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Abstract: LiDAR point clouds are rich in spatial information and can effectively express the size,
shape, position, and direction of objects; thus, they have the advantage of high spatial utilization.
The point cloud focuses on describing the shape of the external surface of the object itself and will
not store useless redundant information to describe the occupation. Therefore, point clouds have
become the research focus of 3D data models and are widely used in large-scale scene reconstruction,
virtual reality, digital elevation model production, and other fields. Since point clouds have various
characteristics, such as disorder, density inconsistency, unstructuredness, and incomplete information,
point cloud classification is still complex and challenging. To realize the semantic classification of
LiDAR point clouds in complex scenarios, this paper proposes the integration of normal vector
features into an atrous convolution residual network. Based on the RandLA-Net network structure,
the proposed network integrates the atrous convolution into the residual module to extract global and
local features of the point clouds. The atrous convolution can learn more valuable point cloud feature
information by expanding the receptive field. Then, the point cloud normal vector is embedded in the
local feature aggregation module of the RandLA-Net network to extract local semantic aggregation
features. The improved local feature aggregation module can merge the deep features of the point
cloud and mine the fine-grained information of the point cloud to improve the model’s segmentation
ability in complex scenes. Finally, to resolve the imbalance of the distribution of the various categories
of point clouds, the original loss function is optimized by adopting a reweighted method to prevent
overfitting so that the network can focus on small target categories in the training process to effectively
improve the classification performance. Through the experimental analysis of a Vaihingen (Germany)
urban 3D semantic dataset from the ISPRS website, it is verified that the proposed algorithm has a
strong generalization ability. The overall accuracy (OA) of the proposed algorithm on the Vaihingen
urban 3D semantic dataset reached 97.9%, and the average reached 96.1%. Experiments show that
the proposed algorithm fully exploits the semantic features of point clouds and effectively improves
the accuracy of point cloud classification.

Keywords: point cloud classification; RandLA-Net; atrous convolution; normal vector

1. Introduction

With the rapid development of spaceborne, airborne, and terrestrial remote sensing,
3D data acquisition technologies are becoming increasingly mature, including various
types of 3D laser scanners, depth cameras, and LiDAR technologies. The acquisition of
point clouds is becoming more and more convenient, and the data volume of point clouds
is increasing rapidly. Because of its rich geometry, shape, and scale information, point
clouds play an important role in the understanding of three-dimensional scenes [1]. To
describe the spatial information of point clouds at a deeper level, it is essential to classify
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point clouds. In many point cloud recognition tasks, point cloud classification has always
been an active research field in photogrammetry and remote sensing. As a basic technology
for point cloud data processing and analysis, it is widely used and plays a crucial role in
automatic driving [2], smart urban areas [3], 3D reconstruction [4], forest monitoring [5],
cultural heritage protection [6], power line detection [7], intelligent robots [8], and other
fields. Point clouds have characteristics of large volume, disorder, and dispersion and
uneven density distribution. Because of high sensor noise and complex three-dimensional
scenes, there are many challenging problems associated with point cloud classification and
semantic segmentation [9], which are current research hotspots.

Generally, point cloud classification and semantic segmentation are divided into two
steps: the first is to extract representative point features, and the second is to use the
learned features to divide each point into predefined semantic categories. Early studies
mainly focused on manually extracting features and then using machine learning-based
classifiers to predict the semantic label of each point, such as Gaussian mixture model [10],
support vector machine (SVM) [11], AdaBoost [12], and random forest (RF) [13]. The
traditional method of manual feature extraction relies too much on manual production
and optimization methods, and the extraction efficiency is low; moreover, it can reduce
classification accuracy because valuable information in the point cloud is lost and the
relationship between adjacent points is ignored. Some researchers have attempted to
resolve these problems by fusing context information, such as conditional random fields
(CRF) [14] and Markov random field (MRF) [15,16], and these methods improve the
classification performance to a certain extent. However, determining a method of selecting
the optimal classifier for combination is relatively complex. Moreover, these methods are
limited by the prior knowledge of scholars, and the generalization ability of the models is
poor. Therefore, satisfactory results are not achieved when dealing with complex scenes,
which limits the flexibility of these methods when applied to various real scenes. With the
great success of deep learning in image feature extraction, an increasing number of neural
network models (convolutional neural network [17,18], recursive neural network [19], deep
belief network [20], etc.) continue to emerge and have achieved good results when dealing
with practical application problems. Researchers are beginning to consider using deep
learning to address point clouds. Because of the irregularity and inhomogeneous density of
point clouds, traditional convolutional neural networks (CNN) cannot directly process the
original unstructured point cloud. A few researchers have proposed an indirect learning
point cloud feature extraction scheme based on deep convolutional neural networks. The
point cloud is transformed into a regular structure suitable for convolutional neural network
processing, such as multiview and voxel grid forms; however, these methods result in
information loss and high spatial and temporal complexity. In 2016, Qi proposed the
PointNet network [21], which directly learned unstructured original point clouds and made
breakthroughs in object classification, semantic segmentation, and scene understanding.

RandLA-Net [22] uses random sampling to downsample the point cloud, which has
the advantages of low time complexity and low space complexity. Inspired by RandLA-Net,
this paper proposes the integration of normal vector features into an atrous convolution
residual network for point cloud classification. The main contributions of this paper are
summarized as follows.

1. An atrous convolution is integrated into the residual structure. The atrous convolution
can amplify the receptive field of the convolution layer without increasing the network
parameters and can avoid the problem of feature loss caused by traditional methods,
such as the pooling layer.

