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Abstract: Marine ship detection by synthetic aperture radar (SAR) is an important remote sensing 

technology. The rapid development of big data and artificial intelligence technology has facilitated 

the wide use of deep learning methods in SAR imagery for ship detection. Although deep learning 

can achieve a much better detection performance than traditional methods, it is difficult to achieve 

satisfying performance for small-sized ships nearshore due to the weak scattering caused by their 

material and simple structure. Another difficulty is that a huge amount of data needs to be manually 

labeled to obtain a reliable CNN model. Manual labeling each datum not only takes too much time 

but also requires a high degree of professional knowledge. In addition, the land and island with 

high backscattering often cause high false alarms for ship detection in the nearshore area. In this 

study, a novel method based on candidate target detection, boundary box optimization, and con-

volutional neural network (CNN) embedded with active learning strategy is proposed to improve 

the accuracy and efficiency of ship detection in nearshore areas. The candidate target detection re-

sults are obtained by global threshold segmentation. Then, the strategy of boundary box optimiza-

tion is defined and applied to reduce the noise and false alarms caused by island and land targets 

as well as by sidelobe interference. Finally, a lightweight CNN embedded with active learning 

scheme is used to classify the ships using only a small labeled training set. Experimental results 

show that the performance of the proposed method for small-sized ship detection can achieve 

97.78% accuracy and 0.96 F1-score with Sentinel-1 images in complex nearshore areas. 
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1. Introduction 

Ship detection in SAR images plays a vital role in marine transportation and dynamic 

surveillance applications. Therefore, monitoring marine activity quickly and efficiently 

by the use of the remote sensing technique, which can be used to observe the Earth at a 

large scale, is important. Compared with optical remote sensing, SAR as an active remote 

sensing technique is an adequate approach for ship detection, as it is not only sensitive to 

water and hard targets but also works during daytime and nighttime, and in all weather 

conditions [1,2]. Fortunately, many SAR satellites, such as RADARSAT-1/2, TerraSAR-X, 

Sentinel-1A/B, ALOS-PALSAR, COSMO-SkyMed, and Gaofen-3, have been successfully 

launched in recent years, and are now providing many images in different modes and 

polarizations for maritime applications and ship detection. 

In the previous studies, constant false alarm rate (CFAR), as a classical target detec-

tion method, has been usually used for ship detection [3–5]. However, applying a sliding 

window when processing SAR images by CFAR is necessary. Moreover, the setting of the 
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protection and background window sizes not only affects the detection result but also 

takes a long time. The development and success of artificial intelligence have contributed 

to the tremendous application of convolutional neural networks (CNNs) [6], such as object 

recognition, image classification, and automatic object clustering. In the field of object 

recognition, the detection methods based on CNN can be classified into two categories 

(1): single-stage detectors such as SDD, Yolov1/v2v3/v4, and RetinaNet; and (2) two-stage 

detectors such as R-CNN, Fast R-CNN, Faster R-CNN, and Mask-RCNN. Although they 

achieve satisfactory results in natural images, direct transfer to SAR images for ship de-

tection tasks is difficult. The primary reason is due to the different characteristics of the 

objects; for example, objects are mostly centrally located in natural images, while ships 

are multi-scale and randomly distributed in SAR images. Some studies have focused on 

the detection of ships in SAR images based on deep learning methods [7,8]. A public da-

taset called the SAR Ship Detection Dataset was constructed using different SAR images 

to make the CNN detector suitable for ship detection in SAR images [7]. Then, the Faster 

R-CNN method was improved by fusion features and achieved a good performance, 

which demonstrated that CNN detectors could be used for SAR image ship [7]. A large 

size dataset with different SAR sensor images was also constructed for ship detection un-

der complex backgrounds, the result showed the RetinaNet detector could reach the ac-

curacy of 91.36%. [8]. Single shot multibox detector (SSD) was modified by removing three 

layers to detect the ship. Although the number of the parameters in SSD was decreased, 

the accuracy only slightly increased. A feature pyramid network (FPN) was used to ad-

dress various scales of interesting objects. Compared with Faster RCNN and SSD, the av-

erage accuracy had a significant improvement [9]. Chen et al. [10]proposed a novel CNN 

network for detecting multi-scale ships in complex scenes by taking advantage of the at-

tention mechanism. Cui et al. [11] designed a feature pyramid network integrating dense 

attention mechanisms; the proposed method proved to be suitable for multi-scale ship 

detection. A receptive pyramid network extraction strategy and attention mechanism 

technology were also proven to be effective in the ship detection task, but the processing 

efficiency was low due to the complex model structure [12]. The fusion feature extractor 

network was used to generate proposals from fusing feature maps in a bottom-up and 

top-down method to detect ships. Although the ship detection-based CNN had been ap-

plied to SAR images, the small and inshore targets under complex backgrounds remained 

difficult [13,14]. There were still some missing ships and false alarms due to the similarity 

in shape and intensity between ships and some building and harbor facilities [13]. Several 

state-of-art detectors were applied for ship detection, the accuracy of Faster R-CNN, Mask 

R-CNN, RetinaNet was more than 88% under the bounding box IoU threshold of 0.5, but 

the poor performance was observed in small ships [14]. The FPN module and k-means 

anchor boxes were integrated into SSD backbones, and the results demonstrated that the 

rate of false detections and misses of target ship also decreased in the case of small-object 

ship recognition [15]. An attention-oriented balanced pyramid was proposed to semanti-

cally balance the multiple features at different levels, in order to focus more attention on 

the small ships [16]. Multi-network was used for target detection to increase the accuracy 

of small-scale ship detection. The salient feature map and SAR image were input into two 

networks to train the CNN detectors, the accuracy of small ships could reach 75.35% [17]. 

The detector-based CNN models were often designed to be excessively complex in order 

to detect small ship targets, thus, the efficiency and accuracy cannot be balanced. Multi-

network and two-stage detection methods were proposed to simplify the CNN model 

structure and decrease the false alarm of candidate detection, but the auxiliary data and a 

large number of labeled training samples need to be prepared before inputting them into 

the CNN network [17]. A method of candidates’ rough detection network and ship iden-

tifying network was used to realize fast ship detection [18]. A two-stage ship detection 

method was proposed; however, the interpretability of the model was not addressed [19]. 

Then, the visual feature was analyzed, and the accuracy of small ships was improved by 

two-stage ship detection [20]. Although the above-mentioned models have been widely 
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used in weak and small target detection, they have difficulty achieving satisfying perfor-

mance due to the fact that most of the small-sized ships are nonmetallic fishing boats, and 

that generating strong dihedral angle scattering is hard due to their simple structure, ma-

terial, and target wobble [21]. Another difficulty is that a large amount of labeled data is 

required to obtain a reliable model. Manual labeling each sample datum not only takes 

too much time but also requires a high degree of professional knowledge. The ocean sur-

face waves, surface wind, upwelling, surface currents, eddies, and sea state can modulate 

and influence the ocean surface; thus, the SAR image is relatively complex in the ocean 

areas [22,23]. Therefore, manually labeling all samples of ships in different conditions is 

difficult. By labeling more annotated data, the quality of deep neural networks can be 

optimized. The difficulty is that manually labeling all samples of ships in different condi-

tions is limