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Abstract: Degradation in the highland pastures of the Kyrgyz Republic, a small country in Central
Asia, has been reported in several studies relying on coarse spatial resolution imagery, primarily
MODIS. We used the results of land surface phenology modeling at higher spatial resolution to
characterize spatial and temporal patterns of phenometrics indicative of the seasonal peak in herba-
ceous vegetation. In particular, we explored whether proximity to villages was associated with
substantial decreases in the seasonal peak values. We found that terrain features—elevation and
aspect—modulated the strength of the influence of village proximity on the phenometrics. Moreover,
using contrasting hotter/drier and cooler/wetter years, we discovered that the growing season
weather can interact with aspect to attenuate the negative influences of dry conditions on seasonal
peak values. As these multiple contingent and interactive factors that shape the land surface phenol-
ogy of the highland pastures may be blurred and obscured in coarser spatial resolution imagery, we
discuss some limitations with prior and recent studies of pasture degradation.
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1. Introduction

The Kyrgyz Republic (Kyrgyzstan) is a small, highly mountainous nation of ~6.5 mil-
lion in 2019, where more than 60% live in rural areas and where agropastoralism is the
predominant land use [1]. Degradation of pasture resources in highly mountainous Kyrgyz
Republic has been both widely reported [2–8] and disputed [9,10]. Many studies have
attempted to detect land degradation in Central Asia by using remote sensing products
based on finer temporal but coarser spatial resolution imagery [4,7,8,11–16]. While the
finer temporal resolution products are better able to obtain clear views of the land surface,
coarser spatial resolution products blend together heterogeneous surfaces. This blending
or mixing is of particular concern in mountainous terrain, where differential insolation
regimes arising from the interaction of aspect and slope generates microclimates that can
accommodate distinct vegetation communities exhibiting different phenologies [3,17–19].

Untangling the differential influences of climate and human activity is complicated by
coarser spatial resolution [7,14,20]. Pastoralism in Kyrgyzstan is characterized by transhu-
mance, the seasonal movement of livestock to fresh pastures, and vertical transhumance in
particular, where the herds are moved from low-elevation winter pastures near villages
through transitional pastures in spring (and again in fall) to higher elevation summer
pastures distant from settlements. This combination of spatial heterogeneity, terrain effects,
and seasonality of pasture use presents challenges for detecting pasture degradation from
coarser resolution remote sensing imagery. A further complication is presented by the high
interannual variation in weather arising from the land-locked location of the country, its
relatively high elevation, and regional climate change [12,21–24].
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Here, we explore the pasture degradation question across rural Kyrgyz Republic using
phenological metrics (phenometrics) derived from finer spatial resolution, but less frequent
imagery (Landsat 30 m) linked to more frequent, but coarser spatial resolution products
(MODIS 1 km) across 17 years (2001–2017). The phenometrics that we use here indicate the
first seasonal peak in NDVI and the amount of thermal time (measured as accumulated
growing degree-days calculated from land surface temperature time series) required to
reach that peak NDVI. These phenometrics can be calculated for each pixel in each year
for which there are sufficient, high-quality data and for which the joint time series exhibit
sufficient seasonality to enable the modeling of the land surface phenology (LSP). Pasture
degradation can be evaluated with phenometrics in a variety of ways, including trends,
variation, extremes, and abrupt spatial and/or temporal shifts [12,20,25,26]. However, we
are interested here in three questions about patterns that can complicate interpretation of
patterns and trends: (1) What are the spatial patterns of the phenometrics as a function of
distance from village center? (2) How do these patterns change as a function of elevation?
and (3) How do these patterns change as a function of aspect?

Although we focus on the patterns of the temporal mean phenometrics during the
study period, we also examine the patterns during two years with contrasting weather:
hotter, drier 2007 versus cooler, wetter 2009. This study leverages the findings from prior
studies [25,26] using the same approach to modeling land surface phenology and advances
our understanding of the spatio-temporal dynamics of vegetation in the socio-ecological
landscapes of montane Central Asia, specifically in the Kyrgyz Republic.

