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Abstract: Urban modeling and visualization are highly useful in the development of smart cities.
Buildings are the most prominent features in the urban environment, and are necessary for urban
decision support; thus, buildings should be modeled effectively and efficiently in three dimensions
(3D). In this study, with the help of Gaofen-7 (GF-7) high-resolution stereo mapping satellite double-
line camera (DLC) images and multispectral (MUX) images, the boundary of a building is segmented
via a multilevel features fusion network (MFFN). A digital surface model (DSM) is generated to
obtain the elevation of buildings. The building vector with height information is processed using a
3D modeling tool to create a white building model. The building model, DSM, and multispectral
fused image are then imported into the Unreal Engine 4 (UE4) to complete the urban scene level,
vividly rendered with environmental effects for urban visualization. The results of this study show
that high accuracy of 95.29% is achieved in building extraction using our proposed method. Based
on the extracted building vector and elevation information from the DSM, building 3D models can
be efficiently created in Level of Details 1 (LOD1). Finally, the urban scene is produced for realistic
3D visualization. This study shows that high-resolution stereo mapping satellite images are useful in
3D modeling for urban buildings and can support the generation and visualization of urban scenes
in a large area for different applications.

Keywords: building extraction; building modeling; Gaofen-7 image; deep learning; digital sur-
face model

1. Introduction

In applying digital twins to smart cities, modeling and visualization of the urban area
are of great importance [1]. The techniques of virtual reality (VR) facilities, urban digital
twins, and visualization are highly useful for supporting urban planning, urban design,
and decision support [2]. Urban modeling is the basis for the techniques mentioned above.
In the field of photogrammetry, generating an urban landscape model (ULM) to show the
objects and landcover of an urban area in three dimensions (3D) is the ultimate goal [3].

Among all the ground objects in the urban area, buildings are the most prominent
feature and have the most extensive distribution in an urban environment [4]. Thus,
information about the building and its model is necessary for urban applications and is
considered to be indicator for evaluating the development of cities. In this case, using
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photogrammetry methods to attain up-to-date building information and model building
objects is one of the most important tasks in constructing smart cities.

It is necessary to complete building modeling in both the panel dimension and height
dimension in a large urban area. For example, in the Shenzhen Visualization Urban Digital
Platform project in Shenzhen, China, a 3D urban scene at an urban scale of 1997.47 km2

should be built and displayed for government applications, such as urban planning and
cadastral management. In this project, the rough building model in the Level of Details 1
(LOD1) is a basic requirement for representing the urban scene. A man-made building model
was used in this project. In fact, manual building model production is quite common for
most of the current tasks. Since modeling manually in such a large area has high costs and is
time-consuming, an effective and efficient approach for urban building modeling is needed.

The rapid development and increasing availability of high-resolution satellite (HRS)
images provide increased opportunities to support the urban monitoring task. The high-
resolution stereo mapping satellite provides stereo images at different angles. For example,
the Gaofen-7 (GF-7) high-resolution stereo mapping satellite is equipped with double-
line cameras (DLC) in which images can generate digital surface models (DSM) along
with the multispectral camera (MUX). In this way, the surface and terrain conditions can
be represented in three-dimensional space. According to the design objective, the GF-7
satellite should satisfy the 1:10,000 scale stereo mapping and topographic mapping with
0.65 m and 0.8 m resolution DLC images, respectively, and a 2.6 m multispectral image [5].
With these advancements, the spectral information and elevation information attained
from GF-7 images enable us to use only satellite images for modeling the urban building in
three dimensions, while aerial images normally completed this task with higher resolution
and greater quantity.

Building extraction and modeling methods are needed for the above task, including
extracting building information, which detects the object of interest and extracts its geomet-
ric boundary from remote sensed data [4], then obtains the building’s height information
and generates the 3D model.

1.1. Building Extraction

As the most prominent feature in an urban environment, acquiring accurate extraction
data from building objects has great significance in urban planning, cartographic mapping,
civilian and military emergency response [4]. Remote sensing is one of the most effective
and efficient approaches by which building information can be extracted. Owing to the
satellite camera’s wide field of view (FOV), the high-resolution satellite image provides
abundant visible building information in a much greater area than any other data source.

Full automation of extracting buildings has been regarded as an active research topic
in the photogrammetry and computer vision communities [6]. Roof shapes and building
footprints are recorded at the required level of detail and accuracy; this information is then
used to generate a geometric representation of the building in a subsequent step [7]. With
the rapid development of satellite remote sensing techniques, different types of satellite
optical sensors and images are becoming available, such as multispectral/hyperspectral
images, stereo images, and SAR images. The high-resolution optical multispectral satellite
image is quite useful for attaining surface visual information, and its multispectral bands,
which contain blue, green, red, and near-infrared red, facilitate distinguishing building
and other ground objects. A considerable number of studies and applications for urban
building monitoring are based on this type of image. Although the temporal resolution
and spatial resolution are greatly enhanced, and there appears to be more information
regarding building extraction than before. The limitation of the extraction algorithm in
terms of effect and efficiency is emphasized by users. Thus, the challenge still exists in the
field of building extraction.

