
remote sensing  

Review

Disentangling LiDAR Contribution in Modelling
Species–Habitat Structure Relationships in Terrestrial
Ecosystems Worldwide. A Systematic Review and
Future Directions

Pablo Acebes 1,2,*, Paula Lillo 1 and Carlos Jaime-González 1

����������
�������

Citation: Acebes, P.; Lillo, P.;

Jaime-González, C. Disentangling

LiDAR Contribution in Modelling

Species–Habitat Structure

Relationships in Terrestrial

Ecosystems Worldwide. A Systematic

Review and Future Directions. Remote

Sens. 2021, 13, 3447. https://doi.org/

10.3390/rs13173447

Academic Editor: Jaroslaw Tegowski

Received: 9 July 2021

Accepted: 25 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
paulalilloaparici@gmail.com (P.L.); carlos.jaime.g@gmail.com (C.J.-G.)

2 Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid,
28049 Madrid, Spain

* Correspondence: pablo.acebes@uam.es

Abstract: Global biodiversity is threatened by unprecedented and increasing anthropogenic pressures,
including habitat loss and fragmentation. LiDAR can become a decisive technology by providing
accurate information about the linkages between biodiversity and ecosystem structure. Here, we
review the current use of LiDAR metrics in ecological studies regarding birds, mammals, reptiles,
amphibians, invertebrates, bryophytes, lichens, and fungi (BLF). We quantify the types of research
(ecosystem and LiDAR sources) and describe the LiDAR platforms and data that are currently
available. We also categorize and harmonize LiDAR metrics into five LiDAR morphological traits
(canopy cover, height and vertical distribution, understory and shrubland, and topographic traits) and
quantify their current use and effectiveness across taxonomic groups and ecosystems. The literature
review returned 173 papers that met our criteria. Europe and North America held most of the
studies, and birds were the most studied group, whereas temperate forest was by far the most
represented ecosystem. Globally, canopy height was the most used LiDAR trait, especially in
forest ecosystems, whereas canopy cover and terrain topography traits performed better in those
ecosystems where they were mapped. Understory structure and shrubland traits together with
terrain topography showed high effectiveness for less studied groups such as BLF and invertebrates
and in open landscapes. Our results show how LiDAR technology has greatly contributed to habitat
mapping, including organisms poorly studied until recently, such as BLF. Finally, we discuss the
forthcoming opportunities for biodiversity mapping with different LiDAR platforms in combination
with spectral information. We advocate (i) for the integration of spaceborne LiDAR data with the
already available airborne (airplane, drones) and terrestrial technology, and (ii) the coupling of it
with multispectral/hyperspectral information, which will allow for the exploration and analyses of
new species and ecosystems.

Keywords: biodiversity and habitat mapping; conservation; ecosystem structure; LiDAR platforms;
LiDAR traits; morphological traits; remote sensing; terrain topography

1. Introduction

Global biodiversity is threatened by unprecedented and increasing anthropogenic
pressures, including habitat loss and fragmentation, so that biodiversity assessment and
monitoring is imperative [1,2]. Given that ecosystem structure is increasingly seen as a
determinant of habitat quality as well as an indicator of biodiversity itself at local and
regional scales [3–5], the ability to deepen our knowledge on species–habitat relationships
is of vital importance [6].

The most direct and accurate way of obtaining detailed ecosystem three-dimensional
(3D) structure at the resolution and accuracy required is through LiDAR [7,8]. Equipped
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with a near-infrared light sensor in most cases and a GPS, Light Detection and Ranging
(LiDAR is an active remote sensing technology able to measure the return time of an
emitted laser pulse to obtain the distance to the object of study and thus its location in 3D
(x, y, and z). Once the laser return is taken, a so-called “point cloud” is generated, from
which the 3D model is constructed [7].

LiDAR sensors can be mounted on several platforms, thus providing different prop-
erties for researchers. For example, spaceborne (satellite) platforms commonly provide
open access data to a broad, spatial extent, albeit at a coarse spatial resolution (e.g., [9,10]),
promising opportunities to come from recently launched missions [11]. Platforms onboard
airplanes or helicopters (Airborne Laser Scanning, or ALS) are frequently used because
country-wide datasets are becoming increasingly available, offering increased accuracy,
but at higher costs (e.g., [12,13]). Unmanned Aerial Systems (also called drones; hereinafter,
UAS) are gaining relevance—their capacity for flying slow and above the vegetation or
the ground provides a very high spatial resolution and at a lower cost on local scales [14].
Finally, ground-based instruments, commonly mounted on tripods or on handheld devices,
also called Terrestrial Laser Scanning (TLS), offer the highest spatial resolution but a lim-
ited spatial coverage [15]. Thus, choosing the best option is not always an easy task for
researchers, even more so for nonspecialized practitioners.

