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Abstract: Recently, deep metric learning (DML) has received widespread attention in the field
of remote sensing image retrieval (RSIR), owing to its ability to extract discriminative features
to represent images and then to measure the similarity between images via learning a distance
function among feature vectors. However, the distinguishability of features extracted by the most
current DML-based methods for RSIR is still not sufficient, and the retrieval efficiency needs to be
further improved. To this end, we propose a novel ensemble architecture of residual attention-based
deep metric learning (EARA) for RSIR. In our proposed architecture, residual attention is introduced
and ameliorated to increase feature discriminability, maintain global features, and concatenate
feature vectors of different weights. Then, descriptor ensemble rather than embedding ensemble
is chosen to further boost the performance of RSIR with reduced time cost and memory consumption.
Furthermore, our proposed architecture can be flexibly extended with different types of deep neural
networks, loss functions, and feature descriptors. To evaluate the performance and efficiency of our
architecture, we conduct exhaustive experiments on three benchmark remote sensing datasets,
including UCMD, SIRI-WHU, and AID. The experimental results demonstrate that the proposed
architecture outperforms the four state-of-the-art methods, including BIER, A-BIER, DCES, and ABE,
by 15.45%, 13.04%, 10.31%, and 6.62% in the mean Average Precision (mAP), respectively. As for the
retrieval execution complexity, the retrieval time and floating point of operations (FLOPs), needed by
the proposed architecture on AID, reduce by 92% and 80% compared to those needed by ABE, albeit
with the same Recall@1 between the two methods.

Keywords: deep metric learning (DML); residual attention; descriptor ensemble; remote sensing
image retrieval (RSIR)

1. Introduction

With the rapid development of satellite technologies, there is an urgent demand for
sophisticated techniques to deal with remote sensing big data. At present, the basic and
paramount tasks in remote sensing image processing include object/instance detection,
classification, retrieval, object surface analysis, and segmentation, to name a few. Among
these tasks, remote sensing image retrieval (RSIR), which aims to retrieve the most similar
images in semantics to the query image, consists of two-stage of feature extraction and
similarity metric, receives persistent attention in the remote sensing community [1–23].

Remote sensing images always contain rich information on geographic location, vari-
able scales, and semantic objects. The large-scale variance problem [4,5] makes it difficult
to describe semantic information hidden in remote sensing images. During past several
decades, a variety of methods has been developed to extract low-level, mid-level, and
high-level visual features for RSIR [6,7]. Among them, early works focused on designing
hand-crafted descriptors to represent visual features [6–10], which are not sufficient to
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represent the latent semantic meaning. The design of hand-crafted feature requires suffi-
cient professional knowledge and is time-consuming. In addition, the phenomenon -the
same spectra from different objects and the same objects exhibiting different spectra in
images can result in intraclass differences and inter-class similarities [11,12]. Compared
with hand-crafted features, discriminative deep features learned through convolutional
neural networks (CNNs) [7,13–15] to represent high-level semantic features of remote
sensing images have proven to be more effective in RSIR [8].

Metric learning (ML) calculates the similarity between images by learning a distance
function based on concrete tasks, rather than simply using certain pre-defined distance
functions, and has been a focus in machine learning and computer vision, such as image
classification and image retrieval [16,17]. Combining the advantages of deep learning
and metric learning, deep metric learning (DML) extracts more semantic features, utilizes
optimal distance functions, like Euclidean distance, and then clusters the vectors of similar
samples together while pushing dissimilar vectors apart [18,19]. The capacity of DML to
understand the similarities among the samples is manifested in its extensive applications
in natural image fields such as face recognition [19] and natural image retrieval [20,21].
Due to its ascendancy over other methods, DML has been introduced in RSIR [22] to
better understand the semantic similarity relationships among remote sensing images.
For example, Subhanker et al. [23] pioneered a hash retrieval architecture based on DML
for RSIR. In brief, the superiority of DML in RSIR can be summarized in two aspects:
(1) it lessens the deviance between multiple goals of two stages and results via effective
consistency of the two-stage feature extraction and similarity metric calculation, and (2) it
reduces the computational complexity of RSIR originated from high-dimensional feature
representation of plentiful and complex contents of remote sensing images.

To improve the RSIR performance, the popular idea introduces a network to learn
discriminative embeddings, which is focused on designing loss functions, such as con-
trastive loss [22] and enhanced triplet loss [24]. However, the reliance on loss function in
a high-dimensional embedding space only for improved RSIR performance would lead
to overfitting and high-computation complexity, e.g., high FLOPs and time cost [25,26].
Meanwhile, local optimization caused by the inadequate use of sample pairs also leads to
poor performance [27–29].

To address the problem of high-computation complexity and achieve a higher retrieval
efficiency, we propose a novel ensemble architecture of residual attention-based deep
metric learning (EARA). The idea of EARA is motivated by the dominance of residual
attention [30] in extracting discriminative and comprehensive features. In this ensemble
architecture, two branches, Main Branch and Residual Attention Branch, are designed to
construct the submodule of the architecture. While the Main Branch maintains complete
global features of remote sensing images, the Residual Attention Branch extracts more
discriminative features and determines the subsequent dynamic calculation of feature
weights. With the global and discriminative information of remote sensing images, EARA
leverages semantic similarity relationships among samples to boost performances and
simultaneously alleviate the problems of network attenuation and gradient disappearance
caused by simply stacking attention modules and deep layers. Residual attention has
a top-down feedforward structure, which can integrate different types of attention to
obtain global discriminative image features and assign soft weights to the obtained features
to improve feature discrimination. In this study, EARA improves the image retrieval
performance by reducing the number of residual attention modules from three to one
and placing the module in the Stage 4 of ResNet50 instead of the original Stages 1, 2, and
3. This revised configuration of residual attention maintains the structural information
without stacking many layers for computation and, thus, speeds up the convergence and
reduces the FLOPs and time cost. EARA also utilizes an ensemble method to concatenate
submodules to encourage a rich diversity of features. To our best knowledge, this study
is the first attempt to use descriptor ensemble rather than embedding ensemble to help
reduce time and memory cost in the training phase for RSIR.
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Ablation experiments are conducted on three benchmark remote sensing datasets,
UCMD [31], SIRI-WHU [32], and AID [33]. A comparative analysis is provided in reference
to the SOTA methods, including BIER [34], A-BIER [35], DCES [36], and ABE [37]. The ex-
perimental results demonstrate that our architecture has a better retrieval performance with
reduced computational complexity. Specifically, EARA achieves gains of 11.46%, 9.75%,
and 6.62% in mAP on UCMD [31], SIRI-WHU [32], and AID [33], respectively, compared to
the second-ranked ABE. In the best case, EARA reduces the retrieval time and the FLOPs
to nearly 20% and 8% of ABE on AID, which shows the superiority of our architecture
in retrieval execution. Additionally, our architecture can be easily extended with other
types of deep neural networks and loss functions. In general, EARA enhances the RSIR
performance with the combination of complete global information and distinctive region
information. The main contributions of this paper can be summarized in three aspects.

