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Abstract: Accurate registration for multisource high-resolution remote sensing images is an essential
step for various remote sensing applications. Due to the complexity of the feature and texture
information of high-resolution remote sensing images, especially for images covering earthquake
disasters, feature-based image registration methods need a more helpful feature descriptor to im-
prove the accuracy. However, traditional image registration methods that only use local features at
low levels have difficulty representing the features of the matching points. To improve the accuracy
of matching features for multisource high-resolution remote sensing images, an image registration
method based on a deep residual network (ResNet) and scale-invariant feature transform (SIFT) was
proposed. It used the fusion of SIFT features and ResNet features on the basis of the traditional
algorithm to achieve image registration. The proposed method consists of two parts: model con-
struction and training and image registration using a combination of SIFT and ResNet34 features.
First, a registration sample set constructed from high-resolution satellite remote sensing images was
used to fine-tune the network to obtain the ResNet model. Then, for the image to be registered,
the Shi_Tomas algorithm and the combination of SIFT and ResNet features were used for feature
extraction to complete the image registration. Considering the difference in image sizes and scenes,
five pairs of images were used to conduct experiments to verify the effectiveness of the method in
different practical applications. The experimental results showed that the proposed method can
achieve higher accuracies and more tie points than traditional feature-based methods.

Keywords: image registration; convolutional neural network; SIFT; multisource high-resolution
remote sensing image

1. Introduction

With the development of remote sensing technology, multisource remote sensing
images, which provide richer information for the same region [1], have been applied
in remote sensing tasks such as earthquake disaster monitoring, change detection, and
ground target identification. Meanwhile, the spatial resolution of remote sensing images
is continuously improving, making the details of ground objects more prominent [2].
However, the size and amount of image data are also increasing, which increases the
difficulty of multisource high-resolution remote sensing data preprocessing and analysis.

As an essential preprocessing step of remote sensing imagery, image registration is a
method to map one or more remote sensing images (local) to the target image optimally by
using some algorithm and based on some evaluation criteria [3]. However, in various re-
mote sensing applications, the size of the image, differences between different sensors, and
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complexity of the covering area will affect the accuracy and efficiency of image registration.
Thus, the registration of high-resolution (HR) remote sensing images for multisource in
different applications has been hotspot in remote sensing image preprocessing research.

The automatic registration algorithms for remote sensing images include three cat-
egories, namely, intensity-based, feature-based, and combined registration [4,5]. The
intensity-based method uses the pixel intensity between two images to find a transfor-
mation model for registration. It includes area-based methods and methods based on
optical flow estimation. The key of the area-based method is the similarity measurement
approach, such as mutual information (MI) [6], normalized cross-correlation (NCC), and
the minimum distance criteria [7]. The optical flow estimation mainly includes dense
optical flow estimation [8] and sparse optical flow estimation [9], which calculate pixel
intensity information based on intensity and gradient consistency constraints. However,
intensity-based methods have a large amount of computation and are easily disturbed by
texture. The feature-based method extracts image features, including point features, line
features, and regional features, for image registration. Point features have been widely
used in image registration because of their advantages, such as easy acquisition, strong
robustness, and short running time. Since 1977, when Moravec proposed the Moravec cor-
ner detection algorithm [10], a large number of point-based feature algorithms have been
developed. Eleven years later, Harris proposed Harris corner points algorithm [11] based
on Moravec, and Shi developed Shi_Tomasi corner detection algorithm [12] in 1994, which
can extract more and more evenly distributed corner points. In addition, Lowe proposed
the scale-invariant feature transform (SIFT) [13] algorithm to describe the local features of
images. Subsequently, a series of point feature extraction algorithms, such as speeded up
robust features (SURF) [14], and features from accelerated segment test (FAST) [15], were
developed. SIFT has been widely used in various algorithms because its extracted feature
points can effectively maintain brightness, rotation, and scale invariance [16]. Since the SIFT
algorithm is easily affected by image noise and texture changes [17], many combined meth-
ods have been developed in recent years. Some studies combined area- and feature-based
methods to improve the distribution and accuracy of features, such as the combination
of MI and SIFT [18], the combination of intensity information and scale-invariant salient
region features [19], and the combination of NCC and wavelet-based feature extraction
method [20]. In addition, the integration of two geometric feature-based methods is the
most popular in remote sensing image registration, including orientation-restricted SIFT
(OR-SIFT) [21], mode-seeking SIFT (MS-SIFT) [22], and the combination of Harris and
SIFT [23]. These methods yielded better performance than SIFT in terms of accuracy or
efficiency. However, these methods used only low-level local features. For HR remote
sensing images with complex terrain, significant topographic relief, or disaster informa-
tion, registration methods using only low-level local features cannot meet high-precision
registration requirements.