LiDAR technology has been largely used in forestry to measure 3D forest structure [16].
More recently, LiDAR has been incorporated into ecological studies for exploring, explain-
ing, and predicting biodiversity at different scales [8,17,18]. Such studies typically use
LiDAR-based metrics of vegetation canopy structure, as canopy height, cover, and vertical
distribution [7,17], given that vegetation structure shapes niche variability and provides es-
sential elements for species’ habitats [3,19]. Most of these studies are focused on birds, due
to their strong dependence on vegetation structure [3], as seen in recent reviews indicating
LiDAR’s outstanding performance [17,18]. However, new studies have pointed to the
ability of LiDAR-derived metrics to model species–habitat relationships of other taxonomic
groups, such as mammals [20,21], arthropods [22,23], reptiles and amphibians [24,25],
or even bryophytes, lichens, and fungi [26,27]. Yet, there is no global overview available for
the contribution of LiDAR metrics considering such diverse organisms. In addition, studies
commonly neglect to discuss the most appropriate and accurate LiDAR metrics among
the available set. This is particularly relevant because vegetation metrics can be estimated
in many ways, so that comparing model outcomes becomes challenging [18]. Hence, har-
monizing such diverse metrics in a few morphological (structural) traits is recommended.
Something similar happened with non-forest habitats, wherein new studies have suggested
remarkable LiDAR performance in modelling habitat attributes for species in savannah,
tundra, or desert ecosystems [28–30]. In these open-landscapes, other elements such as
shrubs or precise topography derived from fine-scale LiDAR data may be decisive for
modelling species–habitat relationships, even more so than vegetation structure.

Here, we review the use of LiDAR to analyze 3D ecosystem structure (vegetation
physiognomy and topography) in relation to the abundance, occurrence, richness, and
diversity of species, including behavioral studies in terrestrial ecosystems. Firstly, we sum-
marize the different taxonomic groups for which LiDAR has been used to model ecosystem
features, their geographical coverage, and the ecosystem represented. We consider birds,
mammals, reptiles, amphibians, and invertebrates. We also include bryophytes, lichens,
and fungi, since these broad groups are becoming widely considered in biodiversity conser-
vation and global change research, so that LiDAR technology may provide further valuable
information [26,27]. We then extract LiDAR-derived metrics and harmonize them into
five structural traits aiming to simplify the multiple metrics currently used, and to get
an overview of which are the most widespread. Further, we analyze the most influential
(significant) traits for each taxonomic group and ecosystem. We also examine whether
LiDAR data was used alone or in combination with other resources (passive remote sensing,
field data, and/or GIS-derived products). We then review some LiDAR technical attributes
and characteristics, such as the type of platform on which LiDAR sensors are mounted
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(spaceborne, airborne, or ground-based instruments), the point cloud spatial resolution,
the type of LiDAR signal, and the availability of LiDAR data. Finally, we discuss and try to
shed light on new opportunities forthcoming from UAS LiDAR and spaceborne missions,
as well as from the combination of structural and spectral information aiming at describing
fine-scale environmental heterogeneity for biodiversity mapping and monitoring.

2. Materials and Methods

We performed a systematic literature search using the ISI Web of Knowledge (WOK)
and Scopus online databases to identify articles linking LiDAR technology to biodiversity
patterns during the period 2000–2020 (2000 was the first year where we found an article that
fulfilled our queries). We focused our bibliographic queries on vertebrate (birds, mammals,
reptiles, and amphibians) and invertebrate fauna (only species belonging to arthropod and
mollusk phyla were registered), and on bryophytes, lichens, and fungi. To do so, we used
the following keyword strings, looking for matches in the title, abstract and/or keywords:
“LiDAR* AND biodiversity*”, “LiDAR* AND vertebrates*”, “LiDAR* AND mammals*”,
“LiDAR* AND birds*”, “LiDAR* AND reptiles*”, “LiDAR* AND amphibians*”, “LiDAR*
AND invertebrates*”, “LiDAR* AND insects*”, “LiDAR* AND fungi*”, “LiDAR* AND
lichens*”, “LiDAR* AND bryophytes*”.

From the initial search (updated on 15 June 2020), we retrieved 3517 records (WOK:
2816, Scopus: 701; Supplementary Materials Table S1). We selected every record where
LiDAR was used to measure and relate 3D ecosystem structure (vegetation physiognomy
and terrain topography) to abundance, occurrence, richness, and diversity of species,
including behavioral studies. Articles not related to the ecology field and those using
LiDAR to measure vegetation structure for forestry (and hydrology) research (i.e., not
relating vegetation structure or topography to any organism) were discarded, as well as
methodological papers and reviews. In a second selection, all duplicated records and
conference papers were removed. The finally selected records included 173 papers that
fulfilled our search criteria (the complete list of references is available in the Supplementary
Materials section).

We extracted the following information from each article: title, author(s), year of
publication and journal. We also recorded the studied taxonomic group, including order,
family, and the species when available (for a complete list of the species recorded, see
Supplementary Materials, Table S2). We then classified them into five broad groups:
‘Birds and flying mammals (Chiroptera)’, hereinafter ‘Birds’, due to their similar use of
space; ‘Mammals (except Chiroptera)’, hereinafter ‘Mammals’; ‘Reptiles and amphibians’;
‘Invertebrates’, which includes insects, arachnids, mollusks, and crustaceans (no other
invertebrate groups were recorded in the literature search); ‘Bryophytes, lichens and fungi’
(hereinafter BLF).

We also recorded the study location, which was assigned to a continent to know the
global coverage of studies (Africa, North America, Central–South America, Asia, Europe,
and Oceania), and the type of ecosystem where the study was conducted. Since ecosys-
tems were varied (e.g., Mediterranean coniferous and deciduous forests, evergreen and
deciduous temperate forests), we harmonized them into the following broad ecosystems to
simplify their nomenclature: temperate forest, rainforest, riparian forest (temperate flood-
plain rivers), taiga, tundra, savannah, arid and semiarid ecosystems, inland and coastal
waters, and agroecosystem. The latter included arable and permanent land, small-wooded
patches within an agricultural matrix, and grazed pasture.