2. The normal vector of the point cloud is embedded into the feature extraction module
of the point cloud classification network, which improves the utilization of the spatial
information of the point cloud and enables the network to fully capture the rich
context information of the point cloud.
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3. A reweighted loss function is proposed to solve the problem of uneven distribution
of point clouds, and it is an improved loss function based on the cross-entropy
loss function.

4. To verify the effectiveness of the proposed algorithm, we conducted experiments on
the 3D semantic dataset of urban Vaihingen in Germany. The experimental results
show that the proposed algorithm can effectively capture the geometric structure
of 3D point clouds, realize the classification of LiDAR point clouds, and improve
classification accuracy.

2. Related Work
2.1. Classification Based on Handcrafted Features

At present, traditional point cloud classification is mainly based on the point cloud
color, curvature, intensity, echo frequency, and other characteristics, and it relies on the
low-level features of the artificially designed point cloud. The existing traditional point
cloud classification methods can be divided into two categories: one is to classify the point
cloud based on geometric constraints, and the other is to classify the point cloud based on
machine learning. In the point cloud classification method based on geometric constraints,
it is usually necessary to set multiple constraints to distinguish each category. Zuo adopted
a topological heuristic segmentation algorithm for object-oriented segmentation of raster
elevation images. Based on the principle of maximum interclass variance, ground points
and nonground points were separated and buildings and other ground objects were
distinguished by multiple constraint conditions, such as the area and building height [23].
Brodu used three binary classifiers to classify vegetation, bedrock, sand and gravel, and
water in natural scenes successively through three classifications [24]. In the point cloud
classification method based on machine learning, Becker constructed multiple feature
vectors and divided the point cloud into multiple scales by combining color information,
then divided the point cloud into six categories by using RF [25]. Guo used JoinBoost to
implement ground object classification and developed a serialized point cloud classification
and feature dimensionality reduction method by combining the spatial correlation of
ground objects, which decreased the dimension of the feature vector and reduced the
classification time [26]. Niemeyer addressed the task of contextual classification of ALS
point clouds by integrating an RF classifier into a CRF framework [27]. Subsequently,
Niemeyer continued to expand this work and proposed a two-layer CRF to aggregate
spatial and semantic context [28].

2.2. Classification Based on Deep Learning

With the emergence of deep learning, an increasing number of studies have been
conducted on the application of deep learning to point cloud semantic segmentation, and
great improvements have been achieved. In recent years, many researchers have introduced
many point cloud segmentation models based on deep learning, which mainly include the
following five categories.

2.2.1. Two-dimensional Multiview Method

Su first obtained 2D images of 3D objects from different perspectives, extracted features
from each view, and aggregated images from different perspectives through a pooling
layer and a full connection layer to acquire the final semantic segmentation result [29]. The
3D-Mininet proposed by Alonso obtained local and global context information from 3D
data through multiview projection, and then input these data to a 2D full convolutional
neural network (FCNN) to predict semantic labels. Finally, the predicted 2D semantic
labels were reprojected into 3D space to obtain high-quality results in a faster and more
efficient way [30].
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2.2.2. Three-Dimensional Voxelization Method

Maturana advanced the VoxNet model, which is the first 3D CNN model based on
voxel data and shows the potential of a 3D convolution operator to learn features from
voxel-occupied grids; however, the sparsity of 3D data and incomplete spatial information
lead to low efficiency of semantic segmentation [31]. In addition, Meng combined a
variational autoencoder (VAE) to introduce VV-NET. After converting the point cloud
into a voxel grid, each voxel was further subdivided into child voxels, and interpolation
was carried out on the sparse point samples within the child voxels. The limitations of
binary voxels were broken through by encoding and decoding, and the ability to capture
point distribution was enhanced [32]. Hegde combined the voxelized network and the
multiview network to propose the FusionNet model. The two networks are merged at the
fully connected layer, and the performance is significantly improved compared with that
of the single network [33].

2.2.3. Neighborhood Feature Learning

Qi developed PointNet [21], which pioneered feature learning directly on the unstruc-
tured original point cloud. Although PointNet showed good performance in point cloud
classification and semantic segmentation, it failed to capture the local structure features
caused by metric space points, thus limiting the ability of fine-grained pattern recogni-
tion and complex scene generalization. Therefore, the author advanced an improved
version based on PointNet, i.e., PointNet ++, in which each layer has three substages:
sampling, grouping, and feature extraction. This network not only resolves the problem
of uneven sampling of point cloud data but also considers the distance measurement
between points [34]. To realize direction perception and scale perception at the same time,
Jiang proposed the PointSift module based on the PointNet network, which integrated
information from eight directions by direction-encoding convolution (OEC) to obtain the
representation of encoding orientation information and realized multiscale representation
by stacking multi-direction encoding units [35]. Zhao introduced a PointWeb network,
which built a local fully connected network by inserting an adaptive feature adjustment
(AFA) module, learned point feature vectors from point-pair differences, and realized
adaptive adjustment [36].

2.2.4. Graph Convolution

Wang advanced a local spectral convolution, which constructs a local graph from the
neighborhood of a point and uses spectral convolution combined with a new graph pool
strategy to learn the relative layout and features of adjacent points [37]. Loic introduced
the super-point graph (SPG), which is based on a gated graph neural network and edge
conditional convolution (ECC), to obtain context information and showed that it performs
well in large-scale point cloud segmentation [38].

2.2.5. Optimizing CNN

Li developed PointCNN, which converts a disordered point cloud into a correspond-
ing canonical order by learning the X-transform convolution operator and then uses the
CNN architecture to extract local features [39]. Xu developed SpiderCNN, which extends
the convolution operation from the conventional grid to the irregular point set. At the
same time, a step function is constructed to encode the spatial geometric information in the
local neighborhood and extract the deep semantic information [40].

3. Materials and Methods

To enhance a network’s ability to extract the fine-grained features of the local region
and the deep semantic information of the point cloud, this paper proposes the integration
of normal vector features into an atrous convolution residual network. We propose a
fusion atrous convolution residual block, which fuses the atrous convolution into the
residual structure of the network. To ensure the receptive field of the convolution block, the
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characteristics of the ordinary convolution block and the atrous convolution block are fully
utilized. The network’s ability to capture the local geometric features of the point cloud is
enhanced, and higher semantic information of the point cloud is learned. At the same time,
the normal vector of the point cloud is integrated with the local feature aggregation module
in the network, which fully exploits the characteristics of the point cloud, improves the
utilization rate of the spatial information of the point cloud, and enhances the recognition
network’s ability to ground objects. We also propose an improved loss function to resolve
the uneven distribution of each category.

The proposed network adopts a widely used encoder–decoder architecture with skip
connections. The proposed network structure is shown in Figure 1. The input point cloud
is fed to a shared MLP layer to extract the features of each point, and then five encoding
and decoding layers are used to learn the features of each point. Finally, a fully connected
layer is applied to predict the semantic label of each point cloud. Five encoding layers
are used to progressively reduce the size of the point clouds and increase the per-point
feature dimensions, and five decoding layers are used after five encoding layers. The point
cloud is downsampled with a 4-fold decimation ratio. In addition, the dimension of each
point feature is increased to retain more information. Each encoding layer contains a fusion
residual atrous convolution (FACR) module as the point cloud of the local and global
feature extraction modules. For each layer in the decoder, the KNN algorithm is used to
find the nearest neighbor of each point, and then the feature set of points is upsampled by
nearest-neighbor interpolation. Then, the updated sampling features are connected with
the intermediate features generated by the encoding layer by using the skip connection,
and the connected features are input into the shared MLP layer. The network output is
the semantic prediction label of each point, expressed as N × n, where N is the number of
input point clouds and n is the number of categories of the input point clouds.
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Figure 1. The framework of the proposed integrating normal vector features into an atrous convolution residual network.
The input point clouds on the left are colored by elevation, and the output is the classification result.

3.1. FACR (Fusion Atrous Convolution Residual) Module

Compared with shallow neural networks, deep networks can achieve more abstract
point cloud feature extraction due to their high-dimensional nonlinear operations. How-
ever, when the network increases to a certain depth, the weights of the hidden layers
in the front part are slowly updated or stagnant, resulting in saturation of the classifi-
cation accuracy. If the network continues to deepen, the accuracy will decline rapidly.
Given this problem, He in 2015 introduced a residual network structure based on skip
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connections [41], which can effectively solve the gradient descent caused by the increase
in network depth. In addition, the mapping after the introduction of residual blocks
is more sensitive to the change in output and has a greater effect on the adjustment of
weight; therefore, the network segmentation effect is better. The network architecture
mentioned in this article mainly includes a significant structure to extract the geometric
structure features and semantic features of the point cloud—namely, the FACR module. If
the ordinary convolution in the residual block is replaced by the atrous convolution, the
depth of the network is reduced and some expression ability of the original network is lost,
although the characteristics of each level are improved and the size of the receptive field
is expanded. Therefore, by integrating the atrous convolution into the residual structure,
more point cloud characteristic information can be extracted, which ensures high accuracy
and reduces the number of parameters and computation. Because the point cloud will
be subsampled at each encoding layer, some point clouds will be discarded. To retain
and utilize the geometric details and spatial features of the input point cloud as much as
possible, an atrous convolution residual module is proposed for local feature extraction. In
the encoding phase, the normal vector of the point cloud is introduced to embed the normal
vector into the local feature attention module to extract more feature information. Two
local feature attention modules are connected and stacked with atrous convolution and a
skip connection layer, and a residual block is ultimately formed. As shown in Figure 2, the
module is mainly composed of four neural units: shared MLP, local feature block, attention
pooling, and atrous convolution. In the following, the local feature attention (LFA) module
is introduced in detail, as shown in Figure 3.
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In Figure 3, the content in the blue dotted box on the left is defined as a local feature
block. Given the point cloud P and its features, to improve the calculation efficiency, the
KNN algorithm based on the Euclidean distance of the point is used to search K adjacent
points of point P and obtain the 3D coordinates and normal vectors of the neighborhood
point set. Then, the spatial position coding of this point P is calculated. The coding
content includes the three-dimensional coordinates of point cloud P, the three-dimensional
coordinates of neighboring points, the normal vector of neighboring points, the relative
coordinates between P and neighboring points, and the Euclidean distance between P
and neighboring points, as shown in Equation (1). The result of spatial position coding is
cascaded with the point cloud feature to obtain the enhanced feature of point P, as shown
in Equation (2). This module ensures that the features of point P always grasp the relative
spatial position between them so that the network can learn the complex local structure of
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the point cloud more effectively, enabling the network to extract the local neighborhood
feature information and the context relationship between point P and the neighboring
points more deeply.

rk
i = MLP

(
pi ⊕ pk

i ⊕ npk
i ⊕

(
pi − pk

i

)
⊕ ‖pi − pk

i ‖
)

(1)

where pi is the three-dimensional coordinate of point P, pk
i is the coordinate of one of the K

adjacent points, npk
i is the normal vector of one of the K adjacent points, ⊕ represents the

concatenation operation, and rk
i is the spatial position coding of point P.

f̂ k
i = f k

i ⊕ rk
i (2)

where rk
i represents the spatial position coding of point P, f k

i is the original or generated
feature of point P, f̂ k

i is the enhanced feature after concatenation, and ⊕ represents the
concatenation operation.