With the development of deep learning methods, convolutional neural networks
(CNNs) [24] have been widely applied in the fields of image classification [25], image
retrieval [26], and target recognition [27]. In these applications, the middle-level features
extracted from the CNN model pretrained with ImageNet, a large-scale dataset, perform
better and have better performance than the common low-level features. In recent years,
image registration based on deep learning, which belongs to feature-based registration
category, has become a research hot spot, and a series of new methods have been de-
veloped [28]. These methods improve the accuracy of registration to different degrees.
For example, a CNN-based method called MatchNet was proposed by Han et al. [29] to
extract image region features and measure similarity. The DeepCompare method, which
uses CNNs to compare the similarity of grayscale image block pairs, was proposed by
Zagoruyko et al. [30]. Yang et al. [31] proposed the DeepCD framework, which learns
a pair of complementary descriptors for image patch representation by employing deep
learning techniques. However, most of these methods were developed for natural images.
The stability and accuracy of these methods applied for multisource HR remote sensing
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image registration of complex terrain need to be further verified. Consequently, an image
registration method based on a deep residual network (ResNet) and SIFT was proposed
for HR remote sensing image registration in this study. The proposed method uses the
capability of CNN feature extraction and representation and preserves the scale invari-
ance of SIFT features. It has great potential in improving the reliability of remote sensing
image registration. Two experiments were conducted to evaluate the performance of the
proposed method.

The rest of this paper is organized as follows. Section 2 introduces the related works of
remote sensing image registration and convolutional neural networks. Section 3 describes the
operation of the proposed method, and Section 4 demonstrates the experiments and results.
Finally, the discussion and conclusions are carried out in Sections 5 and 6, respectively.

2. Related Works
2.1. Image Registration

The proposed method is developed based on feature-based image registration. Feature-
based image registration is realized by detecting robust, strong features in the image and
establishing a mapping relationship via four steps [32]: the feature extraction, the feature
matching, the transformation model estimation, and the image registration.

Feature extraction and matching are two essential steps in feature-based image regis-
tration. Feature extraction extracts features from an image by using one or more feature
detection methods. For point features, there are two parts: the key point, which has direc-
tion and scale information; and the descriptor, which describes the neighborhood pixel
information of the key point. When features are extracted from images, matching between
images using similarity measures is called feature matching. The similarity measure cal-
culates the similarity between sub-windows of each feature, and the closest features are
extracted as control points. Representative methods include the nearest neighbor radio,
nearest Euclidian distance, and bidirectional matching. In addition, it is necessary to
remove the outliers using the random sample consensus (RANSAC) [33].

To obtain the uniform and invariant feature points, this paper uses the Shi_Tomasi
algorithm to extract the feature points, and uses the SIFT algorithm to describe the feature
points. For SIFT, the descriptor is obtained by calculating the gradient histogram of different
directions in the 4 × 4 window of the feature points. In this paper, the SIFT descriptors of
128-dimensional (4 × 4 × 8) eigenvectors suggested by Lowe are used.

2.2. Deep Residual Network

In the past several years, CNNs have been studied for processing remote sensing
data. The CNN is an artificial neural network with deep learning structure with multilayer
feedforward. It is a research hot spot in many scientific and applications fields, including
image recognition and classification. It also avoids complex image preprocessing. A CNN
is generally composed of multiple convolutional layers, pooling layers, and fully connected
layers. The convolutional layer uses various convolution check inputs to carry out convo-
lution operations and extract various features. Pooling reduces the number of network
parameters by pooling the input dimension. The full connection layer (FC), which usually
appears in the last part of CNN, plays the role of "classifier" in the convolutional neural
network. Finally, the network outputs the advanced features of the input image and, after
statistical calculation by the classifier, outputs the probability of the corresponding category
label of the input image. This is widely used in image classification and recognition.

A deep residual network (ResNet) [34] is a deep network based on residual learn-
ing that won first place on the ImageNet Large Scale Visual Recognition Challenge 2015
(ILSVRC2015). Increasing the network depth of CNN can improve the accuracy of recog-
nition and classification. At the same time, residual learning can solve the performance
degradation caused by different network depths. In addition to the basic structure of
general CNNs, ResNet also realizes residual learning by establishing cross-layer links
between layers. A CNN shows the powerful ability of feature representation because
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it naturally integrates low-/middle-/high-level features and classifiers in an end-to-end
multilevel manner. The “levels” of features can be enriched by the number of stacked
layers (depth). However, a series of problems are caused by adding layers in the suitably
deep model, such as vanishing/exploding gradients and higher training errors. ResNet,
which introduces a deep residual learning framework (as shown in Figure 1), can maintain
higher training accuracy as the depth of the network increases to hundreds of layers. Each
unit can be explained by Equation (1):

F(x) = H(x)− x (1)

where x and F(x) are the input and output vectors of the layers considered, respectively,
and H(x) represents the residual mapping to be learned.
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Figure 1. Residual learning: a building block.