Researchers contributed many approaches for building extraction [8,9]. Most of these
studies focused on the pixel-based (PB) method, the object-oriented (OO) method, and the
deep learning (DL) method.
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The pixel-based method and object-oriented method are two traditional approaches to
object classification and extraction. The former is based on the data value (DN) distinction
derived from the spectral difference between objects and uses complex rules to classify
ground features. The maximum likelihood method (MLM) [10], support vector machine
(SVM) [11], decision tree (DT) [12], random forest (RF) [13], and artificial neural network
(ANN) [14] are some examples of classical algorithms for the object classification method.
The above methods are mature and operatable. However, they lack spatial and textural
information. The object-oriented method [8], which takes full advantage of spatial and
textural characteristics [9], has become popular over the last decade. The object-oriented
method is suitable for high-resolution images. However, the object-oriented method
requires the input of complex rules and is limited by the effect of segmentation. The great
workload, low efficiency, and poor generalization ability considerably limit the usability of
the object-oriented method.

Recently, DL [15] has become the focus of the image and graphic research field and
welcomed by the remote sensing community. For urban remote sensing research, build-
ing extraction has entered the era of the DL approach, including the image block-based
method [16,17] and fully convolutional networks (FCNs) [18,19]. The former assesses the
small blocks around pixels to classify each pixel, and with a low-level spatial characteristic
and convolutional neural network (CNN) in the neighboring area, the building’s complete-
ness can be achieved by the extraction process. FCN-based end-to-end segmentation can
directly classify each pixel and greatly improve efficiency and accuracy compared with
the above method. Several methods propose the use of FCN-based building extraction
approaches, including deep residual learning [20], the deconvolution network [21], new
activation functions [22], the larger convolutional kernel [23], and dilated convolution [24].
However, some disadvantages exist in the FCN-based method. The first is the small object
information loss and insufficient use of characteristics of low-level details during high-
resolution feature upsampling. The second is that the simple convolution between feature
layers cannot fully use different feature levels. In order to solve this problem, a high-
resolution net (HRNet) was proposed by the authors of [25]. This network can maintain a
high resolution for the feature map and the low-level feature when the deep-level feature
is attained. Thus, the deep-level feature in the network can be facilitated to improve the
ability of small building object extraction [26]. To further obtain detailed information and
raise segmentation accuracy, the DensNet was proposed [27]. This network draws the
feature in different layers, enhancing the reusability of features.

1.2. Building Modeling

Building 3D models can improve information management, aid decision making [28],
and be widely used by various urban applications. 3D building models are a digital
representation of three-dimensional objects. 3D building models are created, viewed,
and modified using specialized software referred to as 3D modeling software. There are
different LODs in the CityGML modeling standard: LOD0 is the digital terrain model,
LOD1 is the geometry of a building represented as a prismatic model; LOD2 is the outer
facade of the building modeled in greater detail, and LOD3 and LOD4 provide even further
detailed visual information on the objects. Due to the scale of the high-resolution satellite,
the limitation in the camera ground sampling distance, and the single nearly-ortho angle,
the image can only satisfy the modeling requirements of LOD1 or below.

There are some studies on surface modeling and building 3D modeling with different
data sources, mainly aerial or onboard Lidar [29–31]. Owing to the limitations in generating
3D building models, there are fewer studies on using satellite images in generating building
models than aerial images. Only some studies focus on terrain 3D modeling with stereo
mapping satellite images.

With the help of a stereo mapping satellite, after attaining elevation information via
the DSM, as well as the building extraction results, the panel and height information for
the building are available; this can be achieved via commercial or open-access modeling
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software such as Blender. Visualization is the purpose of building a 3D model. In particular,
in the urban scene, the urban area with the white model of the 3D building can be used
in many applications. Thus, there should be a workflow or approach to exploit stereo
mapping satellite images fully; for example, GF-7 DLC images to complete the 3D building
dataset and using a 3D engine for rendering the urban scene. Currently, there are some
3D engines available for different kinds of urban applications; notably, game engines are
enjoyed by users, such as Unreal Engine 4 (UE4), Unity3D, CryEngine, and so on. These
engines provide physically based rendering (PBR) materials, environment simulation, and
3D visualization abilities for users. Through these game engines, 3D modeling, rendering,
and simulation application can be developed for the urban area.

1.3. Stereo Mapping Satellite

Compared with regular remote sensing optical satellites, besides spectral information,
the stereo mapping satellite can provide us with elevation information from the Earth. For
example, the ALOS satellite can generate a 10 m DEM with stereo images [32], the ZY-3
series satellites are equipped with three-line cameras (TLC) that provide forward, nadir,
and backward images to complete the 1:50,000 topographical mapping [33] and DEM gen-
eration [34], and WorldView series satellites can maneuver their 0.3 m-resolution cameras
to obtain stereo images at different angles and survey at a ground sample distance (GSD) of
0.5 m or greater [35]. On 3 December 2019, the GF-7 (Gaofen-7) satellite was launched from
Taiyuan, China. The GF-7 satellite is a Chinese second-generation civil high-resolution
stereo mapping satellite equipped with double-line cameras (DLCs) to acquire a 0.65 m
backward image and 0.8 m forward image, as well as a backward multispectral camera
(MUX) to acquire a 2.6 m four-band multispectral image [36]. The images mentioned above
have high geometric accuracy and an image quality suitable for 1:10,000 scale mapping [5].
The detailed parameters of GF-7 can be observed in Table 1. The main user of the GF-7
satellite is the Land Satellite Remote Sensing Application Center (LASAC), Ministry of
Natural Resources of the People’s Republic of China (MNR), with the aims of land resource
surveying, topographical mapping, environmental monitoring, and so on. In this study,
we attempted to exploit the stereoscopic information that GF-7 DLC images provide and
the MUX image to complete building modeling and generate an urban 3D scene.