The content in the black dashed box on the right in Figure 3 is defined as the attention
pooling module. Existing neural networks usually use maximum pooling or average
pooling methods to extract features, although they will cause the loss of some useful
information. Attention pooling can learn more critical features from a large number of
input features, can reduce the attention of unimportant features, and can even filter out
the interference of some irrelevant features. In general, the aggregation of features can
be optimized by attention pooling. Therefore, this paper adopts attention pooling to
automatically select important local features. The attention pooling module calculates
the weights of the local features gained from the local feature blocks, retains useful local
features, and finally obtains aggregated features. For the set of enhanced features obtained
from local feature blocks, the attention pooling module first performs a full join operation
to integrate the feature representations. Then, the attention score is acquired through the
softmax function. Through the attention score, the essential features with high scores
are selected. Finally, these features are aggregated after weighted summation. At the
beginning of network training, the attention pooling module tends to select prominent
keypoint features, and after a large subsampling of the point cloud, the attention pooling
module is more inclined to retain the main part of the point cloud features.

First, the score for each feature is calculated as a mask. Based on a set of local
enhancement features F̂i =

{
f̂ 1
i . . . f̂ k

i . . . f̂ K
i

}
, a g () function is defined to learn the attention

score for each feature, which consists of a multilayer perceptron (MLP). The learned
attention score can be used as a mask to automatically select important features. W is the
learning weight of the MLP, and the mask is shown in Equation (3):

sk
i = g

(
f̂ k
i , W

)
(3)

where sk
i is the mask, which is used to remove the unimportant features. As shown in

Equation (4), the weighted sum of the local feature and the corresponding attention score
is used to obtain the local aggregate feature f̃i.

f̃i =
K

∑
k=1

(
f̂ k
i · sk

i

)
(4)

3.2. Normal Vector Calculation of the Point Cloud

The normal vector is one of the important attributes of the point cloud. There are
three methods for solving the normal vector of the point cloud: the Delaunay triangulation
method, the robust statistical method, and the local surface fitting method. The method in
this paper is based on the local surface fitting method, which is widely used in large-scale
point cloud scenarios with simple calculation principles and high efficiency.



Remote Sens. 2021, 13, 3427 8 of 21

Combined with the least squares principle, the normal vector of each point is estimated
by fitting the K neighborhood points of each point. When the point clouds are dense and
the search radius is small, the normal vector of each point can be expressed by the normal
vector of the local fitting plane. Therefore, according to the least squares principle, the K
neighborhood points of each point are fitted into a plane, and the calculation formula is
shown in Equation (5):

p(n, d) = argmin
k

∑
i=1

(npi − d)2 (5)

where n is the normal vector of the local fitting plane p, and d is the distance between
the fitting plane p and the coordinate origin. Principal component analysis is used to
analyze the eigenvector corresponding to the minimum eigenvalue of the covariance
matrix A—that is, the normal vector of the plane p. The formula of the covariance matrix
A is shown in Equation (6):

A =
k

∑
i=1

(pi− p)
T

(pi− p) (6)

where p represents the center of mass of K neighborhood points.
The fitting plane p satisfies the condition that the sum of squares of the distances

between adjacent points and the plane is the minimum. According to the Lagrange theorem,
the covariance matrix A and the plane normal vector

→
n satisfy the following relationship:

A
→
n = λ

→
n (7)

where λ is the eigenvalue of A. When λ is the minimum value, the corresponding vector
→
n

is the normal vector of the fitting plane p—that is, the normal vector of the point pi.

3.3. Atrous Convolution

Atrous convolution [42] is a kind of convolution with a special structure that intro-
duces the concept of dilatancy based on ordinary convolution. It has the function of
expanding the convolution kernel receptive field. By setting different dilation rates, the
multiscale feature information of the point cloud can be captured. Atrous convolution
expands the scope of the convolution kernel. Atrous convolution with different dilation
rates is shown in Figure 4, where panel (a) corresponds to the convolution of dilation rate 1,
and the atrous convolution is equivalent to the standard convolution, i.e., the traditional
3× 3 convolution kernel, and the receptive field is 3× 3; panel (b) corresponds to the con-
volution with a dilation rate of 2, although the size of the convolution kernel is still 3× 3,
while the receptive field increases to 7× 7; and panel (c) corresponds to the convolution
with a dilation rate of 3, and its receptive field is 13× 13. The size of the receptive field
increases with the dilation rate, although the number of parameters in Figure 4a–c does
not increase. Therefore, more information can be obtained by replacing the traditional
convolution kernel with the atrous convolution kernel without increasing the amount
of calculation.

In this paper, atrous convolution is introduced into the residual block to expand the
receptive field of features and capture richer contextual information without increasing
network parameters and losing point cloud resolution. For the design of the dilation rate in
the network model, the optimal dilation rate is determined by ablation experiments, which
are described in Section 4. The size of the atrous convolution kernel and receptive field is
defined by Equations (8) and (9), respectively:

fn = fk + ( fk − 1)× (Dr − 1) (8)

lm = lm−1 +

[
( fn − 1)×

m−1

∏
i=1

Si

]
(9)
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where fk is the representation of the size of the original convolution kernel; fn represents
the size of the atrous convolution kernel; Dr denotes a dilation rate; lm−1 represents (m−1)
layer receptive field size; lm represents the size of receptive field in the m-th layer after
atrous convolution; and Si represents the stride size of layer i.
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3.4. Reweighted Loss Function

By reweighting the cross-entropy loss function, the proportion of the classification
loss in the total loss of the small target point cloud can be increased. At the same time,
the proportion of the classification loss function of the large target point cloud in the total
loss function is reduced so that the network can pay more attention to the small target
category in the training process. Thus, it counteracts in reverse the overfitting problem
of large target point clouds caused by unbalanced class distributions in neural network
learning. This paper introduces reweighting to optimize the original loss function, using
two different weight calculation methods to obtain two kinds of weights. The two kinds
of weights are combined linearly, and then the new weight value is used to weight the
loss function.