In this study, ResNet34 and ResNet50 networks were used for feature extraction.
The structures of the two networks are shown in Table 1. The two networks include
six blocks: Conv1, Conv2, Conv3, Conv4, Conv5, and Fc. As the name suggests, ResNet34
has 33 convolution layers and one fully connected layer, whereas ResNet50 includes
49 convolutional layers and one fully connected layer. For ResNet34, Conv1 consists of one
convolution layer with a size of 7 × 7, a depth of 64, and a stride of 2. For Conv2, Conv3,
Conv4, and Conv5, a stack of 2 layers is used in each residual function. The convolution
kernel size of each stack is 3 × 3, and the depths are 64, 128, 256, and 512. Each block has a
different number of stacks: 3, 4, 6, and 3. The size of the output characteristic map of Conv5
is 3 × 3 × 512. Finally, the Softmax function is adopted to classify the feature map of Conv
5, and the output is the category of classification. The convolution combination of ResNet50
is more complex, which uses a stack of 3 layers instead of 2 with each residual function. The
three convolution kernels are 1 × 1, 3 × 3, and 1 × 1, respectively. The number of stacks in
each block is similar to ResNet34. The output size of Conv5 of Resnet50 is 7 × 7 × 2048.
In image registration, the registration feature is usually calculated using the eigenmatrix
rather than the class value output by the fully connected network. Therefore, the output of
the last convolution layer of Conv5 of ResNet34 and ResNet50 was used for feature fusion
and registration.
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Table 1. ResNet network structure diagram of different depths.

Layer Name Output Size ResNet-34 ResNet-50

Conv1 112 × 112 7 × 7, 64, stride 2

Conv2 56 × 56

3 × 3 max pool, stride 2[
3 × 3, 64
3 × 3, 64

]
× 3

 1 × 1, 64
3 × 3, 64
1 × 1, 256

× 3

Conv3 28 × 28
[

3 × 3, 128
3 × 3, 128

]
× 4

 1 × 1, 128
3 × 3, 128
1 × 1, 512

× 4

Conv4 14 × 14
[

3 × 3, 256
3 × 3, 256

]
× 6

 1 × 1, 256
3 × 3, 256

1 × 1, 1024

× 6

Conv5 7 × 7
[

3 × 3, 512
3 × 3, 512

]
× 3

 1 × 1, 512
3 × 3, 512

1 × 1, 2048

× 3

Fc 1 × 1 Average pool, 1000-d fc, softmax

3. Methodology

The proposed method fuses CNN and SIFT features to describe feature points obtained
using the SSR method [35]. As shown in Figure 2, the proposed method consists of two
major steps. The ResNet model was first trained to obtain a trained ResNet model, which
was then used to extract ResNet features. Then, the combined SIFT and ResNet features
were employed for image registration. The details are introduced in the following sections.
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Figure 2. The image registration flowchart for the combination of ResNet and SIFT. Figure 2. The image registration flowchart for the combination of ResNet and SIFT.

3.1. Training of ResNet Model

In this part, the sample set of HR remote sensing images was constructed, and the
ResNet model suitable for image registration was constructed through transfer learning
and fine-tuning. The training process of the ResNet model is shown in Figure 3.
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3.1.1. Sample Set of HR Remote Sensing Images

Similar to other CNN networks, ResNet is usually used for natural images, which
cannot be directly applied in remote sensing image processing. Compared with natural
images, HR remote sensing images has more complex image information. In addition,
images from different sensors have different spectral widths and different number of bands.
For example, the GaoFen (GF) images used have four spectral bands, whereas the Google
Earth (GE) images used in this work have three spectral bands. Moreover, transfer learning
was employed to solve the problem of a limited number of samples and improve efficiency.
Therefore, it is necessary to perform image preprocessing when constructing a training
sample set for multisource HR remote sensing images.

In this paper, the first three principal components were extracted by principal compo-
nent analysis (PCA) for multisource satellite images to form new images with three bands.
The PCA was selected for three reasons. First, as a data dimension reduction method, PCA
can be used to obtain independent components of HR remote sensing images. Second, the
first three principal components of PCA can preserve the major information shown in the
original data to the maximum extent. Third, PCA is an unsupervised algorithm with less
manual intervention and is easy to implement in practice.

Based on the images obtained from image preprocessing, the training sample set is
created through two steps, namely, collecting sample image patch pairs with tie points
and image transformation on the collected sample image patches. To obtain sample image
patch pairs, this work follows the conventional algorithm to extract matched tie points and
select the image patches centered on these points with a size of 64 × 64. Then, three types
of random transformation (image scaling, rotation, and brightness transformation) were
carried out for each image patch to expand the sample image patches. In this paper, a total
of 253 image patch pairs were extracted, and 96 transformations, including 18 scaling and
brightness transformations and 60 rotation transformations, were selected. The sample set
of HR remote sensing images constructed in this paper only contains registered sample
image patches. For each patch, the original image patch and the corresponding transformed
image patches have the same label, which is regarded as a registration feature class.
Therefore, a sample set of 253 classes, each class consisting of 194 (2 + 96 × 2) image
patches, was constructed. At the same time, the training and testing sets were randomly
split into 80% and 20%.
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3.1.2. Transfer Learning and Fine-Tuning

A large number of sample images are needed for the training of CNNs to better
describe the image features. However, a limited number of samples were available, as
remote sensing images were used in this paper. Therefore, the ResNet models were trained
through transfer learning and fine-turning, which can reduce the training time and improve
the feasibility of the training model for new images.

