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Abstract: Studying land use change and its associated climate effects is important to understand
the role of human activities in the regulation of climate systems. By coupling remote sensing
measurements with a high-resolution regional climate model, this study evaluated the land surface
changes and corresponding climate impact caused by planting rice on saline-alkali land in western
Jilin (China). Our results showed that paddy field expansion became the dominant land use change in
western Jilin from 2015 to 2019, 25% of which was converted from saline-alkali land; this percentage
is expected to increase in the near future. We found that saline-alkali land reclamation to paddy fields
significantly increased the leaf area index (LAI), particularly in July and August, whereas it decreased
albedo, mainly in May and June. Our simulation results showed that planting rice on saline-alkali
land can help decrease the air temperature and increase the relative humidity. The temperature and
humidity effects showed different magnitudes during the growing season and were most significant
in July and August, followed by September and June. The nonradiative process, rather than the
radiative process, played a dominant role in regulating the regional climate in this case, and the
biophysical competition between evapotranspiration (ET) and albedo determined the temperature
and relative humidity response differences during the growing season.

Keywords: land use and land cover changes; regional climate; regional climate model; remote sensing

1. Introduction

Both land use changes and CO2 emissions have been documented as dominant driving
factors influencing the climate system at different scales from global to regional [1–5].
However, at the regional scale, some studies emphasize that climate change induced by
land use change is even greater than climate change induced by greenhouse gases [6–8].
Understanding the predominant regional land use change as well as the mechanisms by
which it affects climate through altering energy, momentum, and water exchange processes
is crucial to fully clarify how humans modify and regulate climate [9–11]. In addition,
studying land use changes and estimating their climate impact is also a major requirement
for the sustainable development of agriculture [12–15].

Global land use trajectories show the transition from pre-settlement natural ecosys-
tems to intensive complex composite ecosystems, in which urbanization and intensive
agriculture plays an increasingly important role in supporting the unprecedented popula-
tion and its associated crop requirements [16–19]. Based on satellite big data, Kuang et al.

Remote Sens. 2021, 13, 3407. https://doi.org/10.3390/rs13173407 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5565-535X
https://orcid.org/0000-0001-9811-0272
https://doi.org/10.3390/rs13173407
https://doi.org/10.3390/rs13173407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13173407
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13173407?type=check_update&version=2


Remote Sens. 2021, 13, 3407 2 of 16

detected significant global urbanization since the beginning of the 21st century [19]. The
human-induced cropland expansion has been examined as the major driver for a series of
land-use changes, including deforestation, grassland, and wetland reclamation across both
tropical and temperature regions [18,20,21]. Through using land-use management, China
and India lead in the global widespread greening since 2000, among which, fertilization use
and irrigation drive the greening and food production increase in croplands [22]. Although
some studies have investigated the regional climate impacts caused by urban expansion
and agricultural intensification, mainly the land use conversion from forest, grassland, and
wetland to farmland, agricultural practice, and agricultural irrigation [1,7,23–30], attention
has rarely been given to exploring the connection between the vegetation restoration caused
by saline-alkali land improvement and regional climate responses and the role in seasonal
transitions in temperature and energy balance.

As a widely distributed area of the black soil region, the Northeast China has expe-
rienced unprecedented agricultural intensification since the 1950s and has become the
major grain-producing area in China [31–33]. However, the ecological environment has
become increasingly vulnerable across the transitional climate and ecological zone of north-
ern China due to high-intensity land development [34]. As a result, some grassland or
farmland in subarid, ecologically fragile areas such as western Jilin has degraded into
saline-alkali land and resulted in severe environmental and ecological problems [35]. Re-
cently, the development of saline-alkali soil improvement technology has made planting
rice in saline-alkali land possible, and this will become the dominant land use in the near
future with sufficient policy support [36]. Saline-alkali land improvement substantially
changes the surface biophysical and biochemical properties and influences the interactions
between the land surface and atmosphere [37]. However, comprehensive evaluations of
how saline-alkali land improvements influence surface plant physiological and optical
parameters and further affect the local climate are still lacking.