Generally, the general formula for reweighting the cross-entropy loss function is
as follows:

Lce = weight · (− ln(
exp(zj)

N
∑

i=1
exp(zi)

)) (10)

Suppose that the neural network input is the point cloud X, where N is the length
of the output vector of the last layer of the network—that is, the number of categories in
the point cloud. zj and zi are the j and i values of the output vector, weight is the weight
of reweighting the loss function, and the length of the weight vector is equal to N. The
weight value of each type of loss is set according to the proportion of the point cloud in the
data of this category. The category with too many samples is given a small weight, while
the category with too many samples is given a large weight. Therefore, according to the
principle of reweighting, this paper advances the first weight setting method as follows:

ai =
1

ln( Ni
n
∑

j=1
Nj

+ 1.2)
(11)
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where Ni is the number of point clouds of class i in the data, ai is the weight value of
the point clouds of class i, and n is the number of categories. Although it is necessary
to give a large weight to the category with a small number of point clouds, the weight
should not be too large; otherwise, the neural network will also tend to the category with
a large weight during training. From the monotonic nature of the ln(X) function, when
the base n is greater than 1, the function is a monotonically increasing function. As the X
value increases, the function tends to flatten out. Therefore, the ln(X) function is used to
calculate the weight value. The second weight calculation method is obtained through the
definition of the effective sample number, and the specific inference process is provided in
the literature [43]. The calculation formula of the weight is as follows:

bi =
1−Ω

(1−Ωni )
(12)

where bi is the weight value of the class i sample, and ni is the sample number of the class
i sample. According to the literature [41], the parameter Ω is equal to 0.99. The weight
obtained by Equation (11) is calculated by using the proportion of each type of sample in
the total number of samples. The calculation method is simple and can effectively improve
the accuracy of the model, but the robustness is not strong. The weight bi obtained in
Equation (12) is calculated by the number of effective samples, which can better reverse
the overfitting problem of a large target point cloud in model training, and the robustness
of the model is better when using this weight. The two weighting methods have their
advantages and disadvantages; therefore, the two weights are combined linearly. The
improved cross-entropy loss function is as follows:

Lce = (a + b) · (− ln(
exp(zj)

N
∑

i=1
exp(zi)

)) (13)

4. Experimental Results and Analysis
4.1. Experimental Data

The experimental dataset is the Vaihingen (Germany) urban 3D semantic dataset
(http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html, accessed
on 12 October 2020), and it is provided by the International Society for Photogrammetry
and Remote Sensing (ISPRS). The dataset includes airborne LiDAR point clouds covering
three independent areas of urban Vaihingen. The data were collected in August 2008 and
have an average altitude of approximately 500 meters and a field of view of 45 degrees.
The average point density is approximately 8 per square meter, which is scanned by a
LeicaALS50 airborne lidar system. The dataset contains a rich geographical environment,
urban environment, and building types, which can fully verify the application of the
algorithm in outdoor complex scenes. The dataset contains nine types of features: building
roofs, trees, low vegetation, powerlines, shrubs, fences, impervious surfaces, building
facades, and cars.

According to the standard setting of the ISPRS 3D label competition, the whole dataset
is divided into two parts. The first scene (left in Figure 5) has 753,876 points as the training
dataset, and the other two scenes (right in Figure 5) have 411,722 points as the test dataset.
The details of each scene are shown in Table 1. Each scene is provided by an ASCII file
with 3D coordinates, reflectivity, return count information, and point labels.

http://www2.isprs.org/commissions/comm3/wg4/3d-semantic-labeling.html
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Table 1. Number of points in each object category of the training and test datasets.

Categories Train Test

Powerline 546 600
Low vegetation 180,850 98,690

Impervious surfaces 193,723 101,986
Car 4614 3708

Fence/Hedge 12,070 7422
Roof 152,045 109,048

Facade 27,250 11,224
Shrub 47,605 24,818
Tree 135,173 54,226

4.2. Experimental Setup

The experimental environment of the proposed algorithm in the data training and
testing process is based on the Windows 10 system, Intel(R)Core (TM) i7 -10700 CPU,
64 GB memory, NVIDIA GeForce RTX 2080 Ti GPU, and the deep learning framework is
TensorFlow-1.11.0. In this experiment, the Adam optimizer was used to train the network;
the initial learning rate was 0.01, the retention rate of the dropout parameter of the fully
connected layer was 0.5, and the Xavier optimizer initialized the network parameters.

4.3. Classification Performance Evaluation

To evaluate the performance of the point cloud classification algorithm, we usually
need an objective evaluation index to ensure the fairness of the algorithm. In this paper, the
overall accuracy (OA), F1 value, average F1 value, recall and precision are used to evaluate
the test results. The overall accuracy measures the classification accuracy of all categories
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as a whole, and the F1 value deals with each category separately while considering recall
and precision. It is expressed by Equations (14)–(17).

OA =
TP + TN

TP + TN + FP + FN
(14)

precision =
TP

TP + FP
(15)

recall =
TP

TP + FN
(16)

F1 = 2 ∗ precision ∗ recall
precision + recall

(17)

where TP indicates the number of points that were in the original class i and correctly
predicted as class i; TN represents the number of points that were in the original class j and
predicted to be class j; FP indicates the number of points that were in the original class i
but incorrectly predicted as class j; and FN represents the number of points that were in
the original class j and predicted to be class i.

