

environments [115]. The lack of knowledge about natural processes occurring in deep-sea 

ecosystems [22], and the impacts that current mining technologies could have on them, 

make deep-sea mining without biodiversity loss a challenging goal threatening the func-

tioning of marine ecosystems [116]. The mining of resources found in benthic ecosystems 

can induce a complete removal, burial, or alteration of such environments in ways that, 

26 years after a disturbance event, the physical effects are still lingering, impeding benthic 

communities to recover [117]. With an increase in seafloor areas being approved for min-

eral exploration, the development of methods that retrieve benthic community infor-

mation with low bias in mining surveys (e.g., RGB image annotation by humans) is crucial 

for appropriate regional and international seafloor management [28,118]. 

In this context, UHI is proving to be a promising avenue for evaluating areas where 

increased levels of suspended sediments caused by exploratory drilling increase the mor-

tality of filter-feeding fauna (e.g., corals and sponges), with drill-cause plumes extending 

up to kilometers away from a drilling site. [119] explains that current exploratory drilling 

environmental impacts are visually assessed with video-transects and manual annotators 

that classify the effects ranging from: (Class A) drilling site with smothered sediment, 

clear signs of recent sediment deposition, and absence of biological activity, to (Class B) 

undisturbed sediment representing natural conditions, no sediment deposition, and a di-

versity of organisms. The subtle differences between these two classifications (from A to 

B) are difficult to assess visually since natural and drill-cutting sediments can be similar 

in colour [119]. Although visual assessment and UHI results exhibit similar overall trends, 

the first UHI results show potential for reducing bias and automating the process (Table 

2) [119]. In fact, [119] demonstrates decreases in the overall spectral similarity along a UHI 

transect as a function of the distance from the drilling location. A high correlation in the 

spectral similarity between sediment samples represents a homogenous sediment compo-

sition (class A), and, further away from the disturbed site, pixels exhibit more heteroge-

neity, reflecting natural higher complexity habitats with diverse fauna (and their corre-

sponding spectral signatures; class B).  

Further deep-sea research carried on by [71] demonstrated how classification algo-

rithms using UHI data acquired in a deep-sea mining area provided far more detection of 

benthic organisms than visual identifications from RGB videos. For example, only three 

coral specimens were detected by human observers using videos, whereas the spectral 

classification detected 39 individuals. Furthermore, the high spatial resolution obtained 

by UHI represents an enormous benefit for the detection of smaller fauna and early-re-

cruitment stages of sponges or corals (<2 cm in size), which are difficult to distinguish 

using standard RGB imagery (Figure 3). However, marine organism identification based 

solely on spectral signatures for small size fauna, without having a reliable visual verifi-

cation (e.g., from RGB video), may raise concerns for organism abundance overestimation. 

[71] shows that the spectral signatures are sufficiently different to ensure the organism is 

present. Spectral signature information, however, did not improve estimations of 

macrofauna (4–15 cm) from those obtained from video data by human annotators. Yet, 

[71] explains that UHI datasets make benthic surveys more suitable for automation, espe-

cially for the fauna of highly variable appearance. 
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Table 2. Underwater hyperspectral imaging (UHI) studies of marine benthic habitats and organisms. Validation refers to the 

technique employed to authenticate UHI imagery to other standard methodologies. Calibration refers to the technique em-

ployed to derive a classification or regression that can be applied to UHI imagery. 

Study Focus 

(Marine Or-

ganism, Envi-

ronment) 

UHI Applica-

tion 
Platform 

Wave-

lengths/Reso-

lution 

Data Analysis 

Method 
Validation Calibration Ref 

Microphyto-

benthos 

Spectral Index 

for Chl a 
Electric rail 

400–900 nm @ 

1 nm 

Regression: 

spectral index 

Pigment ex-

traction 

Chl a spectro-

photometry 
[27] 

 

Spectral Index 

for phyco-

erythrin 

Diver-unit 
400–900 nm @ 

1.5 nm 

Regression: δδ 

(605 nm) 

Visual ROI an-

notation 
Uncalibrated [74] 

 

Photosyn-

thetic cell bio-

mass 

Electric rail 
400–1000 nm 

@ 1.3 nm 

Regression: 3rd 

end-member 

spectrum 

Visual ROI an-

notation 
Uncalibrated [80] 

Warm water 

corals 

Benthic classi-

fication 
Diver-unit 

400–900 nm @ 

1.5 nm 

Regression: δδ 

(580, 675 nm) 
Visual RGB Uncalibrated [74] 