1. A novel architecture of residual attention-based deep metric learning is developed, in
which residual attention is improved in number and position as the Residual Attention
Branch obtains more distinctive features. Meanwhile, global features extracted from
the Main Branch are maintained to learn more similarity relationships among remote
sensing images without extra parameters. Additionally, the dynamic weighted feature
vectors in the subsequent similarity metric stage are also conditional on the feature
discrimination, optimizing the retrieval results.

2. The traditional ensemble method is improved by merging multiple descriptors rather
than embedding the subspace to further encourage the distinguishability of remote
sensing features to ultimately improve the RSIR performance. Merging descriptors
decrease the computational complexity in the embedding space and significantly
reduces the time and memory consumption during the training phase.

3. By training the proposed model in an end-to-end manner, exhaustive experiments
are conducted on three remote sensing benchmark datasets: UCMD [31], SIRI-
WHU [32], and AID [33]. Comparisons of the proposed method with the SOTA
methods BIER [34], A-BIER [35], DCES [36], and ABE [37] demonstrate that EARA
reduces the retrieval time and FLOPs to nearly 20% and 8% of ABE on AID.

The related work for DML-based and/or attention methods for RSIR is described in
Section 2. More details of the architecture of EARA are shown in Section 3. Exhaustive
experiments and their results are presented in Section 4. Finally, discussion of the experi-
mental results of and the conclusion of EARA are shown in Sections 5 and 6, respectively.

2. Related Work

In this section, we summarize the existing DML-based methods for RSIR from two
aspects. The first one is related to feature representations and contains loss-based and
ensemble-based methods. While several loss-based methods focus on designing loss
functions to encourage diversity of features, ensemble-based methods force the discrimi-
nation of features through concatenated sub-learners, which can be further divided into
embedding ensemble methods and descriptor ensemble methods. With more interest in
discriminative region of images of attention, the second aspect in the existing DML-based
methods for RSIR focuses on the attention mechanism [38], especially residual attention [30],
to extract discriminative features while preserving the complete global information.

2.1. Deep Metric Learning for RSIR

Conventional CNN-based methods in RSIR accomplish feature extraction and simi-
larity computation separately, and thus, the two stages may show inconsistency in their
learning goals. As the inconsistency is manifested in the cumulative deviation between the
goal and the training result of each stage, DML provides continuous training of two stages
to reduce the impact of the inconsistency. Besides, the optimal distance metric of DML is
adopted to learn the similarity between images rather than the predefined distance metrics
used in conventional CNN-based methods. In general, DML focuses on projecting semanti-
cally similar images to nearby locations and pushing the dissimilar ones far away from each
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other in the embedding space, which is appropriate to characterize the remote sensing im-
ages and to further improve the performance of RSIR [19]. Following Subhanker et al. [23],
DML has demonstrated enormous potential in RSIR. At present, there are two main lines
of DML methods in RSIR, namely loss-based methods and ensemble-based methods.

2.1.1. Loss-Based Methods

Early DML-based methods for RSIR mainly focused on loss functions with the consid-
eration of the relationship between the samples mined from images. Chopra et al. utilized
the contrastive loss [20] to capture the similarity or dissimilarity between pairwise samples.
Analogously, the triplet-based loss [19] consists of an anchor sample, a positive sample,
and a negative sample, and thus, a triplet loss constrains training to make similar samples
closer and dissimilar samples further away. The incremental relationship information
among three tuples of positive and negative sample pairs makes a triplet loss better than
a contrastive loss, though a triplet loss is still limited by the insufficient use of negative
samples. To improve the triplet loss by imposing geometric constraints for triplets in
negative samples, N-pairs loss [39] took advantage of the structured information between
positive and multiple negative sample pairs in the training mini-batch to learn an effective
embedding space. However, since only one sample pair was selected randomly for each
category, the N-pairs loss still ignored some structural information. To solve the issue of un-
derutilized information among samples in the batch, Song et al. proposed Lifted-structured
loss [21] to make the best of the information in the batch to map positive sample pairs
closer and negative sample pairs far away. However, the form of N-pairs loss and lifted
structured loss lost the spatial distribution. The log ratio loss proposed by Kim et al. [40]
achieved incremental relationship information compared with binary information of above
loss-based methods. Movshovitz-Attias et al. [41] proposed a Proxy-NCA loss to maintain
the spatial distribution by introducing a set of proxies to approximate the dataset.

In RSIR, many advanced works achieved outstanding results by introducing multiple
loss functions to overcome the issue of the same spectra from different objects and the
same object exhibiting similar or even the same spectra in remote sensing images. Cheng
et al. [22] improved contrastive loss [18] with a regularization term to capture the variable
geographic information. To further obtain a tuple of relationship information. Cao et al. [24]
described the relationship among the triple samples with a hard batch mining strategy to
obtain more negative pair relationships to improve the performance of RSIR. Fan et al. [42]
paid attention to the structural information of negative sample ignored by the above two
methods. However, the loss-based methods are still limited with the local optimization
and the inadequate use of sample pairs. Moreover, some information obtained by these
methods is redundant, which produces large computational complexity and memory
consumption, often accompanied by overfitting [25–29].

2.1.2. Ensemble-Based Methods

Ensemble-based methods are proposed to address overfitting caused by the loss-based
methods and can be further divided into embedding ensemble methods and descriptor
ensemble methods [43]. The main idea of embedding ensemble methods is to merge
sub-learners in embedding space to extract more distinctive features to improve the image
retrieval performance [34–37]. The biggest challenge is that high-dimensional embedding
is always accompanied by large computational time and memory consumption [44], espe-
cially for remote sensing images, which limits the application of ensemble-based methods
in RSIR. Comparatively, descriptor ensemble methods concatenate descriptors to obtain
the ensemble effect, which is to ease the burden of training time, memory, and computation
complexity.

• Embedding Ensemble Method: Embedding ensemble methods, which represent con-
ventional ensemble methods, aim to divide the last embedding layer of a CNN into
multiple embedding spaces to train corresponding sub-learners individually and then
concatenate the sub-learners to improve the performance for image retrieval. Opitz
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et al. [34] used online gradient boosting to train each nonoverlapping learner in ensem-
ble, called BIER, to get a higher image retrieval accuracy. Training BIER requires a high
learning rate; however, the lack of auxiliary loss functions in BIER results in the decline.
With the consideration of network attenuation, in their subsequent work [35], they
combined BIER with an adversarial loss to make the network more stable. Sanakoyeu
et al. [37] jointly divided the embedding space and data into K smaller subproblems to
reduce the correlation of sub-learners and increase the convergence speed, compared
with A-BIER [35]. However, additional parameters would be unavoidably introduced
in A-BIER to yield the sub-learners, especially in high-dimensional embedding, which
requires long training time and high computation cost [44].

• Descriptor Ensemble Method: Descriptor ensemble methods were proposed to avoid
high computational complexity in embedding induced by embedding ensemble meth-
ods. The effectiveness of descriptor ensemble methods has been seen in the field of
natural image retrieval. For example, Zehang et al. [45] boosted the image retrieval
performance by combining different global descriptors that were trained individually.
However, descriptor ensemble methods have not yet been widely applied to RSIR.
There are mainly two reasons for the limited use of descriptor ensemble methods in
RSIR. First, the descriptor ensemble methods are not trained in an end-to-end manner.
It might lead to multistage goal deviations on remote sensing images, which are char-
acterized by the phenomenon of the inter-class similarities and intraclass differences.
Second, the lack of constrains on descriptors leads to inconspicuous improvement in
the feature discrimination of remote sensing images.