We extracted all LiDAR metrics used to explain ecological patterns. Since the use
of metrics and its naming were diverse, we harmonized them into the following mor-
phological (structural) traits: (a) Canopy structure (that we divided into canopy height,
canopy cover and canopy vertical distribution); (b) Understory structure and shrubland;
(c) Topography (Table 1). We then computed these traits as the number (and percentage)
of studies that used, e.g., canopy cover traits for the whole set of articles, and for each
taxonomic group and ecosystem analyzed. As an indicator of each traits’ performance,
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we further identified which ones were significant in the modelling exercises, since their
explanatory power may differ among the species and ecosystems. This index was esti-
mated as the percentage of articles where the traits were identified as significant. In some
cases, it was difficult to unequivocally identify whether a given metric was influential, for
example, because it was significant only under particular circumstances. In those cases, we
considered the traits as influential if it had an effect.

We registered LiDAR spatial resolution through the point cloud density (number
of points/m2); while high point density (≥10 points/m2) allowed us to obtain detailed
information of canopy layers [31,32], low point density (<2 points/m2) was enough to create
Digital Terrain Models (DTMs), or to calculate canopy height and cover metrics [33,34].
We also recorded the type of signal, distinguishing between Discrete Return (DR) and Full
Waveform (FW). DR are small footprint systems that record one to several echoes, but only
if the echo exceeds a predefined threshold of intensity. As a result, echoes not strong enough
can be missed, e.g., echoes coming from single tree branches. Contrarily, FW provides a
continuous distribution of laser energy for each pulse, regardless of the echo strength, but
data processing is more complex, and publicly available data is less common [35].

Table 1. LiDAR traits used to harmonize and classify the whole set of LiDAR metrics included in the
reviewed papers (173), their meaning, and some examples. CS: canopy structure.

LiDAR Traits Description Examples of LiDAR Explanatory
Variables

CS: canopy height

Includes metrics used to obtain
canopy height measures (e.g.,

maximum, mode, 95th percentile,
etc.).

Mean height [36,37]; Mean outer
canopy height [38]; 25th and 95th

percentiles [39,40]; Maximum
height [37,41].

CS: canopy cover
Includes metrics describing canopy

horizontal structure (e.g., cover, gaps,
density, roughness, etc.).

Canopy cover: Number of first
returns above a height/total
number of first returns [42];

Intensity sum of all non-ground
points divided by intensity sum of
all points [43]; Canopy gaps and
ruggedness [44]; Fractional cover

[45]; LiDAR penetration ratio
(LPI), as the ratio between terrain

points and total points [22].

CS: canopy vertical
distribution

Includes metrics describing canopy
vertical variation (heterogeneity,

complexity, layering, etc.).

Standard deviation of vegetation
height [46]; Proportion of LiDAR

returns at different layers [47];
Gini coefficient [48]; Simpson
index [39]; Vertical gap index,
measured as the total distance

between individual canopy strata
divided by maximum canopy

height [43].

Understory structure and
shrubland

Describes height, cover, volume
and/or contribution of the strata

below tree canopy and shrub structure
in non-forest habitats.

Index of foliage height diversity,
such as the Shannon diversity

index for the returns between 0.5
m and 3 m [49]; Density of
understory cover: ratio of

understory returns to the total
number of understory and

ground returns [33]; Shrub and
snags cover: vegetation returns

between 1 and 2.5 m [50];
Understory penetration ratio [36].

Topography

GIS variables commonly derived from
LiDAR data for describing surface

topography (elevation, slope, aspect,
terrain roughness) and derived

variables such as soil moisture, solar
radiation, etc.

Rugosity [51]; Slope, aspect,
curvature [52]; Topographic

wetness index [30,53];
Depth-to-water Index [26];

Potential incoming solar radiation
[30].
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We recorded whether LiDAR data was public and freely available (e.g., LiDAR data
from National forestry inventories, commonly of lower spatial resolution [41,54], or either
access-restricted or privately conducted ad hoc [40,55]. Public availability may be an
indicator of the democratization of LiDAR use.

We registered the type of LiDAR platform, since each platform provides different
coverage and spatial resolution: spaceborne (satellite), airborne (plane, helicopter or UAS),
and TLS. We also recorded whether LiDAR data was used from one or several periods,
either leaf-on leaf-off data of a single period [12] or multi-annual data [56] to identify
potential ecosystem structural changes and their effects on species.

Finally, we registered whether LiDAR data was used alone or in combination with
other resources, which we classified as active or passive remote sensing imagery, field-
based studies, and GIS-derived products. Moreover, we registered whether they were used
to compare LiDAR performance or as a complement, since this information gives an idea
of how confident ecologists are in LiDAR technology.

3. Results

Our search retrieved 173 articles published from 2000 to 2020 with relevant information
linking LiDAR technology to biodiversity patterns for the selected taxonomic groups.
We did not record any paper before 2000 with the specific keyword strings used. There was
an increasing trend in the number of articles published over time (Figure 1).

Figure 1. Temporal trends in the number of published articles linking LiDAR-based variables to
the studied taxonomic groups for the period 2000–2019: Birds, mammals, reptiles and amphibians,
invertebrates, bryophytes, lichens, and fungi. Note that no article published before 2000 was retrieved
using search strings (see methods). The year 2020 was not included, since literature search was
conducted until June.