 

Colony 

bleaching as-

sessment 

In vitro rota-

tional stage 

400–1000 nm 

@ 2.2 nm 

Object fluores-

cence emis-

sion spectra 

Visual RGB Spectrometer [101] 

 
Physiological 

interactions 

In vitro electric 

rail 

450–900 nm @ 

not specified 

GOC 515-575-685 

CIR 550-650-860 

NDVI 800-680 

ARVI 800-680-450 

Visual RGB 

and 

oxygen profil-

ing 

Uncalibrated [100] 

Cold water 

corals 

Polyp mortal-

ity classifica-

tion 

In vitro electric 

rail 

381–846 nm @ 

1 nm 

Classification: 

v-SVM 
Visual RGB 

Visual inspec-

tion 
[77] 

 
Benthic classi-

fication 
ROV 

380–800 nm @ 

15 nm 

Classification: 

SAM 
Visual RGB N/A [73] 

Coralline al-

gae 

Bio-optical 

taxonomic 

tool 

In vitro electric 

rail 

400–700 nm @ 

2 nm 

Classification: 

SAM 

Pigment ex-

traction 

Spectropho-

tometry and 

HPLC 

[72] 

 
Benthic classi-

fication 
ROV 

400–700 nm @ 

2 nm 

Classification: 

SAM, MD, BE, 

SID, Pp 

Visual ROI an-

notation 

Spectropho-

tometry and 

HPLC 

[72] 

 
Benthic classi-

fication 
ROV 

380–800 nm @ 

15 nm 

Classification: 

SAM 

Visual ROI an-

notation 
N/A [73] 

 

Classification 

of photo-epi-

bionts 

In vitro tripod 

system 

400–1000 nm 

@ 4.5 nm 

Regression: δδ 

(546, 568, 648, 

677 nm) 

Pigment ex-

traction 
HPLC [108] 

Sponges 

Bio-optical 

taxonomic 

tool 

In vitro electric 

rail 

420–680 nm @ 

1 nm 

Classification: 

object reflec-

tance spectra 

Pigment ex-

traction 

HPLC & mass 

spectropho-

tometry 

[64] 

 
Benthic classi-

fication 
ROV 

378–805 nm @ 

4 nm 

Classification: 

SVM 

Visual ROI an-

notation 
N/A [71] 

 
Benthic classi-

fication 
ROV 

380–800 nm @ 

15 nm 

Classification: 

SAM 

Visual ROI an-

notation 
N/A [73] 

Oyster reefs 

Classification 

of photo-bi-

onts 

In vitro electric 

rail 

400–950 nm @ 

4.5 nm 

Regression: 

NDVI750-673, δδ 

(462, 524, 571, 

647 nm) 

Pigment ex-

traction 
HPLC [113] 
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Sympagic en-

vironments 

Proxy of ice-

algae biomass 

distribution   

In vitro electric 

rail 

400–1000 nm 

@ 1.7, 3.4, 6.8 

nm 

PCA 
Pigment ex-

traction 
Uncalibrated [66] 

 

Proxies of ice-

algae biomass 

distribution   

In situ under-

ice sled 

400–1000 nm 

@ 3.5 nm 

PCA 

NDI441-426, 

NDI648-567, 

ANMB650-700 

Visual ROI 

verification 
Uncalibrated [68] 

 

Quantitative 

estimates of 

biomass via 

spectral indi-

ces for Chl a 

In situ under-

ice sled and ex 

situ electric 

rail 

400–1000 nm 

@ 1.7 nm 

Regression: 

NDI, AUC650-

700, ANCB650-

700, ANMB650-

700, LAUC650-700 

Pigment ex-

traction 
Fluorometer [76] 

Mineral re-

source assess-

ment areas 

Bio-optical 

taxonomic 

tool 

ROV 
400–710 nm @ 

4 nm 

Classification: 

SVM 

Visual ROI an-

notation 
N/A [71] 

 

Sediment dep-

osition homo-

geneity 

ROV 
400–700 nm @ 

5 nm 

Regression: 

PCA and sin-

gular-value 

decomposi-

tion 

van-Veen grab N/A [119] 

 
Benthic classi-

fication 

Stationary 

platform 

400–730 nm @ 

2 nm 

Classification: 

SVM 

Visual ROI an-

notation 
N/A [75] 

Remotely operated vehicle (ROV), second derivative (δδ), green-orange-chlorophyll (GOC), color infrared (CIR), normalized differ-

ence vegetation index (NDVI), atmospherically resistant vegetative index (ARVI), spectral angle mapper (SAM), binary encoding 

(BE), spectral information divergence (SID), minimum distance (MD), support vector machine (SVM), parallelepiped (Pp), normal-

ized difference index (NDI), area under the curve (AUC), area under curve normalized to a maximal band (ANMB), logarithm-

transformed area under the curve (LAUC). 