2. Materials and Methods
2.1. Study Area

The study area focuses on pasture lands within the territory of the Kyrgyz Republic
that neighbors Uzbekistan (west), Kazakhstan (north), China (east and southeast), and
Tajikistan (southwest) (Figure 1). The total area of the country is shy of 200,000 km2 (96%
in land), and the 2019 population was about 6.5 million, according to the World Bank
(https://data.worldbank.org/country/kyrgyz-republic; accessed on 20 June 2021). It is a
highly mountainous country, where more than 56% of the territory lies above 2500 m and
where the mountain ranges of the Tien Shan, Pamir, and Alatau cover more than 90% of
the total land area [27]. Pastoral rangelands constitute 87% [1] of the agricultural lands
in the Kyrgyz Republic. Less than 10% of the land is used for crops, while forests cover
only about 5%. Our study period extends from 2001 through 2017. The Kyrgyz Republic is
divided into seven provinces (oblasts)—Talas, Chuy (including the capital city, Bishkek),
and Issyk-Kul in the northern part as well as Jalal-Abad, Naryn, Osh, and Batken in the
southern part—and 40 districts (rayons).

2.2. Geospatial Data

The land surface phenology metrics (or phenometrics) and terrain information used
for this study were supplied from our previous work [25], where a detailed description of
data, its processing, and phenometrics calculation methodology can be found. We provide
an overview here.

To calculate LSP metrics, we used two products: MODIS land surface temperature
(LST) and Landsat surface reflectance NDVI.

https://data.worldbank.org/country/kyrgyz-republic
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Figure 1. Pasture land use area (light tan) and selected settlement points (blue-green) in the Kyrgyz Republic (from [28,29]) 
draped over the SRTM 30 m DEM [30] (Projected coordinate system: Albers Conic Equal Area). Province (oblast) names 
appear in yellow. 

We downloaded two tiles (h23v04 and h23v05) of 8-day MODIS Terra and MODIS 
Aqua Land Surface Temperature (MOD11A2/MYD11A2 V006) products at 1 km spatial 
resolution [31] from 2001 (MODIS/Terra) and from 2002 (MODIS/Aqua) up to the end of 
2017. We merged tiles, removed poor quality pixels, converted units from Kelvin to °C, 
and reprojected data to Albers Conic Equal Area at 30 m spatial resolution using bilinear 
resampling. 

The surface reflectance NDVI dataset from Landsat Collection 1 Tier 1 Level-1 Preci-
sion and Terrain (L1TP) of Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced The-
matic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) was acquired 
for years 2001 to the end of 2017 from the USGS Earth Resources Observation and Science 
(EROS) Center Science Processing Architecture (ESPA) On-Demand Interface 
(https://espa.cr.usgs.gov/). We downloaded 13,285 images across 33 unique tiles (WRS-2 
Paths 147–155 and Rows 30–33) which were already projected into Albers Conic Equal 
Area. We masked poor-quality pixels and applied an inter-calibration equation to adjust 
Landsat 5 TM surface NDVI and Landsat 7 ETM+ surface NDVI to the surface Landsat 8 
OLI NDVI, which on average was shown to have higher values (cf., Table 3 in [32], Surface 
NDVI from OLI = 0.0235 + 0.9723 ETM+). Because of the small differences between the 
Landsat 5 TM and Landsat 7 ETM+ data [33,34], we used the same equation for both da-
tasets. 

For the analyses conducted in this study, we additionally used three other geospatial 
datasets: (1) digital elevation model, (2) pasture land-use mask, and (3) point coverage of 
settlements. We downloaded 133 tiles of SRTMGL1, the NASA Shuttle Radar Topography 
Mission Global 1 arc second (~30 m) V003 elevation product [30] from USGS Earth Ex-
plorer (https://earthexplorer.usgs.gov/). Tiles were merged and reprojected into the Al-
bers Conic Equal Area at 30 m spatial resolution using bilinear resampling. We then gen-
erated aspect and slope layers. For this study, we masked out pixels from all layers where 
slope was greater than 30 degrees. Additionally, we created sets of three terrain layers 
where we left only pixels on the contrasting aspects (northern: NW-N-NE-E, southern: SE-

Figure 1. Pasture land use area (light tan) and selected settlement points (blue-green) in the Kyrgyz Republic (from [28,29])
draped over the SRTM 30 m DEM [30] (Projected coordinate system: Albers Conic Equal Area). Province (oblast) names
appear in yellow.

We downloaded two tiles (h23v04 and h23v05) of 8-day MODIS Terra and MODIS
Aqua Land Surface Temperature (MOD11A2/MYD11A2 V006) products at 1 km spatial
resolution [31] from 2001 (MODIS/Terra) and from 2002 (MODIS/Aqua) up to the end of
2017. We merged tiles, removed poor quality pixels, converted units from Kelvin to ◦C,
and reprojected data to Albers Conic Equal Area at 30 m spatial resolution using bilinear
resampling.