In light of these issues, solutions arise from the training manner and the diversity of
feature discrimination, as well as the further improvement of descriptor ensemble methods.
Therefore, we focus on descriptor ensemble methods and propose a variant of descriptor
ensemble architecture appropriate for RSIR.

2.2. Attention Mechanism for RSIR

The attention mechanism has been widely applied to various computer vision tasks,
which promisingly enhances different representations of objects of focused regions. It
brings new ideas to the RSIR system to extract more distinguishing image features. In RSIR,
remote sensing images are of multiple scales, multiple objects, and broad background,
which lead to high inter-class similarities and intraclass differences. The capability of
capturing discriminative features of objects parts makes attention mechanism appropriate
for RSIR. Pioneer work, CBIR [46], introduced attention in Recurrent Neural Networks
(RNN) to detect object parts by successively selecting regions of interest for the image
retrieval and, hence, was highly dependent on the region generators. Moreover, early
attention methods like RNN use hard attention [47,48] to focus on regions of images
and requires policy gradient estimation. To relieve the dependence of region generators,
Jaderberg et al. proposed to train a spatial transformer network [49] in a fully gradient-
based way with parametric transformations. When it comes to the spatial transformer
network, all uncontrollable attention masks with predefined transformations [50] would
occur, which motivates a soft attention mask [49,50] to diversely extract features without
the limitations of constrains of attention mask. Theoretically, multiple types of attention
maintain channel and spatial information, including intrinsic structure information, which
can help reduce high inter-class similarities and intraclass differences resulting from the
same spectra from different objects and the same object exhibiting different spectra in
images and complex geographic locations. Moreover, the method proposed by Gencer
et al. [51] combines multiple types of attention to pay more attention to information-rich
image regions, thereby extracting more discriminative features. A representative work,
ABE proposed by Kim et al. [37], was developed to regulate overall attention masks and is
based on the embedding ensemble method. A soft attention mask [49,50] was used by ABE
to improve the diversity of extracted features and to reduce the dependency on the region
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generators in a fully gradient-based way by backpropagation. However, a soft attention
mask is likely to discard some key information extracted by deep network.

A residual attention network [30] is creative in order to maintain the complete in-
formation of images, preserve global information of images, and achieve distinguishing
information, which gives boosted performance of natural image retrieval. Wang et al. [30]
stacked multiple attention modules in Stages 1, 2, and 3 to add soft weights on the features.
Furthermore, the residual attention network shows the excellent capacity to address the
problem of the inter-class similarities and intraclass differences in RSIR compared with
other deep learning-based methods. However, network attenuation and large compu-
tational complexity resulting from stacking attention modules limit the development of
residual attention network in many fields, especially for RSIR. For example, floating point
of operations (FLOPs) of residual attention network [30] are only two-thirds of those of the
original attention network [49,50], where FLOPs represents the computational complexity
of the network model.

To address the issues mentioned above, we refined the number and the placement of
residual attention to relieve network attenuation and enhanced feature discrimination of
the descriptor ensemble methods to gain an improved RSIR performance.

3. Methodology

In this section, attention mechanism is employed to solve the issue of high inter-
class similarities and intraclass differences in remote sensing images. In the review of
previous work in RSIR, the methods based on ensemble embedding space always result in
high-computation complexity and time-consuming training. Our architecture, designed
to merge ensemble embedding subspace into multiple descriptors, aims to reduce model
complexity and shorten training time, while ensuring the high retrieval accuracy.

We propose a novel ensemble architecture of residual attention-based deep metric
learning (EARA) for RSIR, illustrated in Figure 1. The bottleneck of ResNet is referred
to as basic layers to construct the architecture. The proposed architecture consists of a
ResNet backbone network and multiple submodules configured in two branches: As for the
Main Branch, the individual descriptor is trained in an end-to-end manner with a ranking-
motivated loss. In the Main Branch, Stages 1, 2, and 3 are the same as those in the ResNet50
and are composed of 3, 4, and 6 bottlenecks, respectively. The Residual Attention Branch is
the soft attention mask and is added on Stage 4 of ResNet. The number of submodules n is
determined by the dataset characteristics during the training phrase. Finally, submodules
are merged to get the concatenated vectors by the proposed architecture.

The retrieval process is described in Figure 1. First, the upper part framed by a
black dashed box shows the network trained with a ranking-motivated loss. Then, the
pretrained network (in black dashed box) is fine-tuned, which is denoted as the fine-tuning
network in the test phase to complete the image retrieval task for more discriminative
feature representations. Query image and the testing set would be input into the fine-tuned
network, and the top K similar images would be returned.

3.1. Submodule

The submodule is composed of the Main Branch and Residual Attention Branch.
With respect to the Main Branch, it is trained in an end-to-end manner to get global
features of remote sensing images with the individual descriptor. The Residual Attention
Branch added on the Main Branch is designed to extract more discriminative features and
determine the subsequent weight calculations in a dynamic manner. Plus, the Residual
Attention Branch can retain the information obtained by the Main Branch. The Residual
Attention Branch in a submodule contains one residual attention in Stage 4 of ResNet50,
and the distinguishability of the features extracted by it is basically the same as that of
stacking multiple residual attentions. The descriptor ensemble further guarantees the
distinguishability of semantic features of images. The most suitable position for adding a
single Residual Attention Branch is Stage 4, where feature discriminability is the highest.
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The identity mapping of the Main Branch is combined with the soft attention mask in the
Residual Attention Branch to construct the submodule. Two branches belonging to the
submodule retain the original image information and rich semantic information (from the
Residual Attention Branch) can enhance the performance. In addition, the online triplet
mining was used, because it was more efficient, compared to the native triplet mining, in
forming triplets (i.e., an anchor sample, a positive sample, and a negative sample) [19].
Based on the given anchor, the hard triplet mining strategy [24] is an exhaustively mining
positive sample and negative sample to form a triplet in the mini-batch, in which the
negative sample is most similar to the anchor among all negative samples, and then
directly calculates the loss function online, which improves the mining efficiency and
makes full use of the image information forms of more triples compared with the native
triplet mining strategy.

Figure 1. The overall architecture of EARA. The upper part framed by black dashed box is the training process of the
network, and the bottom is the testing process.

3.1.1. Main Branch

In EARA, three influential pooling methods are utilized in the Main Branch of each
submodule—namely, SPoC, MAC, and GeM—as descriptors. SPoC is a sum pooling
method that aggregates local features to form a global feature. MAC is the maximum
pool of downsampling images without losing image features as much as possible. GeM
combines most of the parameters in the maximum pooling with the average pooling
process, so as to maintain more information.