5. UHI Validation and Calibration: Pigment Extraction and Specimen Identification 

The premise and effectiveness of UHI as a bio-optical tool able to identify organisms, 

monitor photosynthetic activity at small spatial scales (mm2-m2), and perform over other 

possible applications (as shown in Table 3), will rely heavily on the implementation of 

validation and calibration methods linking any seafloor biogeochemical features with 

their associated spectral signatures at adequate resolutions. With underwater RGB im-

agery, we are accustomed to most bio-optical applications to use visual annotations to 

either classify or predict features of interest (Figure 6). Instead, with UHI, we can develop 

more finely tuned relationships such as some of the reviewed applications targeting pri-

mary producers that have baselined proximal sensing estimates with extraction-based 

methods to quantify photosynthetic pigment content (e.g., Chl a). Few bio-optical studies 

have extracted pigments to explain the spectral signatures of benthic organisms for other 

classification studies (Table 2). This is understandable as, in ROV operations in the deep 

sea, for example, the surveys are often time-constrained, and sampling is logistically chal-

lenging. 
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Figure 6. Summary statistics of validation or regression methods employed in UHI studies. Pig-

ment extraction has been performed using high-performance liquid chromatography (HPLC), 

spectrophotometry, and fluorometry to derive pigment content such as Chl a. Visual refers to the 

manual annotation of seafloor objects or features of interest. 

Validation protocols need to be carefully designed as extraction-based methods dif-

fer considerably between pigment types (e.g., chlorophylls, anthocyanins, phycobilins) 

and marine organisms, often requiring different chemical procedures or laboratory equip-

ment [64,72,108,113]. High-performance liquid chromatography (HPLC) is considered the 

“gold standard” for estimating pigment concentration in marine algal organisms and is 

used for satellite hyperspectral observations of algal diversity or phytoplankton groups 

[120,121]. HPLC permits the separation of the constituents of a sample and resolves most 

of the different chlorophyll, carotenoids, and chlorophyllic degradation products that are 

unable to be identified via any other method (e.g., spectrophotometry) as they overlap in 

their absorption spectra [122]. This is important as the relative concentrations of photo-

synthetic and accessory pigments provide useful ecological, taxonomic and physiological 

information (Figure 5) [108]. However, when samples contain water-soluble (e.g., phyco-

bilins) or unknown pigments, the costs of calibration alone can be a limitation. Thus, it is 

important to obtain a priori knowledge on the pigment composition in regards to the study 

objectives [64], then the research question, logistics, and funding limitations will deter-

mine the appropriate validation method. For example, [72] applied spectrophotometer 

analysis for water-soluble pigments and HPLC for non-polar pigments of benthic primary 

producers (see Section 4.3.1). On the other hand, [64] evaluated marker pigments that give 

different benthic fauna their characteristic colors via HPLC and liquid chromatography-

mass spectrometry (see Section 4.4.). 

HPLC and spectrophotometry methods provide similar results, especially in samples 

without Chl degradation products [122,123]. Therefore, HPLC validation is required, for 

example, for phytodetritus studies where the spectral signatures of Chl degradation prod-

ucts are part of the research question. For instance, in their deep-seafloor UHI research, 

[71] detected Chl a spectral absorbance. While no photosynthetic active radiation can 

reach the deep sea, [71] explain that accumulations of Chl a and corresponding degrada-

tion products (pheophytin a and pheophorbide a) have been detected at abyssal depths 

associated with phytodetritus deposition after seasonal phytoplankton blooms. These 

claims are supported by their UHI results where spectral signatures with minimum re-

flectance intensity around 668–680 nm suggest Chl a deposition, which would have been 

overlooked by RGB imagery. Pairing UHI with pigment-extraction methods capable of 

resolving Chl degradation products (e.g., HPLC) will increase our understanding of the 

ecological role of phytodetritus in the deep-sea and polar environments in a non-invasive 
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manner. Further, spectral indices able to account for Chl a in degraded form (e.g., pheo-

phytin), or other photosynthetic pigments present in seafloor sediments should be the fo-

cus of further research [124]. 