The surface reflectance NDVI dataset from Landsat Collection 1 Tier 1 Level-1 Precision
and Terrain (L1TP) of Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic
Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) was acquired for
years 2001 to the end of 2017 from the USGS Earth Resources Observation and Science
(EROS) Center Science Processing Architecture (ESPA) On-Demand Interface (https://
espa.cr.usgs.gov/). We downloaded 13,285 images across 33 unique tiles (WRS-2 Paths
147–155 and Rows 30–33) which were already projected into Albers Conic Equal Area. We
masked poor-quality pixels and applied an inter-calibration equation to adjust Landsat 5
TM surface NDVI and Landsat 7 ETM+ surface NDVI to the surface Landsat 8 OLI NDVI,
which on average was shown to have higher values (cf., Table 3 in [32], Surface NDVI from
OLI = 0.0235 + 0.9723 ETM+). Because of the small differences between the Landsat 5 TM
and Landsat 7 ETM+ data [33,34], we used the same equation for both datasets.

For the analyses conducted in this study, we additionally used three other geospatial
datasets: (1) digital elevation model, (2) pasture land-use mask, and (3) point coverage of
settlements. We downloaded 133 tiles of SRTMGL1, the NASA Shuttle Radar Topography
Mission Global 1 arc second (~30 m) V003 elevation product [30] from USGS Earth Explorer
(https://earthexplorer.usgs.gov/). Tiles were merged and reprojected into the Albers
Conic Equal Area at 30 m spatial resolution using bilinear resampling. We then generated
aspect and slope layers. For this study, we masked out pixels from all layers where slope
was greater than 30 degrees. Additionally, we created sets of three terrain layers where we
left only pixels on the contrasting aspects (northern: NW-N-NE-E, southern: SE-S-SW-W)

https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
https://earthexplorer.usgs.gov/
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at four elevation ranges: 1800–2400 m, 2400–2900 m, 2900–3400 m, and 3400–4000 m, and
elevation−aspect interactions.

The pasture land-use class (122,405 km2) was obtained from a Soviet-era land use map
that was updated in 2008 using Landsat 7 ETM+ and MODIS datasets for the CACILM
project [28,29]. We used those data to mask out non-pasture pixels in the terrain and LSP
layers to focus only on the pasture land-use pixels.

The settlement point layer was also obtained from the CACILM project where the
dataset was collected and consolidated by ECONET WWF Project [35] national teams. Over
Kyrgyzstan, the layer has 703 points representing detailed administration levels, including
small villages. We conducted a quality check on this dataset and eliminated points that
were clearly mislocated, yielding 617 point locations (Table 1) for analysis.

Table 1. Number of settlement points after dataset revision and filtering per province (oblast).

Province (Oblast) Total Points Points after 10 km Filter

Batken 63 36
Chuy 67 33

Issyk-Kul 100 45
Jalal-Abad 113 58

Naryn 96 44
Osh 137 56
Talas 41 21

TOTAL 617 293

2.3. Methods
2.3.1. Land Surface Phenology

We used a downward-arching convex quadratic (CxQ) function to characterize
LSP [36–38]. The model uses a vegetation index—here the NDVI from a Landsat sur-
face reflectance time-series—as proxy for active green vegetation, and thermal time—here
accumulated growing degree-days (AGDD) from MODIS LST—as proxy for insolation.

To obtain AGDD, we first transformed two diurnal and nocturnal observations from
the MODIS on Terra and on Aqua into a mean LST using the following Equation (1):

mean LSTt = [max(LSTtTERRA1030, LSTtAQUA1330) + min(LSTtTERRA2230, LSTtAQUA0130)]/2 (1)

where LSTtTERRA1030 is the LST for period t at the Terra daytime overpass, LSTtAQUA1330 is
the LSTt at the Aqua daytime overpass, LSTtTERRA2230 is the LSTt at the Terra nighttime
overpass, and LSTtAQUA0130 is the LSTt at the Aqua nighttime overpass.

We filled gaps that resulted from missing or filtering excluded pixels using the Sea-
sonally Decomposed Missing Value Imputation method [39], replaced all negative values
with 0 ◦C, and calculated growing degree-days GDD (2) at compositing period t as the
maximum of mean LST and Tbase, where Tbase was set to 0 ◦C [37,40].