Let X = {x1, . . . , xi, . . . , xm} be the training set and the corresponding Y =
{y1, . . . , yi, . . . , ym} be the labeling set, where (xi, yi) represents the ith image whose
class label is yi. We denote the number of classes is C in X, where yi ∈ [1, 2, . . . , C]. Let
{Xci}Nci

= 1 be the set of images in class c, where the total number of images in class c
is Nc.

Given an input image, we take the feature maps produced by the last convolutional
layer as output of CNNs, which is of the form X ∈ Rw ×H× K, where K denotes the
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number of channels, w represents the weight parameter, and X represents the input to
descriptors. We always assume ReLU activation is applied. Let Ak be the set of H×W
activations for feature maps k ∈ [1, 2, . . . , K]. Denoted by Ak ∈ Rw ×H, the kth feature
map of X, we apply the pooling process to produce a vector F = [F1, . . . , Fk, . . . , FK]

T ,
where fk represents Ak, so that the input image can be represented by the vector F, and the
corresponding descriptor is given by:

F( ) =

 1∣∣∣Xk
∣∣∣ ∑

x∈Xk

xpk

 1
pk

, F( ) ∈ {F(SPoC), F(MAC), F(GeM)} (1)

Set SPoC, MAC as F(SPoC), and F(MAC) by taking pk = 1, pk → ∞ . As for GeM,
denoted F(GeM) for the rest of the cases, there is a different pooling parameter pk for each
feature map Ak. In our experiments, the fixed parameter pk is employed for 3. Output
feature vector Z(gl) from the lth branch is generated by dimensionality reduction through
the FC layer and normalization through the L2 normalization layer:

Z(gl) =
αl ·F(gl)

‖αl ·F(gl)‖2
, gl ∈ {s, m, g} (2)

for l ∈ [1 . . . L], where αl is the weight of the lth branches, and s, m, and g represent SPoC,
MAC, and GeM, respectively.

The final feature vector Z′ is concatenated by Z(gl), denoted as the output of the feature
vector of all the Main Branches, and performs L2 normalization successively:

Z′ =
Z(g1) ⊕ . . .⊕ Z(gi) ⊕ . . . Z(gl)

‖Z(g1) ⊕ . . .⊕ Z(gi) ⊕ . . . Z(gl)‖2

(3)

3.1.2. Residual Attention Branch

In RSIR, multiple types of attention are adopted to solve the problem of high inter-
class similarities and intraclass differences resulting from the same spectra from different
objects and the same object exhibiting different spectra in images and complex geographic
locations. Since a single attention module can only modify the features of the model
once, multiple types of attention modules are needed, leading to the increase of the model
depth. Directly stacking attention modules in CNN architecture results in conspicuous
performance degradation. On the one hand, the feature value is decreased by recurring dot
production with a mask ranging from 0 to 1. On the other hand, a soft attention mask is
likely to discard some key information extracted by deep network.

With the consideration of the above problems, the Residual Attention Branch is added
onto the Main Branch to obtain the more discriminative features and maintain the original
features of the images, which gives a boosted performance compared to the identity
mapping. The soft attention mask H is defined as a feature selector, which can enhance
information-rich features. In EARA, we utilize mixed attention H1, channel attention H2,
and spatial attention H3 as the activation functions:

H1(xi) =
1

1 + exp(−xi)
(4)

H2(xi) =
xi
‖xi‖

(5)

H3(xi) =
1

1 + exp(−(xi −meanc)/stdc)
(6)

where meanc denotes the mean value from the cth channel and stdc the standard deviation
of the feature map from the cth channel [30].
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Therefore, output A of the combination of the Residual Attention Branch and corre-
sponding layers in the Main Branch are updated as:

A(xi) = (1 + H(xi)) ◦ A(xi) (7)

where H(xi) ranges from {0, 1}, ◦ denotes an element-wise product, the input X is the
features generated by CNNs different from the origin residual function Ai,c(xi), and the
origin in residual learning is formulated as Ai,c(xi) = x + Ai,c(xi).

3.2. Loss Function

After merging all the submodules, concatenated vectors are obtained for the subsequent
loss function calculations, and the corresponding algorithm is described in Algorithm 1.

Algorithm 1: Merged submodules for our architecture

1: Input: X = {x1, . . . , xi, . . . , xn}, Y = {y1, . . . , yi, . . . , ym}
2: Output: Z′

3: */forward propagation:
4: The submodule:
5: for i = 1 to n do
6: A(xi) = Bottleneck_p, t(X)
7: In Residual Attention Branch:
8: A(xi) = (1 + H(xi)) ∗ A(xi)
9: F(xi) = Pooling(A(xi))), f = { F(SPoC), F(MAC), F(GeM)}
10: Z(xi) = L2_N[ f ull_connected(F(xi))]
11: end for
12: for do j = 1 to L
13: Z′ = Z1 + Z2 + . . . + ZL\||Z1 + Z2 + . . . + ZL||2
14: Z′ = L2_N(Z′)
15: end for
16: Calculation of Lranking−motivated loss(Z′)

EARA can be extended with any typical ranking-motivated loss function like the
N-pairs Loss [39], Proxy-NCA Loss [41], Lifted Struct Loss [21], and Batch Hard Triplet
Loss [24]. The triplet loss with a hard batch mining strategy, which were verified to
have excellent performances in remote sensing retrieval in Reference [24], were used as a
quintessential example here. To exhaust all triplets on the mini-batch I, the hardest positive
sample xp

i and negative sample xn
j within the mini-batch are employed to form a triplet(

xp
i , xn

j , xa
i

)
to compute the loss, formulated as follows:

LBH−Triplet({θ; I}) = ∑
i, a

ya = yp 6= yn

[
max

p
D
(

fθ

(
xa

i , xp
i

))
−min

j,n
D
(

fθ

(
xa

i , xn
j

))
+ m

]
+

(8)

where D( , ) represents the squared Euclidean distance between samples, fθ represents the feature
extractor parameterized by θ, and m denotes the margin between positive and negative sample.

4. Experiments
In this section, thorough experiments are conducted to evaluate the EARA performance in RSIR.

First, ablation experiments are conducted to identify the effects of different activation functions in
the Residual Attention Branch on the type and number of features, the descriptor of the Main Branch,
and the ultimate loss function, respectively. Next, the retrieval performance of EARA is compared
with the state-of-the-art DML-based ensemble methods on three benchmark remote sensing datasets,
including UCMD, SIRI-WHU, and AID using three metrics: the overall retrieval accuracy (mAP),
each category retrieval accuracy (mAP), and retrieval execution complexity (retrieval time and time
used for model training).
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4.1. Datasets
Experiments were conducted on three remote sensing benchmark datasets: UCMD, SIRI-WHU,

and AID, among which, the number of images per category varies from 100 to 420, facilitating
an understanding the influence of category quantity and the number of images per category on
our architecture.

• UCMD: The UCMerced Land Use Database (UCMD) [31] is a land cover or land use dataset
used as the RSIR benchmark dataset, which is a highly challenging dataset with some highly
overlapping categories, such as the dense residential and intersection. It contains 21 classes,
and each class has 100 images of 256 × 256 pixels with a spatial resolution of approximately
0.3 m. The images were downloaded from the United States Geological Survey (USGS) by the
team at the University of California Merced from various US urban areas.

• SIRI-WHU: Google Image Dataset of SIRI-WHU [32] contains 2400 remote sensing images with
a size of 200 × 200 pixels and a spatial resolution of 2 m. This dataset contains 12 geographic
categories, and there are 200 images in each category. The number of images per category is
twice than that in UCMD, while the number of categories is approximately same as UCMD,
which would show the impact of the quantity per class on the discrimination of the features
extracted by the architecture.

• AID: Aerial Image Dataset (AID) [33] is a dataset specifically designed for remote sensing image
classification and retrieval tasks. It contains a total of 10,000 images divided into 30 semantic
classes, such as commercial, dense residential, and viaduct. All the images have a size of
600 × 600 pixels in the RGB space, with a spatial resolution ranging from 8 to 0.5 m, and the
number of each semantic class varies from 220 to 420 images. The number of images of AID is
four times the size of UCMD and twice SIRI-WHU.

4.2. Configurations of Architecture
We performed the experiments on Ubuntu 16.04 with a single GTX 1080 Ti GPU and 2.10 GHz

CPU. We implemented our method using Pytorch. To avoid attenuation induced by a deep network,
ResNet-50 was selected as the baseline backbone. The Mean Average Precision (mAP) and Recall of
the top-k (R@k) (k = 1, 2, 4, and 8) were utilized to evaluate the retrieval accuracy of EARA. FLOPs
represent the complexity of EARA. An Adam [52] optimizer was used with a learning rate set at 10−4

and scheduled by a step decay. A margin of m for triplet loss is set to 0.1 [36], and a temperature of τ
for the SoftMax loss is set to 0.5 [37], with a batch size of 128, which are all empirical values.

Since the amount of data in UCMD, SIRI-WHU, and AID is enough for EARA learning, the
train–test dividing strategy rather than data augmentation is adopted. The data-dividing ratio of
training and testing data is set at 50%/50% for UCMD and, following, 80%/20% for SIRI-WHU and
AID [17]. The experimental result is generally great [17] with the train–test dividing strategy for
UCMD, SIRI-WHU, and AID. The same train–test dividing strategy is applied to other methods for
fair comparisons. In the training phase, the input image is resized to 256 × 256, cropped randomly
to 224 × 224, and then flipped randomly to the horizontal. In the testing phase, we only resize the
image by the default input size of 224 × 224.

4.3. Ablation Experiments
The ablation experiments were conducted from three aspects, activation functions of the Resid-

ual Attention Branch, descriptors of the Main Branch, and loss function to analyze their respective
effects on the entire architecture.

4.3.1. Activation Functions of Attention in Residual Attention Branch
Three activation functions are used here—namely, channel attention H1, spatial attention H2,

and mixed attention H3. Channel attention H1 performs L2 normalization on all feature maps in
each spatial position to discard spatial information. Spatial attention ignores the information in all
channel position by L2 normalization, which limits the spatial attention to the feature extraction
stage, making it less explainable in other CNN layers. Mixed attention, combining the advantages
of both, has less limitations and richer channel and spatial information. The experimental results
on UCMD, SIRI-WHU, and AID, illustrated in Table 1, demonstrate that the performance of mixed
attention outperforms the other two attention types.
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Table 1. mAP (%) for RSIR when three attention functions are used in the proposed architecture
applied on UCMD, SIRI-WHU, and AID.

Activation Function Attention Type
mAP

UCMD SIRI-WHU AID

H1 Channel attention 97.68 95.18 93.51
H2 Spatial attention 97.56 95.09 93.36
H3 Mixed attention 97.77 95.25 93.84

4.3.2. Impact of Type and Numbers of Descriptors on RSIR Performance
The type of descriptors on the Main Branch can be flexibly adapted to the corresponding

network. In this experiment, we used the most advanced three pooling methods—namely, SPoC(S),
MAC(M), GeM(G). Due to the structural characteristics of the convolutional network layer, the basic
embedding sizes of the descriptor in RSIR are 256 and 512. In order to match the subsequent Residual
Attention Branch, the embedding size of the descriptor would be the same as that of the Residual
Attention Branch. Meantime, considering the concatenation of three types of descriptors (such as
SGM), the descriptor dimension of each Main Branch is unified to 1536. We compared the seven
configurations: S, M, G, SM, SG, MG, and SGM obtained by these three methods. As for S, M, and G,
the single descriptor has 1536-dimensional embedding vectors. Except for S, M, and G, the rest of the
configurations are composed of multiple descriptors with equal weights. For example, SM means to
concatenate SPoC (to get a 768-dimensional vector) and MAC (to get a 768-dimensional vector) to get
a feature vector with a dimension of 1536. Since the retrieval performance by using different kinds of
descriptors is dependent on different datasets, we tested the seven configurations on UCMD, SIRI-
WHU, and AID, respectively. As shown in Figure 2, in most cases, the method based on combined
descriptors has a better performance compared to a single descriptor. Both the theoretical analysis
and experiments suggest there are generally two kinds of errors in the feature extraction stage. The
first is the variance of estimates generated in the finite neighborhood, and the second is the estimated
mean deviation caused by the convolutional layer parameter error. SPoC is the sum pooling and can
reduce the first error and, thus, maintain more image background information. GeM combines most
of the parameters in the maximum pooling with the average pooling process, so as to reduce the
second error. The best performance is obtained by the combination of SPoC (first single descriptor)
and GeM (second), set as SG. Figure 3b demonstrates the impact of three configurations (SG, S, and
G) on the feature discrimination and retrieval performance. A denser distribution of dots of the
same kind, a lesser intersection of dots of different classes, and the larger the interval, the better the
clustering and retrieval performance. The architecture with configuration SG, which can extract the
most discriminative features among those with configurations S and G, has the strongest ability to
classify and retrieve data.

Table 2 shows the performance of single descriptors and combined multiple descriptors on the
UCMD. Recall@1 of the SG is the highest among these configurations. The results demonstrated
that the configuration SG not only has overall global information but also retains distinctive local
regions. Generally speaking, a larger embedding dimension can lead to a better model performance.
Figure 3a shows the feature discrimination of different pooling methods. The red parts indicate a
strong contribution of identified features to improve the performance of RSIR. It illustrates that the
configuration SG is helpful to extract discriminative features. Figure 3b demonstrates the impact
of three configurations (SG, S, and G) on the feature discrimination and retrieval performance. A
denser distribution of dots of the same kind, a lesser intersection of dots of different classes, and
the larger the interval, the better the clustering and retrieval performance. The architecture with
the configuration SG, which can extract the most discriminative features among those with the
configuration S and G, has the strongest ability to classify and retrieve data.
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Figure 2. The influence of numbers of descriptors on mAP. The evaluation is performed with our
architecture on (a) UCMD, (b) SIRI-WHU, and (c) AID. The curve represents the evolution of mAP in
the training iteration.
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Figure 3. The visualizations of feature discrimination. (a) The heatmap and evaluation are provided
with configuration SG, S, and G on UCMD, SIRI-WHU, and AID. A more compact feature area means
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the feature is more discriminative. Each row corresponds to a test case: the query is shown in
the first column, and the second to fourth columns are the visualization of the attention of the
three configurations (SG, S, and G) of the query image. (b) The scatter plots are provided with
configurations SG, S, and G on AID from top to bottom. Each color corresponds to each category of
AID. A denser distribution of dots of the same color and a larger distance among dots of different
colors indicate a better retrieval performance.