Regarding sediment or other natural substrates (e.g., such as sea-ice) an important 

feature to be considered during UHI data acquisition, processing, and validation is the 

spatial and vertical variability of photosynthetic pigments present [27,76]. If the vertical 

spatial variability of photosynthetic microorganisms in their medium is not accounted for, 

hyperspectral data analysis with ancillary pigment extraction methods may differ by sev-

eral tens of percent [27] or might yield an incorrect interpretation of the results [76]. An 

exemplar study case has been addressed ex-situ by [76] regarding microalgae vertical var-

iability within the ice matrix. This behavior can be turned into an advantage coupled with 

UHI methods to monitor vertical migration changes/characteristics [27]. However, vali-

dation studies with different types of substrates (e.g., soft clays, sand), depth, and light-

ning-setups remain to be addressed [27]. 

Finally, we note that extraction-based methods such as HPLC may overlook certain 

pigments as they can occur below minimum detection levels [108,113]. Interestingly, [108] 

reports a higher sensitivity of hyperspectral imaging to detect certain photosynthetic pig-

ments of algal groups than HPLC under certain circumstances. In addition, currently, all 

studies have focused on the visible spectrum, and [64] explains that the capability to detect 

pigments that absorb in the ultra-violet range and above 690 nm (Infra-red) wavelengths 

would require the development of more powerful light sources and/or sensitive UHI sys-

tems, to increase the opportunity to find species-specific pigment markers. 

Table 3. Current application capabilities of proximal hyperspectral imaging for marine ecosystems and organisms (adapted from 

[11]). 

Application 
Microphyto-

benthos 

Warm-Water 

Corals 

Cold-Water 

Corals 

Coralline Al-

gae 
Sponges Oyster Reefs 

Sympagic 

Environ-

ments 

Mineral Re-

source Areas 

Photosyn-

thetic pig-

ment content 

Demon-

strated 

Lacking vali-

dation 
N/A 

Demon-

strated 
N/A N/A 

Demon-

strated 

Lacking vali-

dation 

Species iden-

tification 
Unproven 

Demon-

strated 

Demon-

strated 
Unproven 

Demon-

strated 
Unproven Unproven 

Demon-

strated 

Physiological 

assessments 
N/A 

Demon-

strated 

Demon-

strated 
Unproven Unproven N/A Unproven Unproven 

In situ abun-

dance 

Demon-

strated 

Demon-

strated 

Demon-

strated 

Demon-

strated 

Demon-

strated 
Unproven 

Demon-

strated 

Demon-

strated 

Epiphyte 

composition 
N/A Unproven N/A 

Demon-

strated 
Unproven 

Demon-

strated 
N/A N/A 

Nutrient cy-

cling 

Demon-

strated 
Unproven Unproven Unproven Unproven Unproven Unproven Unproven 

“Demonstrated” are applications that have been validated and can become routinely applied in seafloor ecosystem research. “Lack-

ing validation” are studies that have showcased a possible application but still require quantification and validation of the feature 

of interest. “Unproven” signals studies that have not been developed nor tested. “N/A” refers to that the feature of interest does 

not apply to the environment or organism. 

6. Discussion of Technical Challenges for UHI Systems for Seafloor Observations 

There are key elements requiring attention before the widespread adoption of UHI 

as a valuable tool for seafloor ecosystem studies. Here, we identify some of the technical 

challenges for UHI systems that restrict its application and standardization as a method 

for benthic observations. These include sensor deployment and image acquisition aspects, 
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such as (1) the effects of differences in survey altitude or illumination conditions in the 

accuracy of benthic classifications or regression models [67,73,74,125], (2) georeferencing 

issues related to positioning and orientation of the systems underwater [26,71,73], and (3) 

data analysis techniques capable of reducing the complexity of hyperspectral data cubes 

into useful information for seafloor ecosystem studies (Table 2). 

6.1. Variable Survey Altitude and Uneven Illumination Effects 

Compared to terrestrial application, the wavelength-dependent attenuation of light 

in underwater environments hampers UHI data quality and interpretation to a greater 

extent. The spectral data will inevitably be influenced by the inherent optical properties 

of the surrounding seawater, the illumination conditions on the target by natural or arti-

ficial light sources (e.g., sunlight or active lamps), the sensor distance to the seafloor, and 

the angularity of the field of view [26]. For example, [67] explain how their results were 

restricted by the lack of altitude corrections and attenuation of light in water, as spectral 

signatures of benthic organisms in deeper UHI transects were different due to more blue 

wavelengths reaching the sensor compared to the signal from red bands. In addition, alt-

hough [67] provided a fixed depth value for spectral correction, they explain that uneven-

ness in illumination increased the number of false negatives when classification algo-

rithms were applied. Similarly, [73] found that illumination inconsistencies caused by 

lamps, ROV orientation, and canyon slope caused a high percentage of “dark” or shadow 

pixels. Therefore, careful consideration of light source and illumination effects, and main-

taining a constant distance between the sensor to the area of interest, is critical to ensure 

high classification accuracies, particularly in heterogeneous habitats (e.g., coral reefs). 