GDDt = max(mean LSTt − Tbase, 0) (2)

For each year, we produced 46 GDD composites that were multiplied by 8 to account
for the 8-day MODIS product composite period and accumulated each year into time series
of AGDD (3), with an annual reset in January to 0 ◦C:

AGDDt = AGDDt-1 + (GDDt × 8) (3)

Prior the CxQ LSP model fitting, it was necessary to further clean and filter NDVI and
AGDD datasets to reduce noise and spurious data. Therefore, we filtered out observations
with NDVI < 0.1 and AGDD < 100 to avoid non-vegetated or snow-covered pixels. To
account for cloud contamination that may have slipped through the masking process, we
looked for unusual abrupt dips in the NDVI time-series. We first calculated the simple
average of NDVI observations on either side of the focal observation. We then calculated the
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percentage difference between the average NDVI and the focal observation and excluded
observations that were ≥15% than the average of the two neighboring observations [25,26].
Having NDVI and AGDD datasets prepared for each pixel and each year (from 2001 to
2017), we applied the CxQ LSP model shown in (4):

NDVI = α + β × AGDD + γ × AGDD2 (4)

Using the fitted coefficients (4) for the intercept (α), slope (β), and quadratic (γ)
parameters, we calculated two LSP phenometrics: Peak Height [PH=α − (β2/4 × γ)],
which is the maximum modeled NDVI; and Thermal Time to Peak [TTP = −β/2 × γ],
which is the quantity of AGDD required to reach PH and corresponds to the duration of
green-up phase. To control CxQ LSP model fitting performance, we used a suite of six
quality criteria: (i) the fitted quadratic parameter coefficient was less than zero (γ < 0);
(ii) TTP greater than the AGDD at the first observation; (iii) adjusted R2 greater than 0.7;
(iv) Root Mean Square Difference (RMSD) less than 0.08; (v) at least seven observations in
the time series to be fit, where at least three observations were distributed before and at
least three after the PH; and (vi) the PH less than or equal to 1.0.

If any criterion was not fulfilled during the fitting process, then the last observation in
the time series was removed and the model fitting procedure was rerun over the reduced
time series. We repeated this fitting procedure until either the fitted model passed all
criteria or the length of the time series was fewer than seven observations. In the latter
case, the model fit for that pixel was labeled as failed and no phenometrics were calculated
for that pixel.

Next, for each pixel where model fit was successful and phenometrics were obtained,
we calculated the mean values of PH and TTP across 17 years. We also highlighted PH
and TTP from the years 2007 and 2009, which were drier and wetter weather conditions,
respectively. As mentioned in Section 2.2, we used the pasture land-use layer to mask data.

2.3.2. Settlement Ring Buffer Analyses

From the settlement point coverage, we randomly selected (ArcMap Software
10.6.0.8321, Random Generator Type: default ACM599, seed:0) points with the spatial
constraint of 10 km from each other, which resulted in 293 focal points for analysis
(Table 1).

Then, we created 10 ring buffers around each settlement focal point from 500 m to
5000 m distance in 500 m intervals (0–500 m, 500–1000 m, 1000–1500 m, 1500–2000 m,
2000–2500 m, 2500–3000 m, 3000–3500 m, 3500–4000 m, 4000–4500, and 4500–5000 m).
The spatial constraint of 10 km ensured that the ring buffers would not intersect. Fi-
nally, we prepared nine datasets (raster stacks) at four elevation classes—(1) 1800–2400 m,
(2) 2400–2900 m, (3) 2900–3400 m, and (4) 3400–4000 m—yielding 36 in total, as follows:

1. Elevation classes {1–4}, all aspects, slopes < 30◦, PHmean, TTPmean;
2. Elevation classes {1–4}, all aspects, slopes < 30◦, PH2007, TTP2007;
3. Elevation classes {1–4}, all aspects, slopes < 30◦, PH2009, TTP2009;
4. Elevation classes {1–4}, northern aspects, slopes < 30◦, PHmean, TTPmean;
5. Elevation classes {1–4}, northern aspects, slopes < 30◦, PH2007, TTP2007;
6. Elevation classes {1–4}, northern aspects, slopes < 30◦, PH2009, TTP2009;
7. Elevation classes {1–4}, southern aspects, slopes < 30◦, PHmean, TTPmean;
8. Elevation classes {1–4}, southern aspects, slopes < 30◦, PH2007, TTP2007;
9. Elevation classes {1–4}, southern aspects, slopes < 30◦, PH2009, TTP2009.