Table 2. Recall@1 (%) of individual descriptor and descriptors ensemble on UCMD, SIRI-WHU,
and AID.

Configuration Dimension
Recall@1

UCMD SIRI-WHU AID

S 1536 96.83 94.73 92.99
M 1536 96.69 94.56 92.67
G 1536 96.91 94.68 92.86

SM 768 + 768 97.38 94.89 93.28
SG 768 + 768 97.77 95.25 93.84
MG 768 + 768 97.52 95.17 93.55

SGM 512 + 512 + 512 97.65 95.21 93.78

4.3.3. Comparison with SOTA Ranking-Motivated Losses
In this section, we compare the loss function in our architecture with the N-pairs Loss [39],

Proxy-NCA Loss [41], Lifted Struct Loss [21], and Batch Hard Triplet Loss [24]. We denote the
performance of the configuration SG as a baseline. The experiment results are shown in Table 3.
The Batch Hard Triplet Loss performs best on the UCMD, SIRI-WHU, and AID in RSIR. This better
performance should be attributed to the fact that the Batch Hard Triplet Loss method makes full use
of valid triplets within each training mini-batch and has a fast convergence.

Table 3. The evaluation results of mAP (%) and R@1 (%) on UCMD, SIRI-WHU, and AID compared
with the other structure losses.

Loss
mAP Recall@1

UCMD SIRI-WHU AID UCMD SIRI-WHU AID

N-pairs Loss 95.22 94.78 92.83 95.38 92.15 90.93
Proxy-NCA Loss 96.36 96.01 93.66 96.39 93.06 91.85
Lifted Struct Loss 97.13 96.52 94.95 97.12 94.29 92.77

Batch Hard
Triplet Loss 97.25 96.81 95.37 97.77 95.25 93.84

4.4. Comparative Experiments with SOTA Methods
To further evaluate the effectiveness and efficiency of our architecture, comparative experiments

are conducted in overall retrieval accuracy (mAP), each category of retrieval accuracy (mAP), and
retrieval execution complexity (retrieval time and time used for model training) among the EARA
and four SOTA DML-based ensemble methods.

4.4.1. Comparison with Multiple DML-Based Ensemble Methods in RSIR
To show the performance of our architecture, we compared EARA with previous DML-based

ensemble approaches in RSIR on the UCMD, SIRI-WHU, and AID in Table 4. We denote the excellent
work provided by Sanakoyeu et al. [36] and the method proposed by Kim et al. [37] as DCES and
ABE, respectively. As for ABE, we choose ABE-8 to finish the experiments, which has the best
performance in RSIR [37]. The other two methods with outstanding contributions proposed by Opitz
et al. [34,35] were recorded as BIER and A-BIER for convenience. To be fair, we did a ceteris paribus
analysis, setting the embedding dimension as 1536 and selecting ResNet50 as the CNN backbone.
Compared with the BIER, A-BIER, DCES, and ABE, the proposed architecture provides a significant
improvement of 11.46%, 6.93%, 3.72%, and 0.72% in mAP and 17.46%, 11.35%, 10.32%, and 4.08% in
R@1 on UCMD. Furthermore, the proposed architecture achieves a gain of 9.75% in mAP and 8.45%
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in R@1 on SIRI-WHU, which surpasses the recently published DCES and achieves a mAP of 96.81%,
R@2 of 97.58%, and R@4 of 98.50%. As for AID, the improvement of our model gains 6.62%, 5.51%,
and 4.89% in mAP, R@1, and R@2 compared with ABE. As can be seen from Table 4, our proposed
architecture shows great performance in the field of RSIR.

Table 4. Comparisons of the proposed architecture with state-of-the-art methods in RSIR using the
UCMD, AID, and SIRI-WHU datasets (Recall@1, 2, 4, and 8 (%) and mAP (%)).

Dataset Methods mAP R@1 R@2 R@4 R@8

UCMD

BIER 85.79 80.31 85.28 90.11 91.65
A-BIER 90.32 86.52 89.96 92.61 94.76
DCES 93.53 87.45 91.02 94.27 96.32
ABE 96.53 93.71 95.57 96.96 98.32
Ours 97.25 97.77 98.57 98.89 99.21

SIRI-WHU

BIER 82.09 81.32 82.63 87.29 90.1
A-BIER 85.37 83.67 86.83 90.17 95.08
DCES 86.06 86.8 92.04 95.11 97.29
ABE 86.22 87.35 92.93 96.02 97.45
Ours 96.81 95.25 97.58 98.5 99.08

AID

BIER 79.92 80.72 86.39 92.01 95.38
A-BIER 82.33 82.28 89.51 93.55 96.37
DCES 85.06 85.39 91.02 95.27 96.63
ABE 88.75 88.33 91.39 95.56 96.89
Ours 95.37 93.84 96.28 97.84 98.52

4.4.2. Comparison in Overall Results and Per-Class Results
To further analyze the effectiveness of our model, we present experiments on UCMD, SIRI-

WHU, and AID for every geographic category in Tables 5–7, and the best results are highlighted in
bold. The final retrieval results are shown in Figures 4–6, respectively.

Table 5. mAP (%) of 21 geographic categories in UCMD with various RSIR methods.

Categories BIER A-BIER DCES ABE Ours

Agricultural 94.94 94.32 98.08 98.55 99.45
Airplane 88.65 88.87 92.63 97.82 98.76

Baseball Diamond 87.11 90.42 93.63 96.66 98.89
Beach 89.17 98.48 98.24 98.24 99.61

Buildings 75.52 84.43 86.19 88.15 93.96
Chaparral 87.72 98.05 99.81 99.69 99.18

Dense Residential 74.46 84.05 87.81 89.85 89.18
Forest 84.41 94.89 98.65 98.98 99.25

Freeway 78.61 85.82 89.68 95.64 93.79
Golf Course 83.90 87.92 91.68 98.64 97.79

Harbor 83.96 88.25 91.39 95.38 96.72
Intersection 89.66 85.67 89.07 92.06 93.82

Medium Residential 88.05 90.77 94.53 98.56 98.44
Mobile Home Park 97.02 92.01 95.72 96.75 99.83

Overpass 98.42 97.59 99.35 99.35 99.72
Parking Lot 88.66 85.33 89.09 97.12 97.54

River 79.45 92.45 96.21 97.24 97.58
Runway 85.09 93.56 97.32 98.35 98.69

Sparse Residential 79.81 86.32 90.08 96.17 96.45
Storage Tanks 87.64 83.48 87.24 96.33 94.61
Tennis Court 79.39 94.07 97.67 97.67 99.04

Average 85.79 90.32 93.53 96.53 97.25
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Table 6. mAP (%) of 12 geographic categories in SIRI-WHU with various RSIR methods.