4.4. Experiments and the Analysis

The influence of embedding a normal vector into a feature extraction module, fusing
an atrous convolution residual module and an improved loss function on the accuracy of
point cloud classification, are discussed. The final result of the point cloud classification of
the Vaihingen urban 3D semantic dataset is shown in Figure 6. From Figure 7, when the
normal vector is not embedded and the atrous convolution residual module is not fused,
the result of classification error by using the original loss function is obvious, especially in
the areas of building roofs, low vegetation, and trees. The neural network adopts a normal
vector model and atrous convolution residual model. Therefore, it can focus the local point
cloud features and enrich the fusion features. The improved loss function emphasizes the
small target point cloud with fewer point clouds, and the misclassification phenomenon
is effectively suppressed. These findings suggest that the effectiveness of the proposed
algorithm in cloud classification of complex scenarios.

4.4.1. Comparison and Analysis with the ISPRS Competition Method

To verify the effectiveness and superiority of the proposed algorithm in the point
cloud classification of outdoor 3D scenes, it is compared with other advanced methods. The
ISPRS website provides experimental results of different methods. Table 2 lists the OA value
and the F1 value of the algorithm in this paper and these comparison methods. NANJ2,
WhuY3, and WhuY4 are all point cloud classifications based on the point cloud feature
map. WhuY3 is based on a single-scale point cloud feature map, while NANJ2 and WhuY4
are founded on a multiscale point cloud feature map. As shown in Table 2, compared with
WhuY2 and WhuY3, which use a point cloud feature map for segmentation, the algorithm
in this paper directly segments the point cloud. Considering the deep features among the
point cloud features, the segmentation accuracy is improved. The F1 value of the proposed
algorithm reached 96.1%, which is 26.9% higher than that of the most advanced WhuY4
model. The FACR module introduced in this paper can better extract point features. In
addition, our model obtains 97.9% of the OA value, which is 12.7% higher than the most
advanced NANJ2 model. Moreover, the NANJ2 algorithm uses RGB, strength, roughness,
and other features as input for point cloud classification, while the algorithm in this paper
only uses the original XYZ coordinate and normal vector as input. The algorithm in this
paper has achieved higher accuracy in most categories.
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Figure 6. (a) Classification results of the Vaihingen urban 3D semantic dataset; (b) error map.

4.4.2. Comparison with Other Deep Learning Classification Methods

In a comparative analysis with other deep learning methods, we counted the valida-
tion results on the 3D semantic dataset of urban Vaihingen in Germany, as shown in Table 3.
Compared with other deep learning algorithms (PointNet [21], PointNet++ [34], Pointnet-
SIFT [35], PointnetCNN [39], D-FCN [44], KPConv [45], GADH-Net [46]), the algorithm in
this paper can obtain better feature expression. The FACR module can mine fine-grained
local features with greater discriminative ability. The improved reweighted cross-entropy
loss function can improve the segmentation accuracy of small object punctuation clouds.
Compared with the most advanced GADH-Net, the OA value has increased by 12.9%, and
the average F1 value has increased by 24.4%. Because the scene of the Vaihingen urban 3D
semantic dataset includes messy information and many semantic categories of the point
cloud, it is more challenging to classify the point cloud.

In Table 3, a comparison of the classification indexes of different ground objects shows
that the algorithm proposed in this paper has a better segmentation effect on five kinds of
features—namely, building roofs, low vegetation, surfaces, cars, and trees—and that these
results are better than for other kinds of features. The F1 values of these five features are
all above 97%, and the F1 value of the building roof is 99.2%, mainly because of the five
features themselves. The normal vectors of building roofs, low vegetation, surfaces, and
trees have high-resolution capabilities. Therefore, the proposed algorithm extracts deeper
features, which further improves the network’s ability to recognize the five features. The
algorithm in this paper has a poor segmentation effect on shrubs and building facades,
mainly because of the limited training data available for shrubs and building facades.
The network presents difficulty distinguishing the deep features of shrubs and building
facades from other ground features. Although the training data of power lines and cars
have fewer points, they show completely different characteristics from the other categories,
thus obtaining higher classification performance. The experimental results show that the
feature extraction module of the fusion point cloud normal vector proposed in this paper
can increase the distinguishing ability of different types of point clouds and can effectively
realize point cloud classification. At the same time, atrous convolution improves the
performance of the point cloud classification by expanding the size of the receptive field to
capture more point cloud feature information. The reweighted cross-entropy loss function
proposed in this paper can effectively resolve the problem of the uneven distribution of
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point cloud categories and can achieve high classification accuracy for power lines, cars,
fences, and other ground objects with a small number of point clouds.
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Table 2. Comparison of the proposed method in this paper with the results provided by the ISPR website.

F1 Score

Method Power
Line

Low
Vegetation Surfaces Car Fence Roof Facade Shrub Tree OA Average

F1

UM 0.461 0.790 0.891 0.477 0.052 0.920 0.527 0.409 0.779 0.808 0.590
WhuY2 0.319 0.800 0.889 0.408 0.245 0.931 0.494 0.411 0.773 0.810 0.586
WhuY3 0.371 0.814 0.901 0.634 0.239 0.934 0.475 0.399 0.780 0.823 0.616

LUH 0.596 0.775 0.911 0.731 0.340 0.942 0.563 0.466 0.831 0.816 0.684
BIJ_W 0.138 0.785 0.905 0.564 0.363 0.922 0.532 0.433 0.784 0.815 0.603
RIT_1 0.375 0.779 0.915 0.734 0.180 0.940 0.493 0.459 0.825 0.816 0.633

NANJ2 0.620 0.888 0.912 0.667 0.407 0.936 0.426 0.559 0.826 0.852 0.693
WhuY4 0.425 0.827 0.914 0.747 0.537 0.943 0.531 0.479 0.828 0.849 0.692

Ours 0.938 0.975 0. 990 0.982 0.946 0.992 0.917 0.930 0.977 0.979 0.961
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Table 3. Comparison of the proposed algorithm and deep learning algorithm.