Satellite observations provide detailed Earth surface information and have become the
most commonly used approach to study environmental change [38–40]. Some studies have
used remote sensing measurements to investigate the response of surface temperature to
land use changes such as afforestation and urbanization [41,42]. However, it is difficult
to identify the mechanisms corresponding to climate impact. High-resolution regional
climate modelling involving a land surface model can accurately represent the energy and
moisture exchanges at the surface/atmosphere interface and has become an efficient way
to simulate climate effects based on historic and future land use changes [43–48]. Precise
land surface properties are essential in simulating the interactions between the surface and
the atmosphere and have been widely documented [49,50]. Coupling spatially continuous
satellite observations with regional climate models has become the state-of-the-art approach
to study climate impacts due to land surface changes [51].

Therefore, in this study, we quantify the air temperature and relative humidity impacts
related to changes from regional typical and novel land use changes—from saline-alkali
land to paddy fields. First, the historic and future projected land use changes in western
Jilin were analysed. We then evaluated the influence of saline-alkali land improvement
on two crucial surface parameters, including albedo and leaf area index (LAI). Finally,
the climate responses, mechanisms and implications for saline-alkali land improvement
were simulated and further analysed by coupling the land surface model into the regional
climate model. Through this study, our results can provide suggestions for regional
agricultural development.

2. Materials and Methods
2.1. Study Area

Western Jilin is located in the western part of Jilin Province in Northeast China, ex-
tending from 43◦59′27′′N to 46◦18′′5′′N latitude and 121◦37′31′′E to 126◦10′43′′E longitude
(Figure 1). With a total area of 46,900 km2, western Jilin contains ten county-level cities, in-
cluding Zhenlai, Taobei, Taonan, Tongyu, Da’an, Qian’an, Changling, Qianguo, Ningjiang
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and Fuyu. The landform of western Jilin is an alluvial and proluvial plain with an average
altitude of 160 m. The climate is dominated by a temperate continental climate with distinct
seasonal variation. The average annual temperature is 4–5 ◦C, and the annual precipitation
is 350–500 mm. The water resources are rich, the main rivers of which are the Taoer River,
Nenjiang River and Songhua River. Affected by landform and climate, the soil is mainly
light chernozem and meadow soil. From the perspective of ecological zoning, western Jilin
is located in the ecotone between agriculture and animal husbandry.
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The long-term agricultural intensification that began in the 1950s contributed to severe
land degradation; as a result, increasing amounts of land were converted to saline-alkali
land, and the ecological environment has became increasingly vulnerable. Since the 2010s,
saline-alkali soil improvement technology has been promoted to cultivate rice on unused
saline-alkali land and has become a new regional land use change characteristic. As a
result, western Jilin has become the ideal area to fully understand how human activities
regulate or modify climate at the regional scale.

2.2. Data Processing
2.2.1. Land Use and Land Cover (LULC) Data

In this study, we used time series land use datasets produced by the Chinese Academy
of Sciences (CAS) (downloaded from http://www.resdc.cn/ (accessed on 25 June 2021)) to
describe the land use pattern in western Jilin. Two periods, 1975 to 2015 and 2015 to 2019,
were used to analyse land use change over the past 45 years. Based on the land use maps
from 2015 and 2019, we extracted the unchanged pure grids (where the dominant type is
the only land use type in that grid) at a 1 km × 1 km spatial resolution for paddy fields and
saline-alkali land. There were 1621 and 1478 pure grids for saline-alkali land and paddy
fields in our study area, respectively (Figure S1). These pure pixels were used to extract the
interannual cycle of surface properties, including LAI and albedo.

In this study, we used the CAS LULC data from 2015 to represent the land use pattern
in China. The European Space Agency (ESA) Climate Change Initiate (CCI) land use and
land cover dataset from 2015 was used to fill in the land use data outside Northeast China.
Both the CAS and CCI LULC data were converted to USGS 24-category land use categories
at a resolution of 1 km. The fraction of each LULC type, the dominant LULC type and the

http://www.resdc.cn/
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land mask layer at each grid were then obtained through spatial statistical analysis using
ArcGIS and Python processing.

2.2.2. Land Surface Parameters Datasets

LAI and albedo are two dominant surface biogeophysical parameters influencing
the energy budget and water cycling. The LAI determines the vegetation transpiration
and CO2 exchange of the vegetation canopy, whereas the surface albedo can affect the
shortwave radiation absorbed by the surface. Temporally and spatially continuous LAI and
albedo data can help represent the interactions between the land surface and atmosphere
more accurately. In this study, we used MODIS products, including the MOD15A2 8-day
composite LAI dataset and the MCD43B3 daily albedo dataset, to represent the spatial
heterogeneity of LAI and albedo. To match the temporal resolution and projection of
Weather Research and Forecasting (WRF) preprocessing, the 8-day composite or daily
datasets were first aggregated monthly, and the projection was transformed into a Lambert
equal area projection. To avoid the influence of climate variation, we used the 2015–2019
five-year average monthly LAI and albedo to update the original corresponding dataset in
the WRF preprocessing.