Table 1. Specifications of the GF-7 satellite.

Specification Value

Orbit height 506 km
Orbit inclination 97.421◦

Descending node time 10:30 a.m.
Revisit cycle 60 days

Mission Duration 8 years
Swath width 20 km at nadir

Radiometric resolution 12 bit

Panchromatic GSD
0.65 m at backward (+26◦)

0.80 m at forward (−5◦)
Panchromatic band 450 nm to 900 nm
Multispectral GSD 2.6 m at backward

Multispectral band

Band 1 (Blue): 450 nm to 520 nm
Band 2 (Green): 520 nm to 590 nm
Band 3 (Red): 630 nm to 690 nm

Band 4 (Near-infrared red): 770 nm to 890 nm

The remainder of this paper is structured as follows: Section 2 presents the method of this
study, including building extraction, DSM generation, and 3D building modeling. In Section 3,
the result and accuracy of the building extraction are revealed, and the effect of the building
model is presented. Section 4 discusses the results of this study, including the advantages and
limitations of our method. Finally, conclusions from this study are drawn in Section 5.
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2. Methods

In this study, we used DLC images and a MUX image to achieve the building modeling.
Methods in this study include the multilevel features fusion network, DSM generation
with stereo images in two main parts. The workflow can be seen in Figure 1. In this study,
Microsoft Visual Studio 2019 was used for program developing, TensorFlow 1.14 was
used for network training, PCI Geomatica 2018 SP1 was used for DSM generation, ArcGIS
10.2 was used to input height information for the building shapefile, Blender was used to
stretch the building with height information, and UE4 with the version of 4.25 was used
for generating the 3D urban building scene.

Figure 1. Workflow of urban scene modeling.

2.1. Multilevel Features Fusion Network

According to the limitation of CNN in the losses of feature resolution and spatial
accuracy, this study attempted to create a multilevel features fusion network (MFFN)
structure with parallel nets and feature fusion, which could effectively connect the high-
and low-resolution features. In this structure, multiple parallel nets can retain feature
information with different resolutions, whereas organic fusion for feature information at
different levels can be satisfied; thus, the loss of spatial information decreases. Moreover,
each net enhances the information transfer among the convolutional layers via dense blocks,
and, as a result, the usability of the feature information improves. When considering the
distinction of the scale for different objects, this structure draws information from the
deep multiple-scale features’ receptive fields with the help of a pyramid structure of
atrous convolution in the bottom layer. Thus, to extract building information effectively,
this study proposes a MFFN structure, which can use feature information with different
resolutions, capture multiple-scale object information, and improve segmentation accuracy.
This network structure can be seen in Figure 2.
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Figure 2. Network structure.

As shown in Figure 2, when the image is input into the network, the downsampling
via convolution with a step of two is implemented to decrease the size of the feature
map and ensure high calculation efficiency. The feature map is then downsampled when
processed through a dense block each time. During the downsampling process, the size
of the feature map is maintained via a branched net. Furthermore, with the help of a
dense block, the features’ information is obtained, and four branch nets are divided and
realize features at four different resolutions. These four branch nets can be listed as the
first, second, third, and fourth branches in sequence. Each branch combines features from
different branch nets in multiple layers via the feature fusion module. Meanwhile, to gain
multiple-scale information on the deep features of a building, the atrous spatial pyramid
pooling (ASPP) module is added after the fourth branch net in the network. In the course
of recovering feature information, the second, third, and fourth branch nets adjust the
size of the feature map to the same size as the first branch via constant upsampling. After
combining the feature maps of the above four branch nets, the size of the feature map
is upsampled to the same size as the input image. The SoftMax function is then used to
realize the accurate segmentation for the building.

2.1.1. Dense Block

To ensure that maximum information is transferred between the different layers,
DenseNet [25] uses dense blocks in the FCN. The dense block transfers the feature mapping
in the former layer as the input to all layers in the subsequent nets. That is, every two
layers have a direct connection meaning that the feature can be reused. There are L(L + 1)/2
connections to an L-layer net, as shown in Figure 3. The expression of the dense connection
is shown below:

XL = HL([X0, X1, X2 . . . XL−1]) (1)

Figure 3. Dense block with three convolutional layers.
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The expression [X0, X1, X2, . . . , XL−1] represents all the feature maps before the L
layer. HL is the nonlinear combination function, including the batch normalized layer,
nonlinear activation layer, convolutional layer, and dropout layer. The dense block solves
the gradient loss problem in the network training progress, and the network parameters
greatly decrease. Figure 2 shows the dense block with three convolutional layers.