F1 Score

Method Power
line

Low
vegetation Surfaces Car Fence Roof Facade Shrub Tree F1 Average

F1

PointNet 0.526 0.700 0.832 0.112 0.075 0.748 0.078 0.246 0.454 0.657 0.419
PointNet++ 0.579 0.796 0.906 0.661 0.315 0.916 0.543 0.416 0.770 0.812 0.656

PointnetSIFT 0.557 0.807 0.909 0.778 0.305 0.925 0.059 0.444 0.796 0.822 0.677
PointnetCNN 0.615 0.827 0.918 0.758 0.359 0.927 0.578 0.491 0.781 0.833 0.695

D-FCN 0.704 0.802 0.914 0.781 0.370 0.930 0.605 0.460 0.794 0.822 0.707
KPConv 0.631 0.823 0.914 0.725 0.252 0.944 0.603 0.449 0.812 0.837 0.684

GADH-Net 0.668 0.668 0.915 0.915 0.350 0.946 0.633 0.498 0.839 0.850 0.717
Ours 0.938 0.975 0. 990 0.982 0.946 0.992 0.917 0.930 0.977 0.979 0.961

4.5. Ablation Study
4.5.1. Effectiveness of the Normal Vector of the Point Cloud

To better understand the impact of the normal vector of the point cloud, atrous
convolution is performed, and the loss of function is improved. To prove the effectiveness
of the proposed algorithm, we conducted an ablation experimental study. We have built
four models: a baseline model, which is the RandLA-Net network; a model that contains
only normal vectors; a model that contains normal vectors and atrous convolution; and a
model that contains the point cloud normal vector, atrous convolution, and an improved
loss function. Specifically, we gradually added the normal vector, atrous convolution, and
improved loss function into the baseline network structure to evaluate the performance of
the algorithm in this paper. The classification performance was evaluated from the overall
accuracy (OA) and the average F1 value. The classification results of these models are listed
in Table 4, which shows the point cloud normal vector increases the F1 value by 3.8%, the
normal vector and atrous convolution raise the F1 value by 4.1%, and the combination
of normal vector and atrous convolution with the improved loss function enhance the F1
value by 5.1%. These results prove the effectiveness of all the introduced modules. As
shown in Table 4, compared with the RandLA-Net network, embedding the point cloud
normal vector into the local feature attention module improves the overall accuracy (OA)
and average F1 value by 1.5% and 3.8%, respectively. Thus, adding basic geometric features
can effectively improve the semantic classification results of the network model. Compared
with Figure 8a,b, we can see that this paper successfully corrected some misclassified roof
points and shrub points by introducing the point cloud normal vector.

Table 4. Ablation study results.

Method OA Average F1

baseline 0.954 0.910
baseline + normal 0.969 0.948

baseline + normal + atrous Conv 0.972 0.951
baseline + normal + atrous Conv + reweighted loss function 0.979 0.961

To verify the effect of geometric input features on semantic segmentation, further
comparative experiments were carried out. The network models of each experimental
group were based on RandLA-Net. Only the local feature attention module of the network
model was changed, and the point cloud normal vector was embedded in its spatial
position coding. Select k values of 10, 20, 30, 40, and 50 were used to calculate different
point cloud normal vectors. The five groups of data were used to conduct experiments to
obtain the point cloud classification results. The experimental results are shown in Table 5.
As seen from Table 5, when the K value is 30, the optimal overall accuracy (OA) and
average F1 value are obtained, and 30 is the optimal K value determined by the algorithm
in this paper.
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Table 5. Comparison of the different K values in calculating the normal vector of the point cloud.

Method OA Average F1

K = 10 93.22 88.95
K = 20 96.16 93.04
K = 30 96.92 94.76
K = 40 95.88 91.93
K = 50 94.84 90.44

4.5.2. Effectiveness of Atrous Convolution

As shown in Table 4, based on the baseline network, the model that embeds the
normal vector of the point cloud, atrous convolution improves the overall accuracy (OA)
and average F1 value by 0.3% and 0.3%, respectively. A comparison of Figure 8b,c shows
that our model corrects the misclassified ground points.

At the same time, the model embeds the normal vector of the point cloud. Atrous
convolution is carried out in the contrast experiment with different dilation rates, with
dilation rates of 2, 5, 8, and 11 used in the model. The classification performance is
evaluated in terms of overall accuracy (OA) and average F1 value. Table 6 shows the
classification results with different dilation ratios.

Table 6. Comparison of different dilation rates of atrous convolution.

Method OA Average F1

Rate = 2 0.954 0.939
Rate = 5 0.972 0.951
Rate = 8 0.960 0.930

Rate = 11 0.935 0.889

As shown in Table 6, when the dilation rate of atrous convolution is moderate (rate = 5),
the model achieves the best classification performance because when the dilation rate is
too small, the receptive field will be small, and greater neighborhood information involves
more point cloud features. With the increase in the dilation rate, the point cloud increases
the local receptive field, which helps to obtain more stable and fine-grained point cloud
characteristics, thus improving the classification results. However, using a dilation rate that
is too large will also decrease the classification performance. When the dilation rate = 5,
our model performs best and presents an overall accuracy (OA) of 97.2% and an average
F1 value of 95.1%.