Once these data were prepared, we extracted pixels from each set of settlement point
ring buffers across all 36 datasets. During the extraction process, we ensured that only
those pixels whose center point was within the ring buffer polygon were included so the
same pixel would not spill into the neighboring ring buffers. Because of the prior pixel
filtering by pasture land-use map, elevation classes, slope threshold value, and the fact
that LSP CxQ modeling did not always succeed (i.e., no phenometrics calculated), the
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number of extracted pixels varied within each ring buffer for each dataset, and in some
instances, there were no pixels to extract due to the multiple filtering steps. When there
were extracted pixels, we calculated the mean values for each ring buffer, which were
used for the complementary analyses of the influence of elevation, aspect, growing season
weather, and distance from village on the two phenometrics.

3. Results
3.1. Buffer Mean Values of the Peak NDVI as a Function of Distance and Elevation

Figure 2 displays the spatial mean ±2SE values of the fitted NDVI Peak Height within
each ring buffer calculated from the mean PH values across all years. Not surprisingly,
there is considerable variation, but some patterns are evident. First, the PH decreased with
increasing elevation. Second, the variation in the PH increased with elevation. Third, PH
increased with distance from villages at 2400–2900 m and 2900–3400 m.

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 16 
 

 

that LSP CxQ modeling did not always succeed (i.e., no phenometrics calculated), the 
number of extracted pixels varied within each ring buffer for each dataset, and in some 
instances, there were no pixels to extract due to the multiple filtering steps. When there 
were extracted pixels, we calculated the mean values for each ring buffer, which were 
used for the complementary analyses of the influence of elevation, aspect, growing season 
weather, and distance from village on the two phenometrics. 

3. Results 
3.1. Buffer Mean Values of the Peak NDVI as a Function of Distance and Elevation 

Figure 2 displays the spatial mean ±2SE values of the fitted NDVI Peak Height within 
each ring buffer calculated from the mean PH values across all years. Not surprisingly, 
there is considerable variation, but some patterns are evident. First, the PH decreased with 
increasing elevation. Second, the variation in the PH increased with elevation. Third, PH 
increased with distance from villages at 2400–2900 m and 2900–3400 m. 

 
Figure 2. Elevational gradients in modeled peak NDVI: mean ±2SE of the ten ring buffer mean values calculated from the 
temporal mean Peak Height. Sequential color scheme starting from left represents four classes of elevation: 1800–2400 m, 
2400–2900 m, 2900–3400 m, and 3400–4000 m. 

3.2. Contrasting Mean Values of Phenometrics Nearby and Far from Villages 
Figure 3 subsets the distributions to focus on either end of the spatial series: the 0–

500 m ring buffer captured those pasture areas closest to villages and the 4500–5000 m 
ring buffer captured pastures that were far from the focal village and not intruding on the 
ring buffer of another village. For PH (Figure 3, left panel), there was no difference in the 
lowest elevation class (1800–2400 m), but the differences between PH values nearby and 
far from villages were strong at both 2400–2900 m and 2900–3400 m, where the PH values 
in the distant ring buffer were higher than in the nearby ring buffer. However, the distri-
butions of the mean PH values were significantly different between the 0–500 m and 4500–
5000 m buffers only at the 2900–3400 m elevation range, according to the Kolmogorov–
Smirnov two-sample test with the Dunn-Šidák correction for post-hoc multiple compari-
sons [41]. Note that in the highest elevation class (3400–4000 m), there were no pasture 
areas in the ring buffer nearest (0–500 m) to villages. It is also evident that the variation of 
PH in the nearby ring buffer appeared larger at higher elevations relative to that in the 
lowest elevation class, but this difference may result from fewer samples at high eleva-
tions. 
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3.2. Contrasting Mean Values of Phenometrics Nearby and Far from Villages