2.1.2. Atrous Spatial Pyramid Pooling

The disadvantage of the FCN structure is the loss of spatial features during convolution
and pooling operations in the downsampling process, which results in the loss of detailed
information. In [37], atrous convolution was proposed. Atrous convolution can take the place
of pooling in downsampling, expanding the receptive fields, and retaining the spatial feature.
However, constantly atrous convolution may result in “checkerboard artifacts”, which affect
the coherence of object information. Moreover, a greater atrous percentage is unfavorable to
the segmentation of small objects. In order to solve the above problem, the ASPP structure
uses atrous convolution in different atrous rates to connect multiple-scale information. Each
scale is considered as one independent branch. All of these branches are combined to output
the convolution. This structure can provide abundant context information and is beneficial to
the feature extraction of buildings at multiple scales. The ASPP contains multi-scale atrous
convolution and global average pooling. The atrous convolution has one 1 × 1 convolution
and one 3 × 3 atrous convolution at atrous rates of 6.12 and 18, respectively. Global average
pooling was designed to obtain the feature map at the image level, allowing these two results
to be joined and convoluted. Figure 4 shows the ASPP.

Figure 4. Atrous spatial pyramid pooling. (a) Multi-scale convolution, (b) global average pooling.

2.1.3. Feature Fusion Module

The feature fusion module in this study was designed to enhance the combination
of deep-level and low-level features to maintain high- and low-resolution features to the
greatest extent. The feature fusion module has three types, as shown in Figure 4. The
first (Figure 5a) maintains the high-resolution feature map and retains the same number
of channels of the low-resolution feature map as that of the high-resolution feature map
via 1 × 1 convolution. The upsampling interpolation is then used to adjust the size of the
low-resolution feature map to be the same as the high-resolution feature map. Afterward,
the channels of the high- and low-resolution feature maps are overlapped, and the ReLu
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activation function is used to realize the output. The second (Figure 5b) is the maintenance
of the low-resolution feature map by using convolution with a 3 × 3 kernel size and a
step of two to downsample the high-resolution feature map to the same size as that of the
low-resolution feature map. The channels of the high- and low-resolution feature maps are
then overlapped. Afterward, the results are output via the ReLu activation function. The
third (Figure 5c) maintains the moderate-resolution feature map, where the low-resolution
feature map is upsampled and interpolated to the same size as the moderate-resolution
feature map. The high-resolution feature map is downsampled to the same size as the
moderate-resolution feature map via a kernel size of 3 × 3 and a step of two. Next, the
channels of the high-, middle-, and low-resolution feature maps are overlapped. Finally,
the result is output with the ReLu activation function.

Figure 5. Three types of feature fusion methods. (a) Diagram of the high-resolution feature map retaining the same number
of channels as the low-resolution feature map as the high-resolution feature map via convolution. (b) Diagram of the
low-resolution feature map using convolution to downsample the high-resolution feature map to the same size as the
low-resolution feature map. (c) Diagram of the moderate-resolution feature map by upsampling and interpolating the
low-resolution feature map.
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2.1.4. Sample Processing

Since the GF-7 images are limited in the testing stage, a sufficient number of samples
cannot be collected using GF-7 images only. Thus, GF-2 satellite data, which have a 0.8 m
resolution for the panchromatic image and 3.2 m for the multispectral image (thus, allowing
for 0.8 m of images to be fused), are used for network training. The resolution and spectral
characteristics of the GF-2 multispectral image are similar to the GF-7 multispectral image.

In order to train the network, the first step is vector editing. In this process, with the
help of the ArcGIS software Feature Editing tool, we drew the building’s vector boundary
via visual interpretation. The accuracy of vector editing directly affects the quality of
image samples and the performance of the final network. Thus, strict requirements are
emphasized in the operation of sample drawing, and the error is limited to one pixel.
Besides the interpreted results, other samples of the building were selected from the
existing surveying databases. Secondly, we used the Calculate Field tool in the software
ArcGIS. The property of the building class is assigned the value of “1”, and the non-
building is assigned “0”. Finally, a total of 188,092 building polygons were collected. In the
third step, the vector data with property values were then transferred into the raster data,
considered label data. In this process, the Feature to Raster tool in ArcGIS was used, and
the raster data were highly coherent to the image. Afterward, the image and raster label
data were clipped into sub-datasets because the computer storage was limited such that
the whole image could not be input into the computer and calculated at one time. The Split
Raster tool of ArcGIS was used, and the size of the sub-image was 512 × 512, while the size
of the label data was 800 × 800. After the clipping process, there were 21,245 sub-images
available. The training data and test data were divided according to the ratio of 3:1. Thus,
a total of 15,934 sub-images were used as the training sample, while 5311 sub-images were
used for network validation.

2.2. DSM Generation with Stereo Images

After the network of building extraction is designed and trained, providing the
polygons of the building from the GF-7 image, the elevation information is needed to
generate the building. In this case, GF-7 DLC images were used to create the DSM to obtain
the building height. Here, the DSM was the digital surface model for the study area, and
depicted the building, forests, and above-ground objects. The DSM generation process was
implemented with the steps described below.