Transfer learning is the process of taking a pretrained network as the initial state of the
target network and then fine-tuning the target network using the target data [36]. Thus, the
generalization performance of the target network is improved and dramatically reduces the
training cost [37]. In this work, the pretrained ResNet model was obtained by training the
ImageNet dataset [38]. ResNet models were finally obtained by fine-tuning the pretrained
ResNet model using the stochastic gradient descent (SGD) algorithm and a sample set of
HR remote sensing images. Fine-tuning aims to make the existing trained ResNet models
more suitable for new images. Regarding the fine-tuning process, the input size, learning
rate, momentum, weight decay, and iteration times were set as 64 × 64, 0.001, 0.9, 0.0005,
and 10,000, respectively.

3.2. Image Registration Based on a Combination of SIFT and ResNet Features

The ResNet model obtained in Section 3.1 was used to combine the SIFT and ResNet
features to complete the image registration based on the feature-based image registration
method. This work consists of three steps, which are feature extraction based on an image
partitioning strategy, feature fusion and matching, and image registration.

3.2.1. Feature Extraction Basedn Image Partitioning Strategy

For HR remote sensing images with a large size, feature detection usually requires a
long computation time. Thus, to reduce the computation time and complexity, the proposed
method adopts an image partitioning strategy [35]. This strategy considers geographic
information of remote sensing images. First, n × n patches were obtained by cutting the
input image, and the image coordinates of the four corners of each patch were recorded.
Next, the image coordinates were transformed into the projected coordinates using a
mapping relationship (Equation (2)). Then, the position of each patch in the reference
image was located according to the previous step. Finally, the reference image of each
patch was clipped from the entire reference image to form image patch pairs with the
corresponding input image patches.[

Xi
Yi

]
=

[
X0
Y0

]
+

[
G1 G2
G3 G4

][
xi
yi

]
(2)

where (xi, yi) are the image coordinates of the ith pixel, and (Xi, Yi) are the corresponding
projected coordinates of (Ii, Ji); (X0, Y0) are the projected coordinates of the top left corner
in the original whole scene input image, and G1, G2, G3 and G4 are the parameters of the
transformation model.

As described in Section 2.1, feature points were detected from image patch pairs by the
Shi_Tomasi algorithm. For the Shi_Tomasi algorithm, we refer to [35] and set the maximum
number of feature points for each image patch as 1500 in this work.

The SIFT feature descriptor uses local features at a low level, while the ResNet feature
descriptor represents the features of the image at a deep level. Therefore, a more accurate
feature descriptor can be obtained by combining the SIFT and ResNet feature descriptors.
For each feature point P(x, y), the SIFT descriptor (denoted as fS) was first calculated. Then,
the image patch centered on P(x, y) with a size of 64 × 64 was clipped from the input image.
Finally, the image patch was taken as the input data of the trained ResNet model, and the
output of the last convolution layer of the ResNet model (i.e., Conv5) were taken as the
feature descriptor of the ResNet model, which is denoted as fC.
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3.2.2. Feature Fusion and Matching

Due to the significant difference between the SIFT descriptor and the ResNet descriptor,
the normalization operation must be applied to the two descriptors before combining
the two descriptors. In this work, the Z-score normalization method was employed to
normalize the two descriptors, respectively. Then, the cosine distance [Equation (3)] was
applied to measure the similarity between the two candidate key points in the reference
and input image:

D(i, j) =
f r
i f r

j + f w
i f w

j√
( f r

i )
2 + ( f r

j )
2
√
( f w

i )2 + ( f w
j )2

(3)

where D (i, j) are the cosine similarity between i and j, the value range is [−1, 1]. i and j
are candidate key points in the range of [1, n]. n is the number of feature points. fr and
fw are feature descriptors of candidate key points in the reference image and the input
image, respectively.

Finally, the similarity between the candidate key points was calculated by using
Equation (4):

DF(Pr, Pw) = 0.3 × DC(Pr, Pw) + 0.7 × DS(Pr, Pw) (4)

where Pr and Pw represent the candidate key points from the reference image and the input
image, respectively. D (Pr, Pw) represents the cosine distance between feature vector Pr and
feature vector Pw, while the DC (Pr, Pw), DS (Pr, Pw) and DF (Pr, Pw) represent the D (Pr,
Pw) of ResNet, SIFT and the combination of ResNet and SIFT, respectively. In this work,
the best bin first (BBF) algorithm was selected for feature-matching. A matched point is
determined by calculating the ratio R of the distance of the nearest neighbor (DNN) to the
distance of the second nearest neighbor (DSNN) (R = DNN/DSNN). R is greater than 0.9 in
this work. Finally, the coordinates of each matching point need to be converted from image
patch to the whole image scene [35].

To obtain matched tie points with even distribution, this work adopts a greedy al-
gorithm [39] to remove redundant matched tie points. Start from a tie point with a small
RMSE value, and if the distance between the point and the other points is less than the
threshold, then the larger RMSE point is deleted as of a redundant control point. The
operation was repeated until the end of the traversal.