Figure 3 subsets the distributions to focus on either end of the spatial series: the
0–500 m ring buffer captured those pasture areas closest to villages and the 4500–5000 m
ring buffer captured pastures that were far from the focal village and not intruding on the
ring buffer of another village. For PH (Figure 3, left panel), there was no difference in the
lowest elevation class (1800–2400 m), but the differences between PH values nearby and far
from villages were strong at both 2400–2900 m and 2900–3400 m, where the PH values in the
distant ring buffer were higher than in the nearby ring buffer. However, the distributions
of the mean PH values were significantly different between the 0–500 m and 4500–5000 m
buffers only at the 2900–3400 m elevation range, according to the Kolmogorov–Smirnov
two-sample test with the Dunn-Šidák correction for post-hoc multiple comparisons [41].
Note that in the highest elevation class (3400–4000 m), there were no pasture areas in the
ring buffer nearest (0–500 m) to villages. It is also evident that the variation of PH in
the nearby ring buffer appeared larger at higher elevations relative to that in the lowest
elevation class, but this difference may result from fewer samples at high elevations.
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The Thermal Time to Peak phenometric (Figure 3, right panel) decreased with ele-
vation, as expected, and the distant TTP ring buffer means were consistently—but not
significantly—lower than the nearby values.
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3.3. Influence of Weather on Phenometrics

Figure 4 shows the PH (left) and TTP (right) means for the ring buffers nearby versus
far from the villages. For PH, the contrast between years and distance from villages was
significant only for the 2900–3400 m elevation class (Figure 4, left). At the lowest elevation
class, the nearby ring buffer means were not significantly different, but the distant means
were. TTP was clearly lower during 2009, the wetter year, at all elevations, and lower
at higher elevations, as expected. Evaluation by the Kolmogorov-Smirnov two-sample
test (with the Dunn-Šidák correction) confirms what Figure 4 (right panel) shows: the
TTP distributions were significantly different between 2007 and 2009 at every elevation
class, but the difference between 0–500 m and 4500–5000 m ring buffer distributions was
significant only at the 2900–3400 m elevation class and only in the drier year of 2007.

3.4. Influence of Aspect on Phenometrics

We tested for differences in the distributions of buffer means as a function of aspect
(NW-N-NE-E vs. SE-S-SW-W) by distance from settlement point and elevation class using
the Kolmogorov-Smirnov two-sample test with the Dunn-Šidák correction for post-hoc
multiple comparisons. Northerly aspects consistently showed higher Peak Height means
than in southerly aspects, but these differences were not statistically different at every
distance or elevation class (Figure 5). In the lowest elevation class (1800–2400 m), the effect
of aspect on PH was significant starting at the 2500–3000 m ring buffer; in the 2400–2900 m
elevation class, the difference in PH between aspects appeared significant 500 m closer
to the settlement point (i.e., at the 2000–2500 m ring buffer). In the two higher elevation
classes, the aspect differences were not significant, but the variation about the means
appears lower in the more distant ring buffers.
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3.5. Interaction of Weather, Aspect, and Distance on Phenometrics

Figure 6 shows the distributions of phenometrics for northerly and southerly aspect
slopes from pasture areas nearby (0–500 m) and far from (4500–5000 m) villages in the drier
year of 2007 and the wetter year of 2009. The Kolmogorov-Smirnov two-sample test with
the Dunn-Šidák correction reveals four patterns of interest in the Peak Height distributions:
(1) the aspect effect on PH is significant at the two lower elevation classes only far from
villages; (2) at the far ring buffer at each elevation class between 1800 m and 3400 m, the
distributions of PH means from southerly aspects in the drier year of 2007 are significantly
different from the northerly aspect PH means in the wetter year of 2009; (3) at each distance
and elevation, distributions of PH means are not significantly different by year for the same
aspect, i.e., the distributions of southerly (or northerly) aspect PH means are not different
between years; and (4) the distributions of northerly aspect PH means in the drier year of
2007 are not significantly different from the southerly aspect PH means in the wetter year
of 2009. This last pattern is clearer in Figure 7 (top panels) and illustrates how the northerly
aspect slopes moderate the impact of dry years on pasture LSP.