3.1. Geographic Distribution, Taxonomic Groups and Ecosystems Surveyed

There was still a remarkable difference in the number of articles published in the
Northern Hemisphere, specifically in Europe and North America; no studies were consis-
tently conducted outside these two continents until 2015. Only two papers had a worldwide
focus or were performed in more than one continent (Figure 2).
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Figure 2. Number of articles per continent (size of the circle) found in the literature search (2000–2020)
that relate to metrics based on LiDAR with the studied taxonomic groups and the proportion of
articles of these taxonomic groups by continent. BLF: Bryophytes, lichens, and fungi; Several: studies
including more than one taxonomic group. See main text for more details.

Birds were the most studied taxonomic group (N = 99, 57.2%), followed by mammals
(N = 33, 19.1%), invertebrates (N = 18, 10.4%), and BLF (N = 10, 5.8%). Reptiles and
amphibians were the least represented group (N = 7, 4%). BLF was the only group where
studies have been conducted in North America and Europe, particularly in latitudes
above 48◦N (Alaska, Canada, Denmark, Finland, Germany, and Norway), except one
study predicting biological crust in arid environments in southern Europe [30]. Six articles
analyzed more than one taxonomic group (Figure 2).

There was a trend towards monospecific studies in birds and especially in mammals,
while there was a pattern of multispecific studies in invertebrate and in BLF groups.
Regarding birds, 59.6% of the articles (N = 59) analyzed either a single species or a few
related species, while the remaining 40.4% (N = 40) studied bird richness and diversity
patterns. Specifically, 29 articles focused on Passeriformes order, 11 on Piciformes, 8 on
Galliformes, 7 on Strigiformes, and 2 on Charadriiformes, while 6 considered the Chiroptera
species (bats). For mammals, only seven articles (21%) focused on more than one species,
while the remaining 79% (N = 26) were monospecific studies. The best represented order
was Artiodactyla (N = 11), followed by Rodentia (N = 8), Carnivora (N = 8), Primates
(N = 5), and Lagomorpha (N = 2).

Regarding invertebrates, only three articles studied a single species (Procambarus
clarkii, [57]; Nysius wekiuicola, [15]; Crassostrea virginica, [58]), while the remaining 15 were
multispecific studies (83%). Five articles examined Coleoptera order, three Isoptera order,
two Lepidoptera order, one Araneae order, one Hemiptera order, one Ostreida order, one
the Mollusca phylum, and one the Crustacea sub-phylum. There was also one article con-
sidering several orders (Coleoptera, Hemiptera, Araneae, Hymenoptera, [59]), one article
focusing on arthropod diversity [12], and one article analyzing benthonic invertebrate
richness and abundance [23].

With regard to BLF studies (N = 10), six articles focused on bryophyte and/or lichen
distribution, two articles analyzed fungi richness, and another two focused on fungi
distribution; one article studied Cladonia and Cetraria lichens genera, while one article was
centered on BLF diversity across multiple habitats to a large geographic extent [27].

For reptiles and amphibians, two articles focused on species belonging to Crocodilia
and Squamata order respectively, and two on species belonging to Testudines order, while
the remaining three analyzed potential breeding ponds for amphibians [25].

Finally, among the articles considering several taxonomic groups, two studies ana-
lyzed richness and abundance of birds and insects [49,60], two articles focused on bird,
amphibian, and mammal richness [9,61], one studied the diversity of birds and butter-
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flies [62], and one study analyzed bats, birds, invertebrates, fungi, lichens, and bryophytes
diversity [36].

Temperate forest was by far the most represented ecosystem (N = 116, Figure 3A) and the
most common across all taxonomic groups (Figure 3B). Contrarily, riparian forests (only in bird
studies), savannah (mammals and invertebrates), and tundra ecosystems (birds and BLF)
were the least represented (Figure 3B). Studies on birds and invertebrates showed the greatest
ecosystem variety (eight and six ecosystems, respectively; Figure 3B), while the remaining
taxonomic groups were studied in five different ecosystems. This included six mammal
studies in rainforest [10,21,63–66], four studies in African savannahs [67–70], three articles of
invertebrates in savannahs [28,71,72], or seven articles of birds in agroecosystems [53,73–78].
Whereas reptile studies were conducted in the rainforest [24], agroecosystem [79], or inland
and coastal waters [51], amphibian studies were restricted to seasonal ponds within temperate
forests (N = 3). Five studies corresponding to four taxonomic groups were conducted in arid
and semiarid ecosystems: birds [80], BLF [30], reptiles [47], and invertebrates [15,57].

Figure 3. Percentage of articles found in the literature search dealing with LiDAR data and the studied
taxonomic groups (A) grouped by the type of ecosystem where each study was conducted, and
(B) arranged considering the type of ecosystem by taxonomic group. BLF: Bryophytes, lichens, and
fungi; Several: studies including more than one taxonomic group. Note that the sum of percentage of
studies by ecosystem within each taxonomic group is equal to 100%. See main text for more details.

3.2. LiDAR Traits: Use versus Performance

Canopy height (62.4%) and canopy cover (58.4%) were the most used LiDAR traits
for the whole set of articles, followed by canopy vertical distribution (45.1%), understory
structure and shrublands (33.5%), and topography (30.1%). Globally, canopy cover and to-
pography traits performed best (93.2% and 86.5%, respectively), followed by canopy height
(84.3%), understory structure and shrublands (81.0%), and canopy vertical distribution
(74.4%).