The GF-7 DLC images provide a stereo mapping ability, and high geometric accuracy
was validated by some researchers [5,38]. Since the GF-7 DLC images fulfill 1:10,000 scale
stereo mapping, the building elevation information can be obtained with acceptable accu-
racy. DSM generation includes a variety of processes, such as image orientation, ground
control point (GCP) collection, tie point (TP) collection, and epipolar image extraction. All
these processes are completed via the software PCI Geomatica. The DLC images are a
sensor-corrected (SC) product from LASAC; they are oriented via their rational polynomial
coefficient (RPC) files. The GF-7 DLC images have good geometric characteristics [38], and
image orientation provides a basic geometric correction for subsequent processes. GCP
collection is important for subsequent accuracy. This procedure uses fast Fourier transform
phase (FFTP) matching to obtain a sufficient number of GCPs for forward and backward
images. This approach is suitable to avoid relative displacement between forward and
backward images and return a phase difference in the Fourier domain. FFTP method can
then locate the deviation between two images with the phase difference. After the GCPs
are collected, to assure the matching of forward and backward images, the correspond-
ing points between these two images are connected as the TPs, and then interpolation is
performed to increase the density of the connection. Meanwhile, the points with greater
residuals are removed to ensure higher accuracy for match modeling. Based on the TP
results, the epipolar images can be processed as forward images to those determined to
be left epipolar images and the backward images to those determined to be right epipolar
images. For epipolar images, The semi-global matching (SGM) method, which uses a
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pixel-wise, mutual information (MI)-based matching cost for compensating radiometric
differences of input images [39], is used to generate the DSM data.

2.3. Building Modeling and Urban Scene Generation

A 3D model building is a digital representation of a three-dimensional object. With
the help of the building polygon vector and DSM, 3D models of buildings can be created,
viewed, and modified using specialized software referred to as 3D modeling software.

Building information extraction provides us with a polygon of the building vector,
representing the panel information for a building. The DSM provides the elevation in-
formation of the building in the corresponding area. By combining the building polygon
vector with the elevation information, a rough model of the building can be generated.
Then, to stretch the building 2D polygon model to a 3D (or 2.5 D) object, a white model
of the building can be obtained, which also satisfies the requirements of the LOD1 model.
The white model should be organized in the database so it can be used for visualization.

2.3.1. Building Modeling

The elevation information of the building polygon is obtained from the DSM pixel
value. The average pixel value within the boundary of the building area is calculated as
the height information of this building polygon, and this information is on the property of
the feature object stored in the building’s shapefile.

Based on the dataset for the building vector with elevation information, the software
Blender is used to generate the white model of the building. First, the building vector
polygon shapefile is imported into Blender, and the height information of the building is
input from the height attribute in the shapefile. After stretching the building polygon into
a 3D model, the building model is saved as an FBX file.

2.3.2. Urban Scene Generation

After the FBX file of the building’s white model is generated, we can import the whole
image scene into a 3D engine editor. In this study, Unreal Engine 4 (UE4) was used to create
the urban scene with the processed building models.

UE4 is a game engine developed by Epic Games, initially designed for the first-person
shooter (FPS) game Unreal in 1998. It has since been used in a variety of three-dimensional
game genres and adopted by other industries, most notably the film and television industry.
Written in C++, Unreal Engine features a high degree of portability, supporting a wide
range of desktop, mobile, console, and virtual reality platforms.

Our study imported the building models, DSM, and multispectral fused images
derived from GF-7 images into the UE4 editor to generate an urban scene (Figure 6). With
the help of the UE4 editor, the PBR material was set up, and environmental effects, such as
the skysphere, directional light, and skylight, were also created. The skysphere was used
to simulate the sky for our scene, and the blue sky and cloud materials constituted the
skysphere actor. The directional light was set up to generate sunlight and shadow effects.
The former was the main light source for the whole scene, whereas the latter represents the
shadow for the ground object with a certain height, such as a building, tree, or hill. The
skylight reflects the sunlight illuminating the ground objects and atmosphere in the scene
environment and causes the scene to appear more realistic. All these actors are organized
as a level in the UE4 editor. The level can run directly in the editor or be compiled in a C++
program for the application.
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Figure 6. Importing the building model, DSM, and DOM data into the UE4 editor.

3. Experimental Results
3.1. Experimental Setup
3.1.1. Data

GF-7 DLC and MUX images were used in this experiment. The GF-7 images were
acquired on 13 April 2020, as the testing images, with a cloud coverage of 5% in the
metadata. The images cover an urban area in Dongying, China. The study area is plain,
containing both urban and rural areas. There are some urban areas toward the central–
western part of this district. One-fourth of this image is urban area; thus, in this study, we
used these images to examine the ability of GF-7 to mode an urban scene. The experimental
GF-7 images are shown in Figure 7.

Figure 7. GF-7 DLC and MUX images used for the experiment: (a) forward image, (b) backward
image, and (c) multispectral image.
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3.1.2. Setup

The setup and workflow of this experiment are shown below in Figure 8. With the
help of the trained network, our study used three steps to complete urban scene modeling
using GF-7 images: image preprocessing, building modeling, and urban scene modeling.
In the building extraction process, the multiple-level network mentioned above, which
contains the modules of the dense block, ASPP, and feature fusion, was used. In order to
generate the DSM of our study area, PCI Geomatica was used to conduct image orientation,
GCP collection, TP collection, epipolar image generation, DSM production, and digital
orthorectified model (DOM) processing. The building extraction vector polygon results
and the elevation information provided by the DSM were then combined, and Blender was
used to complete building stretching and white model generation. Finally, the whole study
area scene with the building’s model was organized as an FBX file and imported into the
UE4 editor for environment rendering. The scene level was then created for visualization.