The patterns in the TTP distributions were not surprising (Figure 6, right): (1) de-
creasing TTP with increasing elevation; (2) lower TTP values in the cooler, wetter year of
2009; and (3) no apparent aspect effect in the TTP buffer mean distributions. The bottom
panels in Figure 7 show more clearly how strongly the TTP mean distributions diverge
between years.
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Figure 6. Interaction of weather, aspect, and distance: distributions of the phenometrics (Peak Height (left) and Thermal
Time to Peak (right) from two nearby (0–500 m) and distant (4500–5000 m) ring buffer mean values calculated from the
hotter, drier year of 2007 (northern aspects [N] in red, southern aspects [S] in orange) and the cooler, wetter year of 2009
(northern aspects [N] in a dark cyan, southern aspects [S] in a light blue)) at the four elevation classes.
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Figure 7. Differences in phenometric values (Peak Height on top and Thermal Time to Peak at bottom) arising from contrasts
in weather and aspect: mean ±2SE of the two ring buffers at 0–500 m (left) and 4500–5000 m (right) from villages for hotter,
drier 2007 (northern aspects [N] in a red triangle, southern aspects [S] in an orange circle) and cooler, wetter 2009 (northern
aspects [N] in a dark cyan triangle, southern aspects [S] in a light blue circle) for the four elevation classes.

4. Discussion

The results of these linked analyses address the questions posed earlier. The Peak
Height phenometric tends to increase in pasture areas as distance from the village increases.
One interpretation of this pattern is the pasture areas near villages tend to be degraded.
Winter pastures are closer to villages than either summer or transitional pastures and
have been shown to exhibit significant differences in biogeochemistry and vegetation
composition [5]. However, this general pattern can be modulated by the terrain, both
elevation and aspect. Of the four elevation classes, significantly larger PH differences were
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seen between nearby and distant buffer rings in the 2900–3400 m elevation class (Figure 3,
left). TTP decreased with elevation class but showed no clear difference between nearby
and distant values (Figure 3, right), due in part to the much coarser spatial resolution of
the LST data.

For the same reason, there was no clear influence of aspect on TTP (Figure 6, right
panels; Figure 7, bottom panels). In contrast, the influence of aspect on PH was strongest
in the lower elevation classes (Figure 5, bottom panels). When distant from a settlement,
the PH on a northern aspect slope during a dry year appeared very similar to the PH on a
southern aspect slope during a wet year (Figure 7, top right). However, in pasture areas
closest to settlements, this aspect influence vanishes (Figure 7, top left).

The advantages of our study are several. First, we integrated long time series of two
independent remote sensing products through a simple biometeorological model of land
surface phenology that responds to the progress of growing season temperature rather
than to the mere passing of days [37,38]. Second, the CxQ model has been shown to
capture the initial seasonal peak well in grassland LSP [25,37,38]. Third, the finer spatial
resolution of our analysis captured the influence of terrain features on vegetation growth
and development as captured by the phenometrics [25].

Four limitations of our study are key. First, even the 30 m Landsat data can miss
important landscape features influencing LSP [42]. Second, the 1 km spatial resolution
of the MODIS LST product is coarser than would be optimal for use in rugged terrain.
However, there are no effective alternatives at this point. Third, the CxQ model captures the
initial seasonal peak but not necessarily the post-peak decay, particularly if there is heavy
grazing post-peak [25]. This limitation is not as serious as it may first appear: we expect
clear evidence of pasture degradation to appear only after several years of overgrazing,
particularly if coupled with a severe drought. Fourth, while the pasture land-use mask
was critical for omitting non-pastoral land-uses, there is substantial uncertainty associated
with its development and accuracy. We have no accuracy assessment associated with it,
and we expect that commission error is more likely than omission error, which would have
the effect of increasing variance and decreasing the significance of the patterns. Finally, a
key caveat for interpretation of these results should be noted: the 5 km extent of analysis
was not meant to capture the summer pastures associated with villages. Summer pastures
can be 10–50 km or more from a given village, and the spatial allocation and arrangement
of summer pastures can be quite complicated.

Given our findings, to what extent do they raise questions about previous remote
sensing studies on widespread degradation of pasture resources? The relationship between
the scale of observation and the scale of the phenomenon of interest is crucial to the
understanding and interpretability of the remote sensing data [43]. It is clear from these
results that terrain effects can be obscured by coarser spatial resolution data, yet there is
another scale to consider as well. Prior studies have demonstrated significant effects of
climate oscillation modes on LSP in Central Asia [12,44,45]. However, more recent work at
higher spatial resolution was not able to discern a significant influence from climate modes
because the influence on LSP was overridden by local landscape structure [26].