3.2.3. Image Transformation and Resampling

The polynomial rectification model was used to warp the input image in this work.
The coefficients of the polynomial model were solved using the matched tie points. After
the coefficients were obtained, the input image was transformed and resampled to align it
with the reference image.

4. Experiments and Results

In this section, we use five pairs of HR remote sensing images to evaluate the per-
formance of the proposed method. The compared methods including the classical SIFT
(hereafter referred to as SIFT), the advanced SIFT algorithm which adopts the same parti-
tioning strategy as the proposed method (hereafter referred to as Patch-SIFT), and SURF.
Section 4.1 describes the details of the five datasets. Then, the evaluation criteria are
carried out in Section 4.2. Finally, Section 4.3 demonstrates the experimental results of the
three methods.

All experiments were implemented under PyCharm 2019.3 (Python) for one PC with
an Intel Core i7-8550U CPU 1.80-GHz processor. The physical memory of computer is
8.0 GB.

4.1. Datasets

Considering the differences in image size, terrain, and scene under different applica-
tion conditions, two types of images were used in this work. The first is GaoFen satellite
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datasets with large sizes and covering urban and mountainous areas (Section 4.1.1). The
other is HR satellite datasets with disaster information caused by severe earthquakes
(Section 4.1.2). The registration accuracy of remote sensing images is important for earth-
quake disaster assessment and change detection.

4.1.1. Experiment 1: GaoFen Satellite Datasets

To verify the effectiveness of the proposed method in the registration of GaoFen remote
sensing images, two sets of GaoFen-1 (GF-1) images covering urban (denoted as P-A) and
mountainous areas (denoted as P-B) were used in the experiment. The multispectral images
of GF-1 have a spatial resolution of 8 m. The GF-1 image of P-A, which covers the urban
area of Chengdu, was acquired on 9 March 2018. The GF-1 image of P-B was recorded
on 1 March 2018. It covers the mountainous area of Baoxing Town. In this work, Google
Earth (GE) images were used as reference images. The details of GaoFen satellite remote
sensing images and GE images are introduced in Table 2, and the images are shown in
Figures 4a and 5a. Due to the range of each input image being relatively large, it is difficult
to obtain GE images recorded simultaneously. Therefore, we used GE images made from
multiperiod coverage and mosaics as references.

Table 2. Details of GaoFen multispectral images.

No. Satellite Resolution (m) Size (Pixel) Date

P-A

GF-1 8 5354 × 5354 9 March 2018

GE 8 5590 × 5686

4 April 2017,
1 May 2017,
6 May 2017,
8 May 2017

P-B

GF-1 8 5393 × 5388 1 March 2018

GE 8 5904 × 6206
25 November 2014,
28 December 2014,

10 October 2018
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The characteristics of the two sets of images are that they all come from different
sensors and different acquisition times, and the spectral differences between the input
image and reference image are significant. In addition, the P-B covers a mountainous area
with an average elevation of more than 3000 meters, and there is a small amount of cloud
cover in the image. All of these factors increase the difficulty of automatic registration.

4.1.2. Experiment 2: HR Satellite Datasets with Disaster Information

Both the accuracy and efficiency of automatic registration are crucial for rapid disaster
assessment using remote sensing technology. Therefore, in addition to large HR images,
three sets of HR remote sensing images containing different kinds of secondary disasters
were employed to explore the applicability of the proposed method in different scenarios.
The data details of the three sets denoted as P-C, P-D, and P-E are introduced in Table 3.
The input image of P-C is a QuickBird multispectral image, which covers the landslides
caused by the Wenchuan earthquake. The input image of P-D, which covers Baoxing Town,
includes river expansion and landslides that suffered from the Yaan earthquake. The input
image of P-E is a GaoFen-2 (GF-2) multispectral image. It covers the Jiuzhaigou area and
contains landslides triggered by the Jiuzhaigou earthquake. Similarly, GE images were still
used as reference images in this experiment. Secondary disasters can be observed from
these images, as shown in Figures 6–8.

Table 3. Details of HR multispectral images with disaster information.

No. Satellite Resolution (m) Size (Pixel) Date Disaster

P-C
QuickBird 2.4 2427 × 2569 26 December 2008

LandslidesGE 2 2932 × 3108 23 May 2008

P-D
GF-1 8 1218 × 1363 23 July 2013 Landslides, river

expansionGE 2 6568 × 8644 8 February 2010

P-E
GF-2 4 2096 × 1789 9 August 2017

LandslidesGE 2 4632 × 4002 5 February 2014
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4.2. Evaluation Criteria

In this paper, five evaluation criteria [35,40] were adopted: number of matched tie
points (Ncp), the time for registration (T), the transformation model accuracy obtained by
the final tie points (RMSEM), root-mean-square based on the leave-one-out (LOO) method
(RMSELoo), and geometric accuracy yielded using selected verification points (RMSET).