To preserve the accuracy of the spectral relationship between the area of interest and 

the variation in depth, [67] claimed that future studies should incorporate two additional 

measurements: (1) real-time altitude to the seafloor in the data acquisition log and (2) the 

water’s in situ spectral attenuation coefficient. However, [74] claimed that by combining 

annotations from different altitudes, classification accuracy can be improved. Recent ef-

forts by [125] sharing annotated UHI datasets are fostering the development of training 

algorithms and are developing an understanding of the effect of survey altitude on data 

quality. UHI studies require further research about the influence of minor altitude differ-

ences caused by seafloor heterogeneity and complex benthic morphologies on classifica-

tion accuracy [126]. Further, the coupling of digital bathymetric models obtained through 

imaging and acoustic devices with UHI data could be explored as a source to provide 

additional variables with which to correct or standardize the data [68,76]. 

6.2. Navigation, Georeferencing, and Survey Procedures 

Since all current developed UHI systems employ a push-broom sensor architecture, 

which acquires pixel lines at high frequency to compose a transect image, they rely on 

accurate navigational data such as sensor attitude and positioning [68,78]. Some platforms 

such as the underwater motorized rails, or the under-ice sled, have avoided such require-

ments due to their stable and highly controlled movement. However, equipping UUVs 

(see Section 3.1.2) with navigation and dynamic positioning instruments is a necessary 

step forward to allow to increase the spatial extent of the surveys in a more efficient man-

ner. The positioning also grants re-visiting survey locations, and thus techniques for ge-

opositioning and image georectification need to be developed and applied as suggested 

in [68]. 

Overall, the appropriate navigation equipment and survey protocols will depend on 

the research question, the spatial scale of the process or feature to be analyzed, and the 

accuracy required. The dominant method for ROV positioning is acoustic baseline posi-

tioning, which presents in two types: ultra-short baseline (USBL) and long-baseline (LBL), 

which have their trade-offs but both increase the complexity of the operations and can be 

difficult to establish under certain circumstances [127,128]. The positioning accuracies 

achieved by USBL range from 1.5 to 10 m [129,130]. On the other hand, for shallow areas 
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[67], there are advantages to equipping USV with its own real-time kinematic global po-

sitioning system (GPS) that can stay on the surface (without the need for acoustic under-

water positioning) and inertial measurement unit for obtaining high-quality navigational 

data that retain the geometric accuracy obtaining georeferenced transects. The integration 

of multiple platforms, such as an AUV with a USV providing positioning and navigation 

corrections could enable unmanned geo-referenced hyperspectral mapping useful for 

long-term monitoring of the deep seafloor [131]. The possibility of more precisely georef-

erencing UHI data would increase the usefulness to larger spatial scale remote-sensing 

studies (e.g., satellite observations) and their temporal monitoring as a field validation 

tool [67]. Georeferencing is important as [74] and [67] explain that shallow UHI systems 

can be used as a field validation tool for space or aerial platforms.  

We further noticed time-consuming survey procedures in UHI diver surveys, such 

as gray reference boards that need to be positioned underwater before acquiring data 

along transects. However, this differs slightly from standard diver-based RGB imaging 

benthic surveys, as these are already integrating seafloor control points (i.e., geodesic net-

works) where local coordinates (e.g., latitude, longitude, depth) are annotated to geo-ref-

erence benthic topographic models [132]. Similarly, [67] placed and photographed (as an 

RGB image) four wooden frames (40 x 40 cm) before the UHI survey being completed to 

validate the hyperspectral images, as well as three white metal sheets, which were fixed 

to the seafloor to be used as a reference spectra and to delimit the study area. However, 

[67] explain that the spectral reference board can be excluded from survey procedures as 

they applied two different types of spectral corrections, one based on the reference spectra 

(i.e., metal-sheet) and the other based on the average values from the UHI data, finding 

no differences between classification results.  

An interesting avenue of research would be to use other types of hyperspectral image 

acquisition, like “snap-shot” sensors that capture an image similar to a normal camera 

with a fixed number of pixels in width and height. These have proven useful for studying 

camouflage in marine organisms [115,116]. As such, an underwater snap-shot design 

would be useful in fixed benthic installations for time-lapse analysis of seafloor commu-

nities, phytodetritus biogeochemistry, and degradation [51], as observations would not be 

affected by a changing survey altitude; however, they would require more powerful light 

sources. 

6.3. UHI Data Processing 

UHI data cubes are generally more demanding to analyze than RGB images due to 

the considerable amount of additional information in the spectral dimension (λ) (Figure 

2) [26]. Although storage capacities are being overcome through technology advancement 

and miniaturization, hyperspectral image analysis will typically require a dimensionality 

reduction as most of the data will be correlated or can be redundant [14]. This is a sensitive 

process requiring different stages and assessment of optimal analysis techniques to re-

trieve biogeophysical features of the seafloor that will need to be explored in the under-

water environment compared to terrestrial applications.  

In general, the processing of UHI data requires a series of steps to be followed, in-

cluding data pre-processing, georeferencing, segmentation, feature extraction, and data 

analysis. First, in the pre-processing step, UHI data has to be converted to radiance values 

(W m−2 sr−1 nm−1) per pixel (i.e., radiometric correction). However, [27] used raw digital 

counts and reference panels to convert to reflectance values directly, bypassing the need 

to convert to spectral radiance. Nonetheless, radiometric correction can be beneficial as it 

allows the documentation of actual light levels, sensor intercomparison, and conversion 

to reflectance using additional tertiary sensors (thus avoiding panel allocation in some 

circumstances). The second step involves georeferencing, which places each pixel in a spa-

tial arrangement and coordinate system through either the data from the integrated posi-

tioning and altitude sensors or spatial co-registration (see Section 6.2.). Finally, segmenta-

tion is employed to delimit areas within the image where the spectral analysis will be 
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performed. This is an important step that excludes objects from the analysis that could 

affect the classification result.  

Segmentation involves the selection of “regions of interest” (ROI) within the UHI 

transect (areas or targets from which spectral signatures will be retrieved). The selection 

of ROI is an important step as it aims to exclude irrelevant features within the image from 

the analysis. Currently, for UHI, ROI selection is still subjective, as most studies have se-

lected ROIs from “manual” or RGB visual detection, which may carry bias in natural en-

vironments as it assumes that visual inspection will provide all that there is to classify. 

Spectral signatures from ROI will suffice as an input for further analysis; however, it is 

often required for spectral signatures to be interpreted as a vector for extracting infor-

mation. In general, spectral indexes, principal component analysis, or double derivatives 

have been used for reducing the dimensionality of hyperspectral data for further analysis. 

The lack of ROI selection standard is a significant gap that should be addressed in future 

studies using UHI. Spectral homogeneity analysis [119] and deep learning methods [133] 

could aid in reducing ROI selection bias.  

Although the study objectives will determine the type of analysis required, future 

studies could start exploring combinations of different spectral techniques synthesized in 

Table 2. In regards to data analysis, both for regression and classification, there is a pleth-

ora of algorithms and techniques that could be derived from proximal remote-sensing 

studies in terrestrial ecosystems to be adapted to the underwater environment, such as 

functional traits and diversity [56,134,135]. 

7. Conclusions 

Our review of proximal UHI applications has showcased its potential for providing 

ecosystem attributes over a wide range of environments, allowing us to fill a niche gap in 

the spatial scales relevant for improved monitoring of impacts to marine ecosystems. 

Proximal hyperspectral imaging of marine habitats has provided information at spatial 

resolutions ranging from the sub-mm to the cm-scale of the seafloor composition and the-

oretically permits observations at different temporal resolution (minutes–hours–days) of 

benthic communities non-invasively, allowing the mapping of their immediate response 

to environmental cycles and impacts. Compared to RGB images, UHI holds significant 

advantages for seafloor habitat surveys as (1) it can provide more detailed information 

about seafloor surface biogeochemical properties and processes, (2) it fosters the automa-

tion of benthic organism identification through their pigment’s specific absorption, which 

shapes their unique spectral signature, and (3) it increases the detection of small fauna 

and flora not visible to human annotators. Challenges for future researchers will be to 

establish and validate different methods of acquiring and then translating UHI data into 

ecological and physiological information relevant for multi-disciplinary marine ecosys-

tem monitoring and management. 
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