2.2.3. Climate Forcing Dataset

ERA5 reanalysis datasets were used to force the WRF model at both the surface and
pressure levels. ERA5 is the fifth generation of ECMWF atmospheric reanalysis of the
global climate, which began with the FGGE reanalysis produced in the 1980s, followed
by ERA-15, ERA-40 and most recently ERA-Interim. These data have a high spatial
resolution of 0.25 × 0.25 degrees and a high temporal resolution, which can reach three
hours. The long-term (1950 to the most current) ERA5 datasets have been widely applied
to historic and future climate change research. At the surface level, 19 surface variables
including the 10 m u component of wind, 10 m v component of wind, 2 m dewpoint
temperature, 2 m temperature, land sea mask, mean sea level pressure, sea ice cover,
sea surface temperature, skin temperature, snow depth, soil temperature at four soil
layers, surface pressure, volumetric soil water at four soil layers were used, and at the
pressure level, six variables including geopotential, relative humidity, specific humidity,
temperature, u component of wind, and v component of wind at 37 vertical levels were
used for the meteorological forcing.

2.2.4. Meteorological Observation Dataset

The monthly dataset of surface climate data in China from the China Meteorological
Data Service Center (CMDSC) (http://cdc.cma.gov.cn/ (accessed on 25 June 2021)) was
used to validate the efficiency of our simulation. This monthly dataset spans a period from
1951 to the present and includes 23 meteorological variables. Two climate variables, includ-
ing air temperature (at 2 m) and relative humidity (at 2 m) at six meteorological stations
covering western Jilin were selected to compare the observed results with the model-
simulated results. The six meteorological stations included Baicheng, Fuyu, Qianguo,
Tongyu, Qian’an and Changling.

2.3. Regional Climate Sumulation

The Weather Research and Forecasting (WRF) model has been used in a broad range
of applications, including regional climate research and forecast research across scales
ranging from metres to thousands of kilometres [52]. Based on different dynamic solvers,
the WRF system contains an advanced research WRF (ARW) core and a nonhydrostatic
mesoscale model (NMM) core. In this study, we used the flexible, efficient and state-of-the-
art atmospheric ARW simulation system version 3.6 to perform the numerical simulation.

We designed two domains in our experiments (Figure 2), which had horizontal resolu-
tions of 30 km and 10 km, respectively. The first domain included all of Northeast China,
whereas the second domain included our study area: western Jilin and its surrounding

http://cdc.cma.gov.cn/
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areas. The two scenarios were designed to simulate the impact of saline-alkali land im-
provements on the regional climate. In the control scenario, the land use and land cover
(LULC) data from 2015 were used to calculate the LULC-related land surface variables,
including the dominant LULC type, the fraction of each LULC type, and the land mask
at each domain resolution. The 2015–2019 5-year average monthly LAI and albedo were
used to replace the corresponding initial model geostatistical datasets. In the sensitivity
experiments, all the saline-alkali land in 2015 was converted to paddy fields, referring
to herbaceous wetlands from the 24-category USGS land use categories. The seasonally
varied LAI and albedo on the converted saline-alkali land were updated based on the
statistical characteristics of pure paddy fields (Table 1). The initial boundary conditions
and the physical parameterization schemes were held constant in both the control and
sensitivity experiments. Therefore, the regional climate impacts due to saline-alkali land
improvement can be identified.
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Table 1. The regional monthly mean albedo and LAI for paddy fields. (When the saline-alkali land
was converted to the paddy field, the albedo and LAI of the saline-alkali land were replaced by the
corresponding values shown in this table).

Paddy Field May June July August September October

Albedo 0.08 0.09 0.18 0.19 0.20 0.21
LAI 0.17 1.23 4.20 3.20 1.15 0.29

The main schemes used in the simulation were as follows: the microphysics was a
WRF Single-Moment 3-class scheme, both the longwave radiation and shortwave radiation
were CAM schemes, the surface layer was an MM5 similarity scheme, the land surface was



Remote Sens. 2021, 13, 3407 6 of 16

represented by the Noah Land Surface Model, the planetary boundary layer was a Yonsei
University scheme, and the cumulus parameterization was a Kain-Fritsch scheme. Given
that the growing season in western Jilin extends from late May to late September, the two
experiments were initialized on 1 May to 1 October of each year from 2015 to 2019. The
results from the first month were used to spin up the model, and the results from following
months (June, July, August and September) were used for analysis in this paper.

3. Results
3.1. Land Use Changes in Western Jilin: Historic, Current and Future

Dry farmland, grassland and saline-alkali land are three dominant land use types in
western Jilin, accounting for approximately 75~78% of the total area. Remarkable land
use conversions were identified from 1975 to 2015 in western Jilin due to both human
activities and natural environmental changes (Figure 3). Extensive grassland degradation
to saline-alkali land was observed mainly in Da’an, Tongyu, Changling and Zhenlai. In
Qian’an and Qianguo, a large number of grasslands have been reclaimed to dry farmland.
Notable paddy field expansion from dry farmland or wetland was observed in the main
rice planting areas such as Zhenlai, Taobei and Qianguo. In addition, notable built-up land
expansion was also detected from 1975 to 2015.
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A land use transition matrix was created to determine the specific land use conversions
in western Jilin (Table 2). From 1975 to 2015, grassland decreased by 3228 km2, 43.9% of
which was reclaimed to dry farmland, and 39.4% of which degraded to saline-alkali land.
Paddy fields and dry farmland increased by 1738 and 620 km2, respectively, indicating
that agricultural development was the dominant driving factor of the land use changes in
western Jilin during our study period. Expanded paddy fields were primarily converted
from dry farmland (52.8%) and wetlands (33%). It should be noted that approximately 6%
of the paddy field expansion was converted from saline-alkali land due to novel techniques
of planting rice on saline-alkali land. As a result, degraded saline-alkali land has become
an important reserved cultivated land resource in these regions. In addition, wetland and
water decreased by 636 and 200 km2, respectively, whereas built-up land, woodland and
barren land increased by 437, 317 and 32 km2, respectively.
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Recent remote sensing measurement records from 2015 to 2019 showed that paddy
field expansion continued at an increasing rate. In those four years, paddy fields increased
by 2031 km2, compared with 1738 km2 in the past 40 years from 1975 to 2015 (Figure 4).

A total of 37.1% of the increase in paddy fields was converted from dry farmland,
most of which were located in areas adjacent to already existing paddy fields. Saline-
alkali land reclamation has become the second most important approach to paddy field
expansion, with a 520.9 km2 increase in western Jilin. An increased plant area is a direct
way to guarantee or increase food production and is beneficial due to the low land cost
of saline-alkali land and provincial government support. Paddy field development on
saline-alkali land in western Jilin has become and will continue to be the main trend in
future land use management.

Table 2. Transition matrix of land use categories from 1975 to 2015 in western Jilin (km2).

2015

1975 Woodland Grassland Water Built-up
Land

Barren
Land

Saline-
Alkali
Land

Wetland Paddy
Field

Dry
Farmland Total

Woodland 1309.8 256.5 0.5 8.3 6.1 39.1 15.2 6.9 819.0 2461.3
Grassland 892.6 3801.1 31.6 32.3 56.2 1273.5 152.8 174.1 1415.7 7830.1

Water 1.4 29.1 1801.2 13.1 1.2 89.9 176.2 15.4 51.0 2178.4
Built-up

land 1.7 1.1 0.3 1316.4 0.2 1.7 0.3 4.0 65.2 1390.8

Barren land 4.8 7.8 0.1 0.3 181.7 0.3 11.5 0.0 9.7 216.2
Saline-alkali

land 3.8 240.3 95.5 55.3 1.2 5798.5 117.3 102.5 91.1 6505.5

Wetland 12.7 155.7 31.7 8.6 0.3 150.0 1982.2 573.6 198.0 3112.6
Paddy field 0.2 1.4 5.3 13.5 0.0 0.1 0.0 763.7 36.3 820.3

Dry
farmland 551.0 109.6 12.6 379.6 0.8 73.8 20.7 917.8 20,316.5 22,382.3

Total 2777.9 4602.4 1978.6 1827.3 247.7 7426.8 2476.2 2557.9 23,002.5 46,897.3
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3.2. Impact of Saline-Alkali Land Development to Paddy Fields on Land Surface
Geophysical Parameters

The distribution of both albedo and LAI showed notable spatial heterogeneity across
western Jilin (Figure 5). Previous studies have suggested that the land use distribution,
vegetation coverage and background geophysical conditions may explain why this region
shows this spatial variation. By comparing the land use pattern and the LAI/albedo
pattern, we found that the saline-alkali land-dominated regions such as Da’an, Qian’an
and Tongyu showed higher albedo and lower LAI than those of other regions. For the
main region of paddy fields such as the northern part of Qianguo, Taobei and the eastern
part of Zhenlai, the albedo was lower and the LAI was higher. As our study focused on the
climate impact due to the conversion from saline-alkali land to paddy fields, the albedo
and LAI for the pure saline-alkali land and paddy fields were separated. The albedo for the
saline-alkali land during the growing season was 0.21 ± 0.02, whereas it was 0.15 ± 0.007
for the paddy field. The LAI for the saline-alkali land during the growing season was
0.57 ± 0.19, whereas it was 1.99 ± 0.24 for the paddy field.
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The monthly mean albedo and LAI based on zonal statistics (Figure 6a,b) indicated
that the seasonal variation in albedo/LAI for the paddy field was much greater than that
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for the saline-alkali land. At the beginning of the growing season, including May and June,
the albedo in the paddy field was less than 0.10; however, it was greater than 0.2 for the
saline-alkali land. With the tillering, heading and fruiting of rice and vegetation growth in
saline-alkali land, the albedo differences from July to October decreased. The LAI variations
paralleled the air temperature changes, which increased from May on and reached their
peak value in July and then decreased gradually to October. However, the differences in
LAI between the paddy fields and saline-alkali land were not synchronized with albedo.
Instead of occurring in May and June, the distinct differences in LAI mainly occurred in July
and August (3.35 m2/m2 and 2.37 m2/m2, respectively). These asynchronous differences in
surface parameters between paddy fields and saline-alkali land are likely to bring distinct
seasonal climate responses to saline-alkali land improvements.

3.3. Impact of Saline-Alkali Land Development to Paddy Fields on Air Temperature and Relative Humidity

Prior to the analysis of climate impacts caused by land use changes, the model-
simulated results were first validated by the observed air temperature (T-2 m) and relative
humidity (Rh-2 m). Our results showed a cooling bias of 0.21 ◦C for T-2 m and a drying
bias of 2.02% for Rh-2 m in western Jilin, indicating that our model captured the patterns
of T-2 m and Rh-2 m well in our experiments.

The differences in T2-m and Rh-2 m between the control and sensitivity experiments
showed that local T-2 m and Rh-2 m responded to saline-alkali land improvement, i.e.,
T-2 m and Rh-2 m mainly changed where saline-alkali land development occurred. At the
pixel scale, the relationship between the improved saline-alkali land fraction and changes
in T-2 m and Rh-2 m showed a nonlinear relationship (Figure 7a,b).
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When the improved saline-alkali land fraction was less than 10%, the changes in T-2 m
and Rh-2 m were relatively small. With the increase in the improved saline-alkali land
fraction, the temperature-humidity effect became increasingly significant. As the improved
saline-alkali land fraction increased by 50%, the T-2 m decreased by 0.65 ◦C during the
growing season. In contrast to T-2 m, a 50% increase in improved saline-alkali land could
lead to a 2.16% increase in Rh-2 m.

The land use change from saline-alkali land to paddy fields contributed to varied land
surface changes among different months during the growing season, which was shown
in Section 3.2. We used the pixels with the dominant type converted from saline-alkali
land to paddy fields in our experiments to further investigate the seasonal variations in
temperature responses and their biogeophysical mechanisms. Our results showed that
the saline-alkali land improvements brought consistent temperature cooling and relative
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humidity increases during the growing season from June to September (Figure 8). The
most significant cooling was observed in July and August with the T-2 m decreasing by
0.66 ◦C (mean value) and 0.67 ◦C (mean value), respectively. The temperature cooling effect
was also detected in September and June and declined by 0.47 ◦C and 0.27 ◦C, respectively.
The Rh-2 m increased by 2.35% and 2.11% in July and August, respectively, whereas it
increased by 0.94% and 0.93% in June and September, respectively.
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From an energy balance perspective (Figure 9), the saline-alkali land improvement
decreased the reflected solar radiation by decreasing the albedo, particularly in June
and July. The upward shortwave radiation decreased by −13.56 ± 5.18 W/m2 and
−4.03 ± 2.72 W/m2 in June and July, respectively, indicating warming effects through
the absorption more solar radiation. From an energy redistribution perspective, the in-
crease in LAI enhanced vegetation transpiration, resulting in the latent heat flux increasing
by 15.17 ± 5.05 W/m2, 22.82 ± 7.55 W/m2, 17.41 ± 6.35 W/m2, and 6.11 ± 2.84 W/m2
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from June to September, which contributed to the cooling effect. The interaction between
these two processes explained the variations in the T-2 m and Rh-2 m changes. In June,
a large part of the cooling effect caused by evapotranspiration enhancement was coun-
teracted by the warming effect caused by the significant decline in albedo, resulting in
a lower magnitude change in T-2 m relative to that in other months. Because both the
evapotranspiration (ET) increases and solar radiation increases were larger in July than in
August, the offset between the two processes led to similar T-2 m changes. However, with
the relatively small decrease in LH in September, the decline in the magnitude of T-2 m is
even larger than that in June, which can be attributed to the similar albedo (Figure 6).

4. Discussion
4.1. Saline-Alkali Land Development and Its Impact on Surface Parameters

By using a time series of land use datasets and a spatial overlay analysis, our study
evaluated the land use changes from 1975 to 2015 and 2015 to 2019. The results showed that
cropland expansion was the dominant land use change in western Jilin from 1975 to 2015,
which is consistent with previous studies [18,35,53]. The application of the Three North
Shelterbelt Project and Natural Forest Protection Project explained the woodland increase
in western Jilin [54]. High-intensity agricultural development also brought increases in
grassland degradation, wetland loss and unused saline-alkali land. Driven by economic
interest and combined with better irrigation conditions, part of the rain-fed farmland has
turned into paddy fields, and this is characteristic not only for western Jilin but also for all
of Northeast China [55–58]. It should be noted that the total increase in paddy field area
from 2015 to 2019 was even larger than that from 1975 to 2015, 25% of which was converted
from saline-alkali land. As an important reserved cultivated land, unused saline-alkali
land has more potential for development in the future. Previous studies have shown that
saline-alkali paddy fields produce 1500 kg rice in the first reclamation year and could reach
8000 kg/ha after 5 years [59], implying that the rice yield could increase from 11,140 t to
59,414 t when the saline-alkali land in western Jilin is completely improved to paddy fields
after 5 years.

In addition, we found seasonal LAI and albedo variation for both paddy fields and
saline-alkali land, which is consistent with previous studies [23,60]. We also detected
variable albedo decreases from May to September when saline-alkali land was converted
into paddy fields; the largest decrease occurred in May and June. In comparison with
albedo, the LAI increase was mainly concentrated in July and August. A lower albedo helps
the surface absorb more solar radiation and has a warming effect, whereas a higher LAI
enhances evapotranspiration and tends to cool the surface [3,41,61–64]. The offset between
the albedo warming effect and the ET cooling effect determines the final temperature
impact due to saline-alkali land improvements, indicating that the albedo and ET changes
caused by the conversion from saline-alkali land to paddy fields were similar to those of
afforestation [65–67].