RMSEM, RMSELoo, and RMSET were calculated by Equation (5):

RMSE +

√√√√ 1
N

N

∑
i=1

(
(xi − Xi)

2 + (yi − Yi)
2
)

(5)

where (xi, yi) and (Xi, Yi) are the coordinates of the ith point on the reference image and
after transformation, respectively. N is the number of matched tie points. The RMSEM
is computed by all matched tie points, and RMSET is calculated by selected verification
tie points, which were evenly distributed on ENVI. For RMSET, (Xi, Yi) corresponds
to the reference image, whereas (xi, yi) is for the registered image. RMSELoo calculates
the residual of tie points based on the leave-one-out method. For each tie point, the
polynomial coefficients were estimated using the remaining N − 1 tie points and an RMSE
was calculated. Finally, RMSELoo is the average RMSE of the N tie points.

The number of verification points selected in this work was 10, 10, 18, 10, and 10,
respectively. These evenly distributed verification points were manually selected by the ENVI
software. Figures 4b–8b shows these verification points.

4.3. Experimental Results
4.3.1. Experiment 1: GaoFen Multispectral Images

The statistical results of the four evaluation criteria introduced in Section 4.2 of the four
methods for the two datasets are shown in Table 4. SIFT + ResNet34 and SIFT + ResNet50
represent the proposed method using a combination of SIFT and ResNet34 features and a
combination of SIFT and ResNet50 features, respectively.



Remote Sens. 2021, 13, 3425 13 of 22

Table 4. Registration results for GaoFen multispectral images.

Method Ncp
(Pairs) T (s) RMSEM

(Pixel)
RMSELOO

(Pixel)
RMSET
(Pixel)

P-A

SIFT + ResNet34 184 41.65 0.31 0.32 0.36

SIFT + ResNet50 170 80.46 0.41 0.45 0.44

Patch-SIFT 116 31.66 0.43 0.44 0.55

SIFT 80 50.77 0.33 0.34 0.66

SURF 102 30.86 0.41 0.41 0.67

P-B

SIFT + ResNet34 120 96.72 0.81 0.80 0.87

SIFT + ResNet50 178 196.07 0.94 0.92 0.90

Patch-SIFT 90 33.32 0.79 0.89 1.20

SIFT 22 52.54 0.57 0.43 1.12

SURF 77 39.20 0.79 0.80 1.02

Table 4 shows that SIFT + ResNet34 and SIFT + ResNet50 can achieve lower RMSE
values than the compared methods for both urban areas (P-A) and mountainous areas (P-B).
The proposed method using the combination of SIFT and ResNet34 (SIFT + ResNet34)
has the lowest RMSE values, which are less than 0.5 pixels and 1 pixel for P-A and P-B,
respectively. Compared with Patch-Sift and SIFT, the registration accuracy of the proposed
method is improved by 0.22 and 0.23 pixels on average. For P-A, SIFT + ResNet34 yielded
the largest number of tie points (Ncp = 184), which is obviously more than the compared
methods (Ncp = 102, 116, 80, respectively). For P-B, SIFT + ResNet34 obtained 120 tie
points, significantly more than the three compared methods. The Patch-SIFT yields 90 tie
points, while SIFT and SURF only obtains 22 and 77 tie points, respectively. Although the
Ncp obtained by the comparison method can satisfy the quadratic or cubic polynomial
correction, incomplete registration exists in local areas due to the dispersed distribution
of tie points. In addition, the running time of the proposed method is longer than the
compared methods because the multilayer convolution of the ResNet network requires
more time.

The registration results of the SIFT + ResNet34 and local details for the two sets are
shown in Figures 9 and 10, respectively. The registered image obtained by the proposed
method (Figures 9d–o and 10d–o) can effectively correct the deviations between roads,
rivers in P-A, and mountains in P-B.

4.3.2. Experiment 2: HR Multispectral Images with Disaster Information

Table 5 shows the experimental results of HR multispectral images with disaster infor-
mation. The RMSET values obtained by the proposed method were all less than 2 pixels.
The lowest RMSET was achieved by SIFT + ResNet34, followed by SIFT + ResNet50.
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Figure 9. Checkerboard images for the P-A dataset. (a) Original image; (b) enlarged image of red box
1 in (a); (c) enlarged image of red box 2 in (a); (d) result for the proposed method; (e) enlarged image of
red box 1 in (d); (f) enlarged image of red box 2 in (d); (g) result for the Patch-SIFT; (h) enlarged image
of red box 1 in (g); (i) enlarged image of red box 2 in (g); (j) result for the SIFT; (k) enlarged image of
red box 1 in (j); (l) enlarged image of red box 2 in (j); and (m) result for the SURF; (n) enlarged image
of red box 1 in (m); (o) enlarged image of red box 2 in (m). The red boxes indicate the regions where
noticeable differences can be observed.
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Figure 10. Checkerboard images for the P-B dataset. (a) Original image; (b) enlarged image of red box
1 in (a); (c) enlarged image of red box 2 in (a); (d) result for the proposed method; (e) enlarged image of
red box 1 in (d); (f) enlarged image of red box 2 in (d); (g) result for the Patch-SIFT; (h) enlarged image
of red box 1 in (g); (i) enlarged image of red box 2 in (g); (j) result for the SIFT; (k) enlarged image of
red box 1 in (j); (l) enlarged image of red box 2 in (j); and (m) result for the SURF; (n) enlarged image
of red box 1 in (m); (o) enlarged image of red box 2 in (m). The red boxes indicate the regions where
noticeable differences can be observed.