By taxonomic group, canopy height was the most used LiDAR trait in bird and
mammal studies, even though canopy cover was more influential (Table 2). Although
relevant, canopy vertical distribution traits were less important for birds than canopy
height and cover. These traits were also relevant for invertebrates, and, to a lesser extent,
for mammals. Understory and shrublands traits were used less often than other vegetation
structure traits in BLF and invertebrates, despite the fact they were influential for those
taxa. Understory and shrubland traits were also relevant for mammals and birds. Terrain
topography traits were the most used and influential in BLF, reptiles, amphibians, and
invertebrates (Table 2).

Regarding the type of ecosystem, canopy height, together with canopy cover, were the
most used traits in forest-type ecosystems (Table 3). In those ecosystems, canopy vertical
distribution traits were widely used, though with less influence. In contrast, in more open
ecosystems, such as in arid and semi-arid ecosystems, savannah, or inland and coastal
waters, topographic traits were broadly used. No studies conducted in rainforests used
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understory structure traits. In contrast, understory structure and shrubland traits were
influential in those ecosystems in which they were used (Table 3).

3.3. LiDAR Characteristics

Airborne LiDAR was the most used platform (94.8%, N = 164), while DR was the
most used signal type (N = 152); only 21 articles used a FW signal. Seven out of 164
articles mounted the LiDAR sensor on a helicopter instead of on an airplane [12,32,81–85],
which increased LiDAR resolution because the helicopter’s flight was lower and slower
(helicopter’s pulse density: 15–500 pulses/m2). Only four studies used LiDAR data from
space sensors, specifically the publicly available Geoscience Laser Altimeter System (GLAS)
onboard the ICE, Cloud and land Elevation Satellite (ICESat), and available from 2003
to 2009. Four articles acquired LiDAR data from TLS: DTMs [15,86]; canopy structural
metrics [38] and shrub canopy structure [80]. According to our query, we did not record
any study using UAS (drones).

Regarding point cloud resolution (pulse density), LiDAR data had less than two
points/m2 in 28.9% of the studies (N = 50), and between two and ten points/m2 were
recorded in 24.3% (N = 42), whereas 15.6% of the articles had more than 10 points/m2

in (N = 27). Point cloud resolution was either not available, not explicitly stated, or was
expressed as point spacing (distance from point to point) in 31.8% of the articles (N = 55).
Private data were the most common LiDAR source (N = 100; 57.8%), followed by freely
accessible LiDAR (N = 43; 24.9%), while 20 articles used both private and public datasets
(5.8%). It was not possible to know the origin of data in 10 articles (5.8%). Only nine of the
43 articles using freely accessible data had more than two points/m2 of spatial resolution,
pointing to a clear lower accuracy of freely distributed LiDAR data. It was not always easy
to identify the data source throughout the studies.

3.4. Use of Multi-Temporal LiDAR and Combination of LiDAR Data with Other Sources

Only five articles used LiDAR data to quantify temporal changes. For example, [87]
used a time series of LiDAR data in a 12 year period to investigate the accuracy of LiDAR
metrics when modelling the breeding period of the great tit (Parus major) in a mature
woodland. The authors of [12] analyzed two LiDAR datasets (winter and summer) within
the same year to check the reliability of LiDAR to penetrate leaf-on (as opposed to leaf-
off) vegetation. The authors of [88] suggested that a 6 year difference between field-
data collection and LiDAR-data collection had negligible effects on bird patterns in an
undisturbed coniferous forest.

Regarding the use of LiDAR with other sources of information, 67 studies used only LiDAR
data, whereas the remaining 106 shared LiDAR with other data sources (Figure 4). Field surveys
(N = 42) and passive remote sensing imagery (N = 38) were the most widely implemented sources,
including one article using hyperspectral data. Thirty-eight studies used these approaches to
compare the reliability of each data source, 65 used them to improve modelling exercises, while
the remaining three compared and complemented LiDAR data. There was a clear trend since
2014–2015 towards a decrease in the number of articles comparing methods and an increase in
the number of studies that complemented LiDAR with other technologies.
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Table 2. Categorized LiDAR-derived traits based on all metrics found in the literature search regarding vegetation structure and terrain topography in relation to the studied taxonomic
groups. “n” represents the number of studies of each taxonomic group in which a variable regarding the categorized traits was used; “use” is the percentage of articles of each taxonomic
group that uses a given metric in relation to the whole articles of each taxonomic group. For example, if 68 of 99 of bird studies used canopy height, then the use was 68.7%. “sig.” is the
ratio (%) between the number of articles in which a given metric has an effect in relation to the number of articles in which that metric is used. For example, in 59 of 68 bird articles in
which canopy height was used, it had an effect = 86.76%. BLF: Bryophytes, lichens, and fungi; R&A: reptiles and amphibians; Several: studies including more than one taxonomic group.

Canopy Height Canopy Cover Canopy Vertical Distribution Understory Structure Terrain Topography

n Use Sig. n Use Sig. n Use Sig. n Use Sig. n Use Sig.

Birds 68 68.7 86.8 66 66.7 92.4 49 49.5 77.6 39 39.4 76.9 17 17.2 76.5
Mammals 23 69.7 73.9 21 63.6 90.5 16 48.5 68.8 11 33.3 81.8 9 27.3 88.9

R&A 1 14.3 100 2 28.6 100 0 0 5 71.4 100
Invertebrates 7 38.9 85.7 5 27.8 100 5 27.8 100 3 16.7 100 12 66.7 91.7

BLF 4 40 100 4 40 100 4 40 50 2 20 100 8 80 100
Several 5 83.3 80 3 50 100 4 66.7 50 3 50 100 1 16.7 0

Table 3. Categorized LiDAR-derived traits based on all metrics found in the literature search regarding vegetation structure and terrain topography, and in relation to the harmonized
ecosystems. “n“, “use”, and “sig.” values are estimated equally as in Table 2 but for the type of ecosystem.