Figure 8. Building samples from GF-2 multispectral fused images for network training.

3.2. Network Training

In order to train the network, training samples should be processed to establish
a sample data set. The processing includes vector editing, property assigning, raster
transformation, sample scale segmenting, and dataset dividing. Therefore, we trained
the network with GF-2 image samples and attempted to use this network in the building
extraction from GF-7 images. The samples can be seen in Figure 8.

The proposed model for this study is implemented in Tensorflow framework. The
loss function of the model adopted a binary cross-entropy loss function. The batch size was
set to four, the number of epochs was 80, the number of iterations per epoch was 5000, and
the Adam optimizer with an initial learning rate of 0.001 was used to train the models.

3.3. Results of Building Extraction
3.3.1. Extraction Results

In our experiment, we adapted our trained network to the GF-7 multispectral fused
image derived from the backward image and multispectral image for classification. The
experiment and comparison are presented to evaluate our classification approach. In order
to realize the subsequent integration and application, we saved the trained model as a Pb
file using Microsoft Visual C++ on a Windows 10 operating system with 32 GB memory, an
installed NVIDIA GeForce GTX1080Ti graphics card and 8 G byte graphic memory.

In the building extraction results from our method, we can observe all kinds of
building structures, including high-rise, mid-rise, and low-rise buildings, single houses,
workshop buildings, and others, which are effectively extracted, as shown in Figure 9. Not
only does our method suit rectangular-shaped buildings well, but some buildings with a
complex shape are also segmented. Buildings in the residential estate are clearly drawn
in the results, and the boundary is well defined (Figure 10a). The mid-rise and high-rise
building extractions are of good quality (Figure 10b,c), which indicates that subsequent
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building 3D modeling is possible. However, it is impossible to completely segment larger
buildings, such as commercial market buildings or conference buildings, where some errors
occur, and the building body is divided into various parts (Figure 10d). Generally, building
extraction results can be visually interpreted. However, most buildings are extracted with
a clear shape and can thus provide a panel boundary for building 3D modeling.

Figure 9. Building extraction results. Above: fused multispectral image; below: extraction result.

Figure 10. Building extraction results: (a) buildings in the residential estate, (b,c) mid-rise and high-rise buildings,
(d) larger buildings.
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3.3.2. Accuracy Assessment

In order to analyze the quantified extraction result, our study used a pixel-based
assessment. Through the statistics of the building extracted pixel and the validation sample
pixel, the overall accuracy (OA), intersection over union (IoU), and F1-score (F1) were used.
The OA was used to assess the global accuracy of the extraction results. The IoU is the ratio
of the intersection set of the extracted results and the truth samples and their union set,
and F1 is the geometric mean of precision and recall. The expressions are listed below.

OA =
TP + TN

TP + TN + FP + FN
(2)

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

IoU =
precision × recall

precision + recall − precision × recall
(5)

F1 = 2 × precision × recall
precision + recall

(6)

In the expressions, TP is the true value, FP is the false value, FN is the false negative
value, recall is the ratio of the correct pixel to the true value, and precision is the proportion
of correct pixels in the prediction result.

In order to reveal the accuracy of different networks, our method was compared with
DenseNet, DeeplabV3+, and BiseNet. The accuracy assessment results are described below.
The assessment results of the GF-7 image show that our method achieves 95.29% in OA,
83.92% in F1, and 72.30% in IoU, all of which are higher values than those of BiseNet,
DeeplabV3+, and DenseNet. In order to create a comparison, the GF-2 multispectral fused
image was used for building extraction with the same network. The GF-2 image’s OA is
96.73%, its F1 is 86.17%, and its IoU is 75.71%. Although high accuracy can be observed
in the building extraction experiment from GF-7, better results are still achieved in the
extraction results for the GF-2 image since the network was originally trained with the
latter data source. Detailed results can be seen in Table 2.

Table 2. Accuracy assessment of the different methods.

Image Network OA F1 IoU

GF-7

BiseNet 55.26% 35.63% 21.68%
DeeplabV3+ 16.05% 25.43% 14.57%

DenseNet 93.37% 75.09% 60.11%
Our Method 95.29% 83.92% 72.30%

GF-2

BiseNet 60.57% 45.59% 29.53%
DeeplabV3+ 89.18% 64.01% 32.12%

DenseNet 87.33% 50.78% 34.03%
Our Method 96.73% 86.17% 75.71%

3.4. Results of Building Modeling
3.4.1. DSM Generation Results

GF-7 DLC images are used to generate the DSM for the study area. The forward
image and backward image are processed to create left and right epipolar images. The
DSM is then generated via the SGM method. In our experiment, the GF-7 images cover a
20 km × 20 km area, including the metropolitan area, which comprises residential, indus-
trial, and suburban areas. As can be observed in Figure 11, the DSM represents the features
of the terrain and surface of the study area well. Notably, the buildings, roads, bridges,
canals, and other ground objects with certain heights are clearly shown via the highlight of
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their high pixel values in the DSM. A highlighted area with a very high value in a large
area toward the southeast region of the study area is the lake because the reflectance of
both the calm or glittering water surface may affect optical images in the visible range
of spectral bands, as well as the forward and backward images of GF-7. As a result, the
registration of GCPs in this area of water is mistaken, and false elevation information has
occurred. In this case, post-processing is needed following DSM generation.

Figure 11. GF-7 fused multispectral image and DSM. (a) Fused multispectral image with a resolution of 0.8 m, (b) DSM
with the resolution of 0.8 m derived from DLC images.

In Figure 12, we can compare the multispectral image with the combination of RGB
(Figure 12a) and the generated DSM (Figure 12b). It can be clearly observed that most of the
buildings represent accurate boundaries, and the elevation information is very close to our
interpretation. The low-rise and mid-rise buildings, single house, and workshop building can
be clearly interpreted in the DSM, all of which have approximate elevation ranges from 10
to 80 m. Buildings with large areas, such as workshop buildings, are clearly shown in the
DSM in terms of both shape and height (Figure 12c). In the residential estate, the low-rise and
mid-rise buildings present good shapes (Figure 12d). However, for some high-rise buildings
with elevations above 80 m, errors occur in the DSM; in particular, the upper part of the
building presents distortion. Some of the mid-rise and high-rise buildings with a small area
and rectangular shape are lost in our interpretation of the DSM. For large-area buildings, we
can observe that the DSM also provides accurate geometric conditions, and some parts of
the buildings’ roofs are identified through visual interpretation (Figure 12e). The results are
available for 1:10,000 topographic mapping in surveying and mapping applications.

In general, the DSM performs well in depicting the study area. The elevation information
provided in the DSM can facilitate the modeling of buildings in the urban scene.
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Figure 12. Effect of GF-7 DSM. (a) Clip of fused multispectral image; (b) clip of DSM; (c–e) clips of views from different
types of buildings.

3.4.2. LOD1 Building Model

In order to achieve good quality building boundaries, some post-processing should
be conducted before modeling the buildings. Small fragments of the building are removed
according to the threshold of the area. In our study, the building fragments with an area
smaller than 100 m2 are removed. The boundary of the building is smoothed to render the
building shape closer to the requirements of the surveying and mapping standard.

Based on the building vector polygon, which has the attribute of height information,
through the software Blender, the building model can be established. The building polygon
provides the shape and boundary of the building at the panel dimension, and the height
attribute is determined to be the height of the building in the software. With the shape and
height information of the building combined, the building is stretched on the stereo dimension.
The white model of the buildings is generated without textural information on their facades.
Although there is no texture on the buildings, the rough white models of the buildings cover
a large area that can still represent the urban scene. In addition to the DSM and DOM data
derived from GF-7, the FBX 3D model is quite similar to the actual urban area. As shown
in Figure 13, the building has a rough 3D model without texture, but the shape and volume
appear to be fairly close to those of the real building. It can be suggested that the bounding
volume completely represents the geometric characteristics of the building, meaning that the
building model is applicable for use in urban virtual mapping, urban planning and can be
a platform for urban big data integration. During this stage, the building model fulfills the
requirements of the LOD 1 standard of CityGML applications
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Figure 13. Generation of a building from the polygon of GF-7 building extraction results and DSM data.

3.4.3. Urban Scene Visualization with Unreal Engine 4

The urban scene 3D model, in the form of FBX, is imported into the UE4 editor together
with the DSM and multispectral fused image, which all transform into a uasset file format
and a level is created in the UE4 editor.

In this level, effects including the rendering of the building and environment can be
set up, as shown in Figure 14. Basic environmental elements are used from the library;
for example, a skysphere is added to the scene’s background as a sky containing different
kinds of clouds. Sunlight shines on the whole scene because directional light simulates
sunlight, whose intensity, color, and shadow projections are created with a considerable
number of parameters. The directional light generates a shadow of the building; thus,
in Figure 14, we can see that at any given distance, the building’s shadow is apparent
and quite similar to the situation in reality. The rendering and environment effects are
uniquely characteristic of game engines, which set them apart from traditional 3D GIS
engines. For example, we can simulate different times of day in the scene, including
sunrise, daytime, dusk, night, and different types of weather, such as clear skies, overcast,
rain, and fog. Moreover, the simulation of a building’s shadow angle from sunlight at a
certain time of day in different seasons can be realized, and the game engine runs these
complex renderings and effects smoothly, thereby maintaining high performance during
the interaction between the user and computer. Thus, high fidelity, high performance,
and free interaction render the game engine powerful in urban visualization applications.
Moreover, with the help of stereo mapping satellite images, the large scale of the urban
area for one city can be modeled accurately and efficiently. For example, in our study,
GF-7 images provide the 3D urban scene data at approximately 20 km × 20 km at a time.
The large coverage and high geometric accuracy for such large batches of urban building
models can support urban visualization in a high-performance 3D engine and take full
advantage of the 3D engine’s powerful rendering ability.
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Figure 14. Effects of the urban scene level in UE4. (a) Ortho-angle of part of the scene; (b) side view
of the scene; (c) different environmental effects in the scene, including daytime, dusk, and night.

4. Discussion

This study presents a building modeling approach using GF-7 high-resolution images
and a MFFN model for building extraction and LOD1 model generation using the building
vector and DSM. The building extraction’s accuracy is good, and with our proposed
method, the urban scene in the 3D model can be generated effectively and efficiently.
Furthermore, we discuss the advantages and disadvantages of the study results in building
extraction and modeling.