4.2. Impact of Saline-Alkali Land Development on Regional Climate and Corresponding
Mechanisms

Recent studies have reported that vegetation greening or vegetation growth brings
significant surface cooling in China [41,48,60,67–69]. Cao et al. found that forest restoration
attributed to the Grain to Green (GTG) programme lowered the 2-m air temperature of the
Loess Plateau in summer [69]. Zhang et al. found that the cropland greenness increases
in spring contributed to cooling and wetting effects, whereas the crop greenness decline
in summer led to warming and drying effects on the North China Plain [48]. However,
Yu et al. found that crop greening in the Northeast China Plain in the first two decades of
the 21st century cooled the surface temperature in summer [68]. Our results showed that
saline-alkali land improvement could accelerate surface greening and help decrease the air
temperature and increase the relative humidity, which is consistent with previous studies.
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In ecologically vulnerable regions, numerous studies have focused on land degrada-
tion as well as its climate implications [34,70]. They have revealed that land degradation or
desertification led to notable warming over northern China. As the opposite trend to land
degradation, saline-alkali land improvement brought significant cooling, which can help
slow climate warming in this area. This result suggests that the energy redistribution to
latent heat and sensible heat dominated the temperature impacts. In addition, our results
also found that the cooling effects varied among months during the growing season. Air
temperature cooling was most obvious in July and August, followed by September and
June, implying that interactions between energy balance and energy partitioning vary
during the growing season. Liu et al. found similar surface temperature differences be-
tween saline-alkali land and paddy fields using remote sensing observations [37]. It should
be noted that their change in magnitude of the surface temperature is greater than our
results, which can be explained by the following two observations. One is that the surface
temperature response to land use change is usually more sensitive than the air temperature
response [68]. The other is that Liu et al. [37] used pure pixels at 1 km to calculate the
surface temperature differences between saline-alkali land and paddy fields, whereas our
model simulations using a 10 km horizontal resolution involved mixed pixels. For this
reason, we used the regression model to reconstruct the relationship between the change
in T-2 m/Rh-2 m and the saline-alkali land improvement fraction (Figure 7). Zhang et al.
found that the change in T2 was directly correlated with the change in green vegetation
fraction (GVF) in cropland [48]. However, our results cannot be fitted by a linear equation.
With the increase in the saline-alkali land fraction, T-2 m decreased at an increasing rate,
particularly for pixels with a saline-alkali land improvement fraction (SALIF) greater than
10%. When the SALIF reached a threshold, the SALIF changed the dominant land use type
to paddy fields and influenced all the surface parameters, including LAI and albedo.

4.3. Uncertainties and Future Works

There are a few points that should be addressed in the future. First, this study
used the 24 USGS land use and land cover categories to represent the land use pattern.
The saline-alkali land and paddy fields were not included in the list of the 24 types and
were characterized by the surface parameters of bare/sparse vegetation and herbaceous
wetlands, respectively. Although saline-alkali land is a type of bare/sparse vegetation and
paddy fields are a type of herbaceous wetland, some specific properties, including albedo,
LAI, soil moisture, etc. for saline-alkali land and paddy fields cannot be fully expressed
by this categorization. For this reason, we used the remote sensing observed albedo and
LAI to update the original values. Second, in addition to LAI and albedo, the surface
parameters, including surface roughness, root depth, green vegetation fraction etc., can
influence land/atmosphere interactions [48,71], which should be localized in future studies
to help decrease the model uncertainties. Thus, in future works, the land use and land
cover categories should be expanded in the land surface model to better represent the land
surface processes and their climate effects.

Finally, our work evaluated the climate impact due to saline-alkali land improvement
to paddy fields, which helped to slow climate warming and increase the relative humidity.
Note that in addition to regulating climate, saline-alkali land improvement can also bring
other environmental or ecological benefits by producing more rice, regulating hydrology,
improving soil, increasing aesthetics and promoting tourism, all of which should be
comprehensively evaluated in our next works.

5. Conclusions

Using satellite-based land use maps for 1975, 2015 and 2019, this study analysed the
spatial-temporal changes in land use in western Jilin. From 1975 to 2015, grass degradation
(3228 km2) and paddy field expansion (1738 km2) dominated the land use changes, whereas
from 2015 to 2019, paddy fields increased by 2031 km2 and became the main land use
change characteristic in this region. Interestingly, our results showed that 25% of the
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paddy field increase in the latter period was reclaimed from saline-alkali land, and that
percentage is expected to increase in the future. The saline-alkali land and paddy fields
have distinct differences in regard to LAI and albedo during the growing season. We found
that saline-alkali land reclamation to paddy fields significantly increased LAI, particularly
in July and August, whereas it decreased albedo, mainly in May and June.

By coupling remote sensing measurements and regional climate simulations, we also
evaluated the climate impact caused by the potential saline-alkali land improvement in
western Jilin. We found that saline-alkali land improvement to paddy fields can help
decrease the air temperature and increase the relative humidity. The temperature and
humidity effects showed different magnitudes during the growing season, which were the
most significant in July and August, followed by September and June. Evapotranspiration
(ET), rather than albedo, played a dominant role in regulating the regional climate, and
the interaction between ET and albedo determined the temperature and relative humidity
response variations during the growing season.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13173407/s1, Figure S1: Pure pixels for saline-alkali land (a) and paddy field (b) at a
1 km × 1 km spatial resolution.
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