Remote Sens. 2021, 13, 3425 16 of 22

Table 5. Experimental results for HR multispectral images with disaster information.

Method N
(Pairs) T (s) RMSEM

(Pixel)
RMSELOO

(Pixel)
RMSET
(Pixel)

P-C

SIFT + ResNet34 104 80.49 1.35 1.62 1.69

SIFT + ResNet50 137 140.95 1.22 1.53 1.79

Patch-SIFT 45 4.81 1.94 2.11 2.01

SIFT 21 36.81 0.81 1.3 9.18

SURF 12 3.10 0.84 0.80 2.43

P-D

SIFT + ResNet34 31 38.01 0.83 0.84 1.78

SIFT + ResNet50 55 46.84 1.21 1.21 1.87

Patch-SIFT 9 3.35 2.59 1.37 3.11

SIFT 4 5.02 2.69 1.34 5.10

SURF 4 1.35 – – –

P-E

SIFT + ResNet34 179 124.28 1.22 1.12 1.14

SIFT + ResNet50 163 247.41 1.10 1.11 1.25

Patch-SIFT 94 6.57 1.27 1.32 1.88

SIFT 46 35.07 0.72 1.00 2.48

SURF 52 3.75 0.98 0.99 1.70
–: Failed to register the image pair (RMSE > 10)

In experiment 2, the SIFT method can hardly handle the image registration because
of images containing different kinds of secondary disasters. For F-C, the SIFT + ResNet34
method provided 104 pairs of matched tie points, while the compared methods obtained 45,
21, and 12 tie points, respectively. The RMSET value of SIFT + ResNet34 is 1.69 pixels, which
is improved 0.32, 7.49, and 0.74 pixels compared to the comparison method, respectively.
For P-D, SIFT + ResNet34 extracted 31 tie points and yield 1.78 pixels RMSET. By contrast,
the patch-SIFT and SIFT methods only extracted 9 and 4 tie points, providing RMSET
values of 3.11 and 5.10 pixels, respectively. As the input image in P-D contains landslides
and river expansion, SURF only obtains 4 tie points. Although the number of tie points is
the same with that of the SIFT method, the RMSE of all tie points of the SURF method is
too large to transform the input image. For P-E, the SIFT + ResNet34, Patch-SIFT, SIFT, and
SURF methods provided 179, 94, 46, and 52 tie points, respectively. The RMSET yielded
by the SIFT + ResNet34 method is lower than those obtained by the compared methods
(1.14 pixels < 1.70 pixels < 1.88 pixels < 2.48 pixels). Although the SIFT method provided
the lowest RMSEM values for P-C and P-E (0.81 pixels and 0.72 pixels, respectively),
the corresponding RMSET values (9.18 pixels and 2.48 pixels, respectively) were high
due to the small number of tie points and non-uniform distribution of tie points. In
general, the RMSET of SIFT + ResNet34 improved by 0.80, 4.05, and 0.65 pixels on average.
Similarly, the running time of the proposed method was obviously longer than those of the
compared methods.

The registration results and local details for the three sets are shown in Figures 11–13.
Since the SURF method cannot yield a registered image for P-D, only the registration results
of the other three methods were shown in Figure 12. The geometric position deviation of
objects can be corrected by the proposed method in the registered image. Although the
registered images produced by the SIFT + ResNet34 method show slight displacement
for some roads (Figure 11e), houses (Figure 12e), and rivers (Figure 13f), SIFT + ResNet34
outperformed Patch-SIFT and SIFT.
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Figure 11. Checkerboard images for the P-C dataset. (a) Original image; (b) enlarged image of red box
1 in (a); (c) enlarged image of red box 2 in (a); (d) result for the proposed method; (e) enlarged image of
red box 1 in (d); (f) enlarged image of red box 2 in (d); (g) result for the Patch-SIFT; (h) enlarged image
of red box 1 in (g); (i) enlarged image of red box 2 in (g); (j) result for the SIFT; (k) enlarged image of
red box 1 in (j); (l) enlarged image of red box 2 in (j); and (m) result for the SURF; (n) enlarged image
of red box 1 in (m); (o) enlarged image of red box 2 in (m). The red boxes indicate the regions where
noticeable differences can be observed.
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Figure 12. Checkerboard images for the P-D dataset. (a) Original image; (b) enlarged image of red box 1 in (a); (c) enlarged
image of red box 2 in (a); (d) result for the proposed method; (e) enlarged image of red box 1 in (d); (f) enlarged image of
red box 2 in (d); (g) result for the Patch-SIFT; (h) enlarged image of red box 1 in (g); (i) enlarged image of red box 2 in (g);
(j) result for the SIFT; (k) enlarged image of red box 1 in (j); (l) enlarged image of red box 2 in (j); and (m) result for the
SURF; (n) enlarged image of red box 1 in (m); (o) enlarged image of red box 2 in (m). The red boxes indicate the regions
where noticeable differences can be observed.
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Figure 13. Checkerboard images for the P-E dataset. (a) Original image; (b) enlarged image of red box
1 in (a); (c) enlarged image of red box 2 in (a); (d) result for the proposed method; (e) enlarged image of
red box 1 in (d); (f) enlarged image of red box 2 in (d); (g) result for the Patch-SIFT; (h) enlarged image
of red box 1 in (g); (i) enlarged image of red box 2 in (g); (j) result for the SIFT; (k) enlarged image of
red box 1 in (j); (l) enlarged image of red box 2 in (j); and (m) result for the SURF; (n) enlarged image
of red box 1 in (m); (o) enlarged image of red box 2 in (m). The red boxes indicate the regions where
noticeable differences can be observed.
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5. Discussion