Categories BIER A-BIER DCES ABE Ours

Agriculture 92.68 90.21 91.58 91.78 97.68
Commercial 82.58 82.77 82.45 84.36 94.79

Harbor 80.54 85.69 86.62 87.12 98.43
Idle land 82.07 88.52 89.04 88.93 99.18
Industrial 82.66 85.85 87.25 87.02 99.63
Meadow 82.74 86.09 87.94 86.52 96.73
Overpass 76.63 81.43 83.07 83.25 95.03

Park 82.94 87.74 86.02 86.31 96.39
Pond 84.61 86.85 87.16 86.19 97.33

Residential 74.81 80.51 81.66 81.87 93.94
River 84.82 87.05 87.35 87.75 96.93
Water 77.99 81.78 82.56 83.58 95.65

Average 82.09 85.37 86.06 86.22 96.81

Table 7. mAP (%) of 30 geographic categories in AID with various RSIR methods.

Categories BIER A-BIER DCES ABE Ours

Airport 85.22 85.22 90.48 91.87 96.89
Bare land 83.22 83.35 88.48 91.26 98.28

Baseball field 79.39 79.39 84.65 88.82 96.33
Beach 81.82 81.82 85.08 89.25 97.25
Bridge 82.41 85.41 86.67 90.84 95.86
Center 75.41 79.08 80.67 82.06 90.87
Church 75.42 78.36 80.68 80.68 90.21

Commercial 74.75 76.92 80.01 83.23 90.05
Dense Residential 75.68 77.67 83.94 83.94 94.96

Desert 81.05 82.29 87.09 91.69 98.71
Farmland 80.93 86.33 85.97 92.18 98.11

Forest 84.73 88.36 91.14 92.53 97.55
Industria 75.41 79.04 81.82 83.21 93.84
Meadow 79.54 83.17 85.95 87.34 95.97

Medium Residential 77.55 81.18 83.96 85.35 90.37
Mountain 74.71 79.97 81.12 87.67 92.69

Park 90.54 93.88 96.95 96.95 95.97
Parking 78.72 83.35 85.13 89.57 98.59

Playground 75.06 80.92 85.47 89.64 94.66
Pond 78.16 79.79 81.01 88.62 93.64
Port 80.91 82.54 85.69 89.86 95.43

Railway station 80.28 82.91 85.06 90.53 95.55
Resort 78.91 80.54 83.69 87.86 94.88
River 89.79 91.42 91.79 98.74 97.37

School 80.21 81.84 83.84 90.79 97.03
Sparse Residential 75.88 77.51 79.51 83.67 97.13

Square 76.86 78.49 80.49 84.66 95.13
Stadium 78.98 80.61 82.61 86.78 95.63

Storage tanks 83.88 85.07 86.58 92.75 96.38
Viaduct 82.11 83.53 86.09 90.26 95.89

Average 79.92 82.33 85.06 88.75 95.37
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Figure 4. Examples of the retrieval results on UCMD. Each row corresponds to a test case: the query is shown in the first
column, and the second to fifth columns are the retrieval results ranked from 1 to 8. For each dataset, the first row represents
the results derived from our method, and the second to sixth rows are the results from DCES, BIER, A-BIER, and ABE.

Figure 5. Examples of the retrieval results on SIRI-WHU. Each row corresponds to a test case: the query is shown in the first
column, and the second to fifth columns are the retrieval results ranked from 1 to 8. For each dataset, the first row represents
the results derived from our method, and the second to sixth rows are the results from DCES, BIER, A-BIER, and ABE.
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Figure 6. Examples of the retrieval results on AID. Each row corresponds to a test case: the query is shown in the first
column, and the second to fifth columns are the retrieval results ranked from 1 to 8. For each dataset, the first row represents
the results derived from our method, and the second to sixth rows are the results from DCES, BIER, A-BIER, and ABE.

EARA gives the boosted retrieval performance for 15 out of 21 categories on UCMD,
shown in Table 5. Compared to the state-of-the-art performance, EARA achieves an optimal
performance in most categories. Specially, mAP of EARA outperforms that of BIER and
A-BIER by 11.46% and 6.93% and obtained the improvement of 3.72% and 0.72% over
DCES and ABE. EARA can achieve a better retrieval performance for images that contain
rich spatial structure information. The reason might be that the configuration SG of
EARA can preserve the spatial and channel information of the image as much as possible.
This information makes the extracted features more discriminative, compared with that
extracted from original configuration (such as S and G). However, the performance obtained
by EARA on the other six categories is slightly inferior to that of ABE. The reason might
be that the number of images contained in each category in UCMD is inadequate to train
the network. Especially, the accuracy of the four SOTA methods was poor in retrieving
categories, including “baseball diamond”, “building”, “harbor”, “intersection”, “mobile
home park”, and “tennis court”. Comparatively, EARA outperforms the second-ranked
ABE in retrieving “baseball diamond” and “buildings” by 2.23% and 5.81%, respectively.
However, the performance obtained by EARA on the other six categories is slightly inferior
to that of ABE. The reason might be that the number of images contained in each category
in UCMD is inadequate and insufficient to obtain enough data to train the network.

Table 6 shows that our architecture achieves the state-of-the-art performance in all cat-
egories. EARA achieves a higher retrieval performance on SIRI-WHU than that of UCMD.
Compared with the UCMD, the SIRI-WHU has a larger number of images with larger
inter-class differences and, thus, can better evaluate EARA. Multiple types of attention are
adopted by EARA to reduce the high inter-class similarities and intraclass differences, thus
improving the RSIR performance. The average of mAP reaches up to 96.81%, with 10.59%
higher than second-ranked ABE. The proposed architecture provides improvements in
the retrieval accuracy compared with the existing results on the categories of “Harbor”,
“Industrial”, “Overpass”, “Residential”, and “water” of 11.31% (from 87.12% to 98.43%),
12.61% (from 87.02% to 99.63%), 11.78% (from 83.25% to 95.03%), 12.07% (from 81.87% to
93.94%), and 12.07% (from 83.58% to 96.65%), respectively.
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Table 7 shows that EARA improves the retrieval performance for most of categories
on AID. As for the mAP of all categories, the value reaches 95.37% from 88.75% with
6.62% enhancement, which ranked second. In general, our architecture outperforms the
other four SOTA ensemble methods on AID, thanks to two reasons: First, descriptor
ensemble and multiple types of attention in our architecture, maintaining rich spatial and
channel information (such as intrinsic structure information), can reduce high inter-class
similarities and intraclass differences resulting from the same spectra from different objects
and the same object exhibiting different spectra in images. Second, AID contains more
image categories and numbers, which is more suitable for data-driven EARA. The EARA
performance on AID is much better than that on UCMD, which is reflected in the fact that
EARA improves the retrieval indicators by 6.62–25.45% on AID compared to the other four
methods, while on the UCMD dataset, it improves from 0.72% to 11.46%. Especially, EARA
increases the mAP by 13.46% (from 83.67% to 97.13%) over ABE on “Sparse Residential”,
11.02% (from 83.94% to 94.96%) on “Dense Residential”, 10.63% (from 83.21% to 93.84%) on
“Industria” and 10.47% (from 84.66% to 95.13%) on “Square”. EARA performs well in AID,
except for two categories compared to ABE. DCES and ABE achieve the same excellent
results on “Park” with 0.98% enhancement of that of EARA.