Canopy Height Canopy Cover Canopy Vertical Distribution Understory Structure Terrain Topography

n Use Sig. n Use Sig. n Use Sig. n Use Sig. n Use Sig.

Temperate forest 72 62.1 84.7 76 65.5 93.4 57 49.1 77.2 44 37.9 75 30 25.9 90
Rainforest 8 100 100 4 50 75 5 62.5 60 0 1 12.5 100

Taiga 11 73.3 90.9 9 60 100 9 60 55.6 7 46.7 100 1 6.7 100
Riparian forest 2 66.7 100 1 33.3 100 2 66.7 100 1 33.3 100 0

Tundra 1 50 0 1 50 100 0 0 1 50 100
Savannah 4 57.1 25 3 42.9 100 1 14.3 100 1 14.3 100 5 71.4 60

Agroecosystem 9 81.8 88.9 5 45.5 80 4 36.4 75 4 36.4 100 5 45.5 60
Arid & semi-arid

ecosystem 0 2 40 100 0 1 20 100 4 80 100

Inland and coastal
waters 1 16.7 100 0 0 0 5 83.3 100
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Figure 4. Number of articles found in the literature search using LiDAR data together with other
sources: “GIS-derived products” refer to thematic maps or variables extracted from GIS analyses not
linked to LiDAR data. “More than one” consider articles using at least 2 sources apart from LiDAR
data, e.g., field surveys and passive remote sensing imagery.

4. Discussion

The application of LiDAR technology in terrestrial ecology studies has shown a
consistent and expanding significance over the last two decades, clearly reflected by the
upward trend in the number of articles published since 2000. Our results thus support
the idea that LiDAR has become a very useful technology in animal and plant ecology
studies, thanks to its key contribution in producing vegetation and terrain structure-related
traits as surrogates of 3D habitat structure. We encourage researchers to increase the use of
fine-grained terrain and understory and shrubland LiDAR traits, despite the latter’s need
for increased accuracy estimation.

We still find two main biases: First, birds are by far the most studied group, due to
the recognized effect of forest structure on bird diversity (for a comprehensive review of
LiDAR usefulness on bird studies, see [18]). Still, we have identified an increase of studies
considering other taxonomic groups since the review of [17], including bryophytes, lichens,
and fungi (see, e.g., [26,27,89]), a new broad group of organisms increasingly considered in
biodiversity conservation and global change research. Studies on mammal group have also
increased with successful LiDAR outcomes (see, e.g., [20,21,40,42,66,90,91]. Something sim-
ilar happened with invertebrates, although to a lesser extent (see, e.g., [12,22,23]). This fits
with ecological theory, which recognizes the importance of the diversity of structures as
surrogates of the biodiversity itself. Regrettably, we found few studies considering reptiles
and amphibians, despite the ability of LiDAR to produce accurate DTMs relevant for
modelling the habitat features of small reptiles [79], the nesting sites of marine turtles
according to the beach geomorphology (see, e.g., [51,92,93]), or for the identification and
characterization of vernal ponds for amphibians [94]. In addition, our review retrieved few
studies including several taxonomic groups (however, see, e.g., [36,49,62]). Thus, consider-
ing the pressures that are currently affecting ecosystems and biodiversity worldwide, we
claim that the global studies integrating several species and taxonomic groups owe thanks
to the incoming LiDAR spaceborne missions (see below).

The second acknowledged bias is the geographic distribution and the ecosystems
surveyed: We have identified a clear dominance of studies in the Northern Hemisphere,
particularly in the temperate forests of Europe and North America, which is consistent with
previous reviews [17,18]. Studies in Central and Eastern Asia, Africa, and South America
are clearly lacking. Moreover, the number of articles in rainforest, savannah, tundra, and
desert ecosystems is still scarce when compared to their ecological relevance, their spatial
extent, and their vulnerability to global change, despite LiDAR-derived metrics haven been
proven to be good indicators of ecosystem structure. The lower availability of LiDAR data
in such ecosystems and continents helps explain these geographical gaps. Space missions
such as GEDI and ICESat-2, in combination with ALS and UAS LiDAR, will provide the
opportunity to close these gaps, scaling up local studies to regional and global studies
(however, see below).
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In turn, the ability of LiDAR to accurately explain biodiversity patterns in open land-
scapes is evident in light of our review. This is especially so for predicting species richness
in BLF [27], since these taxa are not only affected by old-growth forest structure [26,37],
but also by shrub cover and terrain topography [27], i.e., traits that can be estimated from
LiDAR. Indeed, terrain traits derived from LiDAR data such as slope, soil moisture, or solar
radiation were also decisive for modelling biological crusts in open-arid landscapes [30].
Furthermore, LiDAR was crucial in mapping the breeding habitats of shorebirds in Oceania
(Thinornis cucullatus cucullatus) through the characterization of unvegetated dunes and
tidal reefs by means of DTMs [95]. LiDAR terrain metrics were also critical for identi-
fying small depressional wetlands, key for pond-breeding amphibians (Notophthalmus
perstriatus, [25]). Thus, our results have shown how LiDAR fine-grained metrics describing
topography have decisively contributed to the modelling of species–habitat relationships,
regardless of the taxonomic group and the ecosystem studied, despite research efforts
having mainly focused on elucidating the effects of 3D vegetation structure on species. As
such, we recommend researchers to fully integrate fine-grained 3D terrain traits in addition
to vegetation structural traits when modelling biodiversity. Moving forward to studies in
aquatic ecosystems, although not considered in this review, morphological traits such as
bathymetry are further becoming successfully used for modelling the seascape structure
with LiDAR, to, for example, predict the diversity and abundance of fish and corals [96], to
map coral reefs [97,98], to define benthic habitat complexity for reef fish assemblages [99],
or to predict coral reef fish assemblages [100].