The experimental results show that the proposed method can effectively improve reg-
istration accuracy by integrating high-dimensional ResNet features with conventional SIFT
features. Compared with SIFT and patch-SIFT, the proposed method showed significant
advantages in the number of matched tie points and accuracy. In the experiment using
GaoFen multispectral remote sensing images, the RMSET of the urban area (P-A) was less
than 0.5 pixels, and the RMSE of the mountain area (P-B) was less than 1 pixel. Meanwhile,
for multisource remote sensing images with significant topographic relief and disaster
information, the proposed method can effectively obtain better registered image.

In addition to the ResNet model, the VGG16 model was explored in combination
with the SIFT feature. The output feature of the first fully connected layer (named FC6)
was combined with SIFT; this was named SIFT + FC6, which was also evaluated using the
two datasets introduced in Section 4.1.1 and compared to SIFT + ResNet34. The experi-
mental results of SIFT + FC6 and SIFT + ResNet34, which yielded the best performance in
Section 4.3, are shown in Table 6. As seen from the table, there was a slight difference in the
registration accuracy between the two methods. However, SIFT + Resnet34 had a signifi-
cant advantage in running time (T). For example, the running time of SIFT + ResNet34 for
P-A was 41.65 s, which is only 32% of that of SIFT + FC6 (129.46 s). In general, the depth of
networks greatly impacts the running time: the more convolution layers, the longer the
running time. For example, SIFT + Resnet50 yielded a longer time than SIFT + Resnet34.
The number of convolution layers of ResNet34 is approximately twice that of VGG16.
However, the processing of the fully connected layer of VGG16 requires greater weight
storage and runtime [41]. Therefore, compared with SIFT + FC6, SIFT + Resnet34 can
provide faster registration speed.

Table 6. Experimental results for different CNNs.

Method N (Pairs) T (s) RMSEM
(Pixel)

RMSET
(Pixel)

PA
SIFT + ResNet34 184 41.65 0.31 0.36

SIFT + FC6 93 129.46 0.29 0.27

P-B
SIFT + ResNet34 120 96.72 0.81 0.87

SIFT + FC6 170 325.64 0.86 0.83

The weight for fusing the SIFT feature with the ResNet feature was set as a fixed
value in this proposed method. This may not provide the optimal performance of some
remote sensing images. Considering the different spectral characteristics of different
images, setting the weight automatically according to different images to obtain the optimal
registration performance is one way to improve future work. In addition, it takes a long
time to extract high-dimensional features using a convolutional neural network. Therefore,
it is necessary to improve the efficiency of feature extraction using convolutional neural
networks in the future.

6. Conclusions

Traditional registration methods that only use low-level local features cannot meet the
accuracy requirement of HR remote sensing images in complex terrain. A new registration
method based on a deep residual network (ResNet) and SIFT was proposed to improve
multisource remote sensing image registration accuracy. First, a sample set was constructed
using registered HR remote sensing images. The ResNet model, which was pretrained by
ImageNet, was then fine-tuned by the sample set. Then, based on the feature extraction
algorithm, a combination of SIFT and ResNet features was constructed for image registra-
tion. In this work, two ResNets (ResNet34 and ResNet50) were selected to obtain combined
features. These were denoted as SIFT + ResNet34 and SIFT + ResNet50, respectively. By
using five pairs images, the accuracy and efficiency are compared with the traditional SIFT
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method and Patch-SIFT method. The RMSETs of the five pairs of HR images were all less
than 2 pixels, and the RMSET of the urban area (P-A) was less than 0.5 pixels. Compared
with SIFT, Patch-SIFT, and SURF, the number of tie points increased by 1.24–3.87 times,
and the registration accuracy (RMSET) improved by 32.1–53.7%. The experimental results
showed that the proposed method integrating deep-level ResNet features can effectively
improve the registration accuracy of remote sensing images. The proposed method adopts
the deep features of feature points to obtain accurate descriptors. This effectively increases
the number of tie points and improves the registration accuracy. Meanwhile, the experi-
mental results also indicated that the proposed method has better robust than the compared
methods. The proposed method improves the registration performance of large-scale and
HR images and meets the requirements of image registration in different applications,
such as the registration of post-earthquake HR remote sensing images used for earthquake
damage assessment.
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