Another facet of the degradation monitoring problem relates to the impact of spatial
heterogeneity on the characterization of LSP. An important empirical study [46] explored
how spatial heterogeneity in the land surface phenology observed at finer spatial resolution
influences the timing of phenophase detection when observed at coarser spatial resolution.
They found, when the land cover was homogeneous, that greater than 60% of Landsat
8 OLI 30 m pixels exhibiting start of season (SOS) detections were within 1 day of the
SOS detection within a VIIRS pixel of 500 m spatial resolution. In contrast, less than 20%
of the 30 m SOS detections were within 1 day if the land cover within the 500 m pixel
was heterogeneous. They further reported that the SOS detection timing at the coarser
spatial resolution was controlled by the timing when roughly 30% of the 30 m pixels within
the 500 m pixel transitioned to SOS [46]. Thus, phenophase detections at coarser spatial
resolutions are biased toward the earlier components in the vegetated land surface if the
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target landscape exhibits spatial heterogeneity. The study shows that the scaling effect on
LSP is not resolvable with simple averaging. The mountain pastures of the Kyrgyz Republic
and elsewhere in Central Asia exhibit a higher spatial heterogeneity than the croplands
of central Iowa examined in [46]. Using a nonstandard MODIS product at 250 m spatial
resolution, a study of pasture degradation in western Kyrgyz Republic found that pastures
with a higher abundance of non-palatable vegetation exhibited later timing of peak NDVI
during dry years in sub-alpine and mountain steppe ecozones but negligible impact in
normal years [8]. The study is notable in that it included an extensive field component and
demonstrated that higher NDVI values can accompany pasture degradation.

Several prior studies that have used MODIS data to detect trends in browning or
greening in Kyrgyzstan and elsewhere in montane Central Asia may have been biased
towards detecting browning trends and interpreting them as evidence of degradation due to
using Collection 5 (C5) of the MODIS products. The differences between C5 and Collection
6 (C6 aka V006) are pronounced due to the loss of sensitivity of the red channel in the Terra
MODIS [47,48]. Trend comparisons between the two collections have shown that significant
negative trends in C5 were no longer significant in C6, and many nonsignificant trends
in C5 appeared now as significant positive trends in C6 [49,50]. Two earlier studies [4,14]
finding degradation in Kyrgyz pastures clearly used C5 products. Another study finding
degradation [8] used data that was unlikely to have included the C6 corrections. A recent
study [7] does not state which collection was used, but as the analysis period extended
only until 2014, it is likely that it used C5 instead of C6 as well. The key point here is that
as remote sensing products undergo upgrades that significantly change observed patterns,
it is important to revisit those studies relying on earlier product versions to re-evaluate
their findings in light of the new information.

A further concern is the use of simple linear slopes to detect significant trends. Ap-
plying ordinary least squares regression to a time series to fit a slope and declare the
slope to be the trend has serious limitations from a statistical standpoint [51,52]. Positive
autocorrelation reduces residual variance and inflates significance, increasing the risk of
a Type I inferential error. Alternatives exist, such as the nonparametric Seasonal Kendall
trend test, but it is not resistant to strong interannual autocorrelation. Fitting time series
with autoregressive models has not been common in remote sensing studies.

Our findings suggest potential degradation in pasture areas as indicated by lower
PHs closer to villages, but our analysis cannot rule out functional degradation arising
from an increase in the coverage of nonpalatable species that can enhance NDVI without
providing accessible forage [8,13,19]. Furthermore, what constitutes degradation in a
particular socio-ecological system is frequently more subjective and culture-bound than is
typically acknowledged [13,53–55].

5. Conclusions

We analyzed the landscape patterns of phenometrics based on fitted parameter coef-
ficients of the land surface phenology model applied to 17 years of Landsat and MODIS
seasonal time series across the montane pastures of the Kyrgyz Republic. We found
that the Peak Height of NDVI generally decreased closer to villages, but the patterns
were modulated—sometimes strongly—by elevation, aspect, and growing season weather.
These findings raise questions about reports of pasture degradation based on coarser
spatial resolution image time series. Our goal here was not to differentiate the relative
contributions of these factors, because they are not susceptible to linear “unmixing”. Rather,
we sought to recognize their potential influence on the mixed signal observed at coarser
spatial resolutions and to urge caution in interpreting, for instance, declines in NDVI trends
with pasture degradation and increases with pasture remediation. The situation is more
complicated. Due to the spatial heterogeneous distribution of pastures and pasture usage
in mountainous landscapes, contextual information should be used to interpret remotely
sensed patterns and trends in an appropriately nuanced manner.
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