Furthermore, ecologists and conservation biologists increasingly rely on LiDAR tech-
nology for conservation and planning strategies [101]; this includes research on invasive
species (Procambarus clarkii, [57]), critically endangered species (Pongo pygmaeus, [21]),
or the identification of priority areas for species conservation (ground beetles, [22]). From
a conservation perspective, we consider that LiDAR represents a unique, albeit scarcely
explored, technology, able to monitor how global biodiversity and ecosystem services are
threatened by ecosystem alterations due to anthropogenic activities. Particularly, LiDAR
can contribute by quantifying how habitat destruction, the greatest threat to biodiversity,
(negatively) influences populations or communities across altered landscapes.

We detected a great variability in the terminology and calculation methods of LiDAR
metrics and throughout all taxonomic groups, as highlighted in a recent study [18]. For
example, canopy height can be measured by several metrics, e.g., highest vegetation return,
mean height, 95th percentile canopy height, 25th percentile canopy height, etc. However, a
considerable number of other metrics were also used, as, for instance, in the Gini coefficient,
used to measure the degree of inequality in tree size [48], metrics to characterize snags
or dead wood [31,102], or the Leaf Area Density [103]. Helpful reviews of the more
useful LiDAR metrics available are provided by [104] and [18]. Therefore, we consider the
challenging task of harmonizing the wide array of LiDAR metrics and calculation methods,
so that the comparing of model outcomes among papers can become fruitful. We propose
to simplify and harmonize LiDAR metrics to more meaningful morphological traits as
follows, in line with [105]: canopy height, canopy cover, canopy vertical distribution
(i.e., traits of canopy structure), also including understory and shrubland, and terrain
topography traits. Despite understory and shrubland traits receiving less attention, these
traits play a key role in forests and non-forest ecosystems as providers of shelter and food
for different taxonomic groups. This underuse is explained by the constraints to map forest
canopy (cover, height) and shrublands with low pulse density [106]. Likewise, precise
terrain topography, including the seascape, is crucial for modelling ecosystem structure,
as commented above, therefore it should be increasingly employed by researchers.

According to our harmonization process, canopy height was the most widely used
LiDAR trait globally (e.g., [22,24,66,107,108]), because it is easy to extract from the point
cloud and can be well retrieved, even with a low point density (≤2 points/m2). Still,
more influential were canopy cover and terrain topography, the latter being the least
measured trait. Furthermore, most of the reviewed studies tended to include direct LiDAR
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metrics, or easily derived variables, thus valuable information could be missing. Canopy
cover traits were found to be significant for all taxonomic groups (e.g., [37,109–111]),
while topography was the same for characterizing habitats for amphibians and reptiles
(e.g., [25,51]), invertebrates (e.g., [52,58]), and BLF (e.g., [30,112]). Our results highlight
the relevance of using understory and shrubland traits for different taxonomic groups,
especially for invertebrates (e.g., [46,113]) and BLF (e.g., [27]), but also for mammals
(e.g., [90,114]) and, to a lesser extent, for birds (e.g., [13,115]). These metrics were less
used than canopy traits, due to the difficulty of their characterization with low spatial
resolution. In any case, further efforts should be made to increase LiDAR accuracy in
measuring such traits. Finally, canopy vertical distribution traits were relevant for birds
(e.g., [103,107]) due to their 3D use of space, but less than canopy height (e.g., [41,84])
and cover (e.g., [109,116]). This unexpected outcome may be due to the canopy vertical
distribution metrics requiring more point cloud resolution to penetrate the canopy structure
to accurately describe its complexity. An alternative explanation may be that these metrics
are not as standardized as canopy cover and height metrics, so that model outcomes fail to
describe this trait. Interestingly, canopy vertical distribution traits were also important for
invertebrates (e.g., [12,59]), even for mammals (e.g., [20,42]). All these results support the
idea that environmental heterogeneity, measured through the proposed five morphological
traits extracted from LiDAR, creates more niches and spatial turnover of species, favoring
different habitats and thus allowing more species to coexist in accordance with the habitat
heterogeneity hypothesis [3].