4.5.3. Effectiveness of the Reweighted Loss Function

Table 4 shows that the reweighted method proposed in this paper is more suitable
for point cloud classification with unbalanced categories. Compared with the original loss
function, the improved loss function improves the overall accuracy (OA) and average F1 by
0.7% and 1.0%, respectively. A comparison of Figure 8 8c,d shows that our model corrects
the misclassified building roof points.

To test the impact of different loss functions on the performance of point cloud
classification, based on the baseline network and using the model of embedded point cloud
normal vector and atrous convolution, this paper chose the cross-entropy loss function,
weighted cross-entropy loss function, and reweighted loss function contrast experiment.
The weighted cross-entropy loss function is weighted by the frequency of each type of
point cloud, and the results are shown in Table 7.
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Table 7. Comparison of the different loss function.

Method OA Average F1

Cross entropy 0.972 0.949
Weighted cross-entropy 0.972 0.951

Reweighted cross-entropy 0.979 0.961

As seen from Table 7, the reweighted cross-entropy loss function has an improved
overall accuracy (OA) and average F1 value by 0.7% and 1.2%, respectively, compared with
the cross-entropy loss function without weight. The reweighted loss function can solve the
overfitting problem caused by the uneven distribution of the number of point clouds to a
certain extent and can improve the accuracy of small target point clouds. The improved
loss function proposed in this paper can effectively improve the performance of the model.

4.5.4. Comparison of Computational Load

To further study the computational load (measured by training time and GPU mem-
ory) of the proposed method, we list the results of DANCE-Net [47], GADH-Net [46],
GACNN [48], 3DCNN [49], and our module in Table 8. Note that all results are collected in
a semantic segmentation task on the Vaihingen urban 3D semantic dataset with 4096 points.
It can be seen from Table 8 that GACNN [48] takes the longest time to process point clouds
because of the cumbersome construction steps of graph attention convolution. The calcu-
lation overhead of DANCE-Net [47] and GADH-Net [46] is also very large. Our model
is based on simple random sampling and an efficient local feature aggregator, which can
infer the semantic labels of the point cloud in a short time.

Table 8. The computation time, GPU memory, OA, and GPU of different approaches.

Method Training Time (Hours) GPU Memory OA GPU

DANCE-Net 10 24 GB 0.839 Nvidia Tesla K80
GADH-Net 7 2 × 12 GB 0.850 2 × Nvidia Titan Xp

GACNN 10 12 GB 0.832 Nvidia Titan Xp
3DCNN 0.5 11 GB 0.806 Nvidia RTX 2080Ti

Ours 1.5 11 GB 0.979 Nvidia RTX 2080Ti

The results show that the memory consumption of our method is similar to that of
3DCNN [49]. Moreover, the training time of our module is slightly longer than 3DCNN [49],
and the OA value has increased by 17.3%. Overall, our network achieves a good trade-off
between model complexity and performance. These prove the effectiveness of our model,
which does not consume too much memory or time, while the complexity of the model
increases, and the segmentation accuracy is improved.

5. Conclusions

Because of the problems of the existing convolutional neural networks—which can
directly learn the features of a point cloud, such as missing local features, multiple process-
ing links, and large amounts of calculations—this paper proposes the integration of normal
vector features into an atrous convolution residual network to classify LiDAR point clouds.
Based on the RandLA-Net network, the atrous convolution and the point cloud normal
vector are embedded in the network to realize the classification of the LiDAR point clouds.
Specifically, we propose a fusion atrous convolution residual module that integrates atrous
convolution into the residual block structure. It expands the receptive field and realizes
multiscale point feature learning to extract more representative local features from the
point clouds. The point cloud normal vector is implanted in the network structure to realize
the extraction of the deep features of the point cloud. It can mine the hidden geometric
correlations from the neighborhood to the greatest extent. An improved loss function is
proposed to solve the unbalanced distribution of point cloud categories, so that the details
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of small objects will not be excessively lost in the process of depth feature extraction. The in-
tegration of normal vector features into the atrous convolution residual network proposed
in this paper can capture valuable fine-grained information of point clouds, enhance the
features of point cloud objects, and filter out useless features of the point cloud. Therefore,
the segmentation ability of the model in complex scenes is improved. The proposed model
can process input point clouds of any size and directly predict the semantic labels of all
input points in an end-to-end manner. Because the algorithm in this study is based on the
feature extraction of the coding part, it has good portability and can be easily embedded
into the point cloud classification algorithm. To prove the advantages of the proposed
model, a test was carried out on the Vaihingen urban 3D semantic dataset in Germany.
The evaluation index was used to analyze the test result, and the OA value of the dataset
reached 97.9% and the average F1 value reached 96.1%. This finding indicates that the
algorithm has a better segmentation effect than RandLA-Net, even for small objects, such
as power lines and cars, and has achieved extremely fine-grained classification results.
Although point clouds with similar features will interfere with each other, the algorithm in
this paper can avoid interference to a certain extent and achieve point cloud classification
well. This robust performance is attributed to the integration of the FACR module, which
also proves the strong generalization ability of the network for point cloud classification in
a complex urban environment.

Although the classification evaluation proves the effectiveness of the proposed algo-
rithm in point cloud classification, there is still space for improvement. Due to the problem
of scanning height and angle, the point cloud obtained by airborne LiDAR is sparser than
that obtained by a ground 3D laser scanner, which makes point cloud segmentation more
difficult. The fusion of airborne LiDAR point clouds and aerial images can achieve a
better segmentation effect. The experiment found that when there are too few points of
some ground objects, the data processing will be limited, and the segmentation accuracy is
insufficient. Improving the accuracy under the condition of a small number of point clouds
will be an important direction for future point cloud classification research.
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