4.4.3. Comparison with DML-Based Ensemble Methods in Retrieval Execution Complexity

In comparison with the other ensemble methods, the retrieval execution complexity
was also analyzed in terms of computational time cost and memory usage. First, we
measure the time required for the retrieval process, including the time used for deep
feature extraction (in minutes) and similarity metric computation (retrieval time). We set
the embedding size of all methods to 512. The results on Table 8 demonstrate that our
architecture needs much less time in retrieving the corresponding results compared with
the other four methods. Even though the embedding size was set to 1536, the improvement
on retrieval time is dramatically huge. Specifically, it takes about 10 milliseconds to extract
deep features for each image with a size of 224 × 224, which is better than the previous
fastest RSIR methods reported in Reference [52]. On UCMD, SIRI-WHU, and AID, the
total time of training process only takes 25, 29, and 39 min, respectively. As shown in
Figure 7, EARA outperforms the other ensemble methods in terms of retrieval execution
complexity while ensuring retrieval accuracy. Second, we measured the retrieval execution
complexity by using the metric FLOPs. Figure 7 shows that, when Recall@1 remains the
same, the FLOPs of EARA on AID is only nearly one-fourth of A-BIER, two-thirds of
BIER, and one-fifth of ABE. This reduction in computational time can be explained by
the fact that other SOTA ensemble methods need individual training and test processes
and the ensemble N number of learners with different descriptors requires quite a few
numbers of GPUs. Besides, those methods require post-processing such as concatenation or
normalization, which results in higher FLOPs and a longer computational time. In contrast,
EARA needs only one GPU, and it omits the post-processing step via sharing a backbone.
Therefore, EARA has remarkable efficiency in terms of the time costs and memory usage,
especially for high-dimension embeddings.

Table 8. Retrieval time (milliseconds) and time used for extracting image features (minutes) on AID
with various RSIR methods.

Datasets Retrieval Process BIER A-BIER DCES ABE Ours

UCMD
deep features extraction 55 48 62 69 25
similarity metric (1536) 29.12 28.78 18.72 12.08 0.57

SIRI-WHU
deep features extraction 61 60 69 88 29
similarity metric (1536) 32.52 30.06 20.75 15.63 0.93

AID
deep features extraction 89 83 75 96 39
similarity metric (1536) 58.96 51.66 39.05 29.72 2.37
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Figure 7. Comparison of the proposed architecture with BIER, A-BIER, DCES, and ABE as evaluated
by Recall@1 on (a) UCMD, (b) SIRI-WHU, (c) and AID. The overall embedding feature is 512.
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5. Discussion

EARA shows relatively stable retrieval results despite the variations in time instance
and shooting range, as shown in Figures 4–6. The submodule, including the Main Branch
and Residual Attention Branch, of EARA makes extracted features more discriminative.
In addition, the descriptor ensemble method was adopted by EARA to decrease the high-
computation complexity of similar metric algorithms in RSIR. Three factors affect the
EARA performance: the type of the dataset, the number of images in the dataset, and the
network structure.

When it comes to the dataset type and the number of images in the dataset, EARA
can give more play to its advantages on datasets with more categories such as AID and
SIRI-WHU. The better performance of EARA on AID and SIRI-WHU than on UCMD
demonstrates that EARA is somewhat data-driven with no need for a large number of
parameters to constraint learners, and EARA can benefit from large-scale datasets. With
a large amount of data, EARA can fully learn the similarities and dissimilarities between
the images. Nevertheless, great retrieval results on UCMD demonstrate that EARA also
performs well on small datasets. The reason may be that ensemble descriptors and the
addition of residual attention empower EARA to deeply explore the correlation between
limited data and then to yield more distinguishable and comprehensive information of
images. In the future, further refining of the loss function may expand the application of
EARA to both large and small datasets.

With respect to the network structure, EARA improves the retrieval performance
from the following aspects. First, the improvement of the network configuration, i.e., the
addition of the Residual Attention Branch, maintains the global and discriminative features.
In particular, the residual attention retains more structural feature information within the
same class during sampling, which is beneficial for the subsequent calculation of similarity
metrics. Second, the descriptor ensemble further encourages the diversity of the features
without extra parameters to ease the time and memory burdens. Third, EARA dynamically
weighs the feature vectors of the submodules to obtain the overall effect and can extract
more discriminative features.

Moreover, EARA has superiority in retrieval execution complexity over other meth-
ods. The addition of residual attention avoids network attenuation induced by stacking
many layers during feature extraction, speeds up the convergence, and reduces the high-
computation complexity in terms of FLOPs and time cost. EARA adopts the online retrieval
strategy for fine-tuning the pretrained network and makes the retrieval performance in line
with a users’ standards. Different from other ensemble methods, EARA requires only one
GPU, because it shares parameters without any postprocessing steps, and hence, it further
reduces the training time and FLOPs, which are only 41% and 78% of the ABEs, respectively.

In general, EARA used a lower retrieval time on three remote sensing benchmark
datasets in RSIR, compared with other DML-based methods. Consequently, EARA is
beneficial to improve the retrieval efficiency of large-scale remote sensing images. EARA
does not perform as well on small-scale datasets as it does on large-scale datasets. In
future work, the loss function for small-scale datasets can be designed to further improve
the retrieval performance. EARA is limited by images of insufficient spatial information
and single channel information. The subsequent work may add some tricks (such as
data augmentation) to solve this problem. Nevertheless, EARA is scalable in a variety of
networks and loss functions, which offer widespread opportunities for EARA in many
important application fields, such as aerial scene retrieval and environmental detection.

6. Conclusions

In this paper, we propose a novel residual attention-based ensemble architecture under
a deep metric learning paradigm for RSIR. EARA boosts the RSIR performance owing to the
following three aspects: the addition of residual attention, ensemble descriptors, and the
scalability of network and loss function. First, the Residual Attention Branch is added onto
the Main Branch to construct submodules to obtain more discriminative semantic features,
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preserve the complete global information, and avoid network attenuation. Moreover, the
dynamic weight calculation dependent on the distinguishability of the extracted feature
from the Residual Attention Branch can make full use of the extracted semantic information.
Second, multiple descriptors of the Main Branch in submodules are aggregated into feature
vectors to achieve complete global and distinctive image information. Third, compared
to the SOTA methods such as BIER [34], A-BIER [35], DCES [36], ABE [37], and EARA
exhibited an improvement of 15.45%, 13.04%, 10.31%, and 6.62% in mAP on AID. In
addition, the retrieval time and FLOPs to implement EARA are reduced by nearly 20% and
8% of ABE on AID.

The results suggest the effectiveness of the proposed architecture in RSIR in terms of
the retrieval accuracy and execution complexity. Thorough experiments on three remote
sensing benchmark datasets that include UCMD, SIRI-WHU, and AID demonstrate that
EARA achieves a better performance with a reduced time cost and fewer parameters,
compared with four SOTA DML-based ensemble methods. EARA offers widespread
opportunities in many important application fields, such as aerial scene retrieval and
environmental detection.
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