From Local to Global Analyses Characterizing Terrestrial Ecosystem Structure for Biodiversity
with LiDAR Data. Future Directions

LiDAR has become a much-needed technology due to its ability to deepen our un-
derstanding of the influence of fine-scale environmental heterogeneity on biodiversity,
providing precise information otherwise unfeasible. However, we found some constraints
related to its resolution and data accessibility. ALS LiDAR is becoming increasingly avail-
able thanks to country-wide datasets, which is appropriate for regional scales, but the
low-intermediate spatial resolution may not suit some species and ecosystems. In addition,
temporal analysis is still challenging due to its low temporal resolution, which is often
not suited to the timescale required (however, see, e.g., [12,87,88]). The advent of UAS
LiDAR, with a temporal resolution defined by user, and an increased performance in terms
of spatial resolution and better laser return penetration than ALS LiDAR, can become a
good and cheaper candidate, especially at local scales [117]. UAS LiDAR will also succeed
in measuring understory and shrublands, even grasslands. Although our search has not
yielded any studies relating habitat structure to any of our taxonomic groups, this tech-
nology has been already satisfactorily tested (see the review by [14]). Several reasons may
discourage ecologists from using UAS LiDAR: (i) Its strong dependence on GPS signals,
which may not be available when flying under forest canopy [118]; (ii) The safety and
privacy regulatory drawbacks for UAS flights, that are expected to be overcome soon [119];
(iii) Their autonomy limitations [120]; (iv) The not always desired experience and expertise
by companies that commercialize UAS products [121]. Nonetheless, we encourage ecolo-
gists and LiDAR practitioners to incorporate this technology in their studies, especially
those aiming to describe fine-grained habitat characteristics required for small mammals,
steppe-land birds, arthropods, amphibians and reptiles, or BLF. Something similar happens
with TLS; although scarcely used, yet according to our review, TLS will also offer ecologists
new opportunities of monitoring 3D structures at a very high resolution, e.g., tree structural
metrics related to branching architecture (see review by [122]).

Spaceborne LiDAR missions such as the recently launched Global Ecosystem Dy-
namics Investigation (GEDI) or the ICESat-2 represent an unprecedented advance in
LiDAR-based ecology research, given that both missions will provide critical information
for mapping habitat structure for biodiversity. The GEDI mission is the first spaceborne
LiDAR designed specifically to study forest structure (canopy height, cover, and vertical
distribution) and topography at regional and global scales for two years with an increased
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temporal resolution and at a footprint resolution of 25 m [11]. GEDI collects data globally
between 51.6◦ N and 51.6◦ S latitudes, i.e., within temperate and tropical zones (only
excluding polar zones). Yet, it is not clear whether such spatial resolution is appropriate
for characterizing understory traits or complex canopy structures, as recent research has
shown that GEDI data are unsuitable for the identification of archaeological sites in forested
environments [123]. On the other hand, the Advanced Topographic Laser Altimeter System
(ATLAS) instrument onboard ICESat-2 will provide elevation data of the Earth in unprece-
dented detail, including coastal topography. Furthermore, the forthcoming missions NASA
ISRO Synthetic Aperture Radar and the European BIOMASS missions will enable fruitful
synergies with the already available information. We argue that a fusion of UAS, TLS,
ALS, and spaceborne datasets will open a realm of untapped research topics regarding
biodiversity and ecosystem structure in the years to come.

In the same line, a core advance in ecological studies not yet developed enough comes
from the fusion of active (LiDAR, Radar) and passive remote sensing datasets, enabling
the combination of structural and spectral information; for example, by coupling ICESat-2
with Landsat-8 and Sentinel-2 products [124], with potential applications in biodiversity
mapping and modelling. Moreover, the study of plant functional diversity through pas-
sive remote sensing (e.g., Sentinel-2 product) is an emerging field of research [125] that,
if integrated with spaceborne LiDAR (e.g., ICESat-2), will allow us to combine canopy mor-
phological traits with plant traits of unprecedent value for the characterizing of biodiversity
and ecosystems. In addition, the fusion of LiDAR data and hyperspectral imagery [61]
is becoming widespread through platforms that link both types of sensors (e.g., Global
Airborne Observatory, NEON Airborne Observation Platform). Further, recently launched
spaceborne hyperspectral missions (e.g., PRISMA, DESIS, or GF5-AHSI) and others that
are planned to launch in the next years (e.g., EnMAP, CHIME, SBG) will provide invaluable
information for the better monitoring and characterizing of functional traits of vegeta-
tion [126], which, combined with the structural parameter traits from LiDAR, will provide
insightful data for the mapping of biodiversity. Finally, we encourage a closer collaboration
between ecologists and the remote sensing community in order to overcome the challenges
arising from coupling multi-platform and multi-scale datasets [102,127]. This will con-
tribute to the gaining of a general picture of the main drivers and mechanisms behind
species diversity and ecosystems’ structure, and for assessing how habitat degradation will
affect global biodiversity.

5. Conclusions

Our results show how LiDAR has become a crucial technology in providing spatially
explicit information regarding the ecosystem structure in relation to biodiversity, and
especially important in face of the pressures caused by anthropogenic activities on species
and ecosystems. This includes organisms poorly studied until recently, such as BLF.
Furthermore, we propose to simplify and harmonize LiDAR metrics into five morphological
traits: canopy height, canopy cover, canopy vertical distribution, understory and shrubland,
and terrain topography. Our review also provides insightful outcomes regarding the more
suitable metrics for each of the taxonomic groups that may help future studies in the
selection and prioritization of LiDAR metrics. Finally, we advocate (i) for the integration of
spaceborne LiDAR data with the already available ALS, UAS (drones), and TLS technology,
the last two of which have been barely used until now (although they are highly promising),
and (ii) the coupling of these technologies with multispectral/hyperspectral information,
which will allow for the exploration and analysis of new species and ecosystems.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13173447/s1, Table S1: Number of papers found in the literature search por the period
2000–2020 according to the keyword strings and the databases used, filtered and selected. Table S2:
List of species recorded in each of the 173 articles reviewed. Annex 2: List of the reviewed articles
included in the systematic review (173).
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