4.1. Building Extraction Using MFFN

In this study, building extraction was conducted using our proposed networks with
good quality and performance. The results show high accuracy and can satisfy the require-
ments of panel boundary for building modeling. The network that contains the modules
of the dense block, ASPP, and feature fusion can effectively improve the extraction of
buildings, including the small and diverse buildings in particular.

The convolution network in this study is trained using samples of GF-2 images due to
the limited availability of GF-7 images. To our surprise, the generalization of this network
is suitable for GF-7 images, as a high OA value of 95.29% can be seen in the results, which
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is lower than the accuracy of GF-2 results (96.73%). Our study demonstrated that building
extraction via GF-2 and GF-7 achieves significantly better results than those of some popular
networks, such as BiseNet, DeeplabV3+, and DenseNet; this is because the dense block
setup in the network can retain a considerable number of details for the high-resolution
feature map, which is especially suitable for buildings with complex boundaries in the
image. Moreover, the ASPP module extracts multiple-scale information for feature maps,
benefiting the distinction between buildings and other ground objects. With the help of the
feature fusion module, these feature maps can be combined effectively.

However, our study is not without limitations. Firstly, the current method cannot
extract buildings built above another building or ground structure, as shown in Figure 15a,
and this results in the loss of such buildings in the subsequent modeling. Secondly, our
network has some limitations in extracting buildings with large areas, such as the podium
building, and some long, rectangular buildings with large areas, as shown in Figure 15b.
Thirdly, some buildings cannot be extracted completely due to their actual shape. Losses
may occur at the boundary, and still, some small fragments exist in the extraction results,
which should be removed during post-processing.

Figure 15. Some false results in building extraction. (a) Mistaken segmentation in the podium, (b) division of a large,
rectangular building.

In future work, we expect to achieve improved performance of the building extraction
network with a sufficient number of image samples for GF-7. Additionally, the building
samples can be further classified into different sub-classes, e.g., a high-rise building, mid-
rise building, low-rise building, single building, workshop building, and other building
types. In this case, a sub-classification can provide more details on different building models
with a material library for 3D building models, including different kinds of material and
textures of certain building types. For example, once we extract the workshop building
class from the image, the model example of the workshop building is stored in our material
library and can be placed into the corresponding building polygon and modeled in 3D
with the height information derived from the DSM. Therefore, the urban scene can be more
abundant and realistic than only white models of the building.

4.2. Building Modeling and Urban Scene Rendering

The building model can be efficiently generated through the DLC images, and the
height information accurately obtained. However, some disadvantages were observed
in the experiment. Firstly, tall buildings with a height above 80 m may result in some
errors in the elevation calculation. As a result, some tall buildings cannot generate correct
boundaries, and information loss subsequently occurs in the modeling process. Other
approaches of DSM generation will be examined in future works. Secondly, building
modeling remains at the LOD1 level. The volume information in the upper part of the
building cannot be shaped and modeled. There are two reasons for this: one is the hilly
phenomenon that exists for the building in the DSM, which renders it difficult to draw the
accurate shape of the upper part of the building. Thirdly, the average value of the elevation
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within the building boundary was used as the building height, which is a method that
cannot be applied to buildings with a complex upper portion.

In a future study, other methods will be explored to obtain a better volume for building
bodies, especially for the upper part of tall buildings and those with attached buildings,
which are quite common in megacities. Moreover, the regularization method for buildings’
boundaries should be developed and used to provide improved boundaries for building
modeling in the panel dimension. Once the limitations, mainly modeling the upper part
of buildings and the further shaping of the buildings’ outer boundaries, can be solved,
building modeling with further detail may be available using the high resolution and good
geometric accuracy of GF-7 images,. With these potential results, as well as the material
library mentioned above, buildings in a large urban area can be generated in LOD2, and a
more realistic and vivid urban scene is expected to be achieved using 3D engines such as
UE4. As such, spatial platforms with a large area for digital twin cities can be effectively
and efficiently supported by the high-resolution stereo mapping satellite.

5. Conclusions

This study presents an approach for building modeling with GF-7 DLC and MUX
images using the MFFN for building boundary extraction and generating the white building
model with the help of the DSM. Finally, urban scene visualization is realized via UE4.

The proposed network, which contains the modules of a dense block, ASPP, and
feature fusion, can perform well in building extraction from GF-7 fused multispectral
images, especially in small and diverse buildings. With the ability of stereo mapping, GF-7
DLC images provide a 1 m resolution DSM which assigns height information for the 3D
modeling of a building. Moreover, Blender and UE4 software were used to generate the
urban scene level with the white building model in LOD1. This study demonstrates a
method and workflow that uses only high-resolution stereo mapping satellite images to
complete urban modeling efficiently and effectively; thus, this method can be a reference
for other similar data sources and applications.

Although there were limitations due to errors in tall and large rectangular building
extraction and loss of information in the modeling of buildings with a complex upper part,
using high-resolution stereo mapping satellite images to generate 3D urban scene remains
a useful and economical method of urban modeling.

In summary, this study not only attempts to realize a convolution network suitable for
GF-7 image in building extraction but also tries to complete 3D building modeling based
on extraction results and GF-7 stereo images. These methods reveal the potential of GF-7
images in urban applications and provide a reference for modeling solutions in the spatial
platform construction of twin cities, smart cities, and digital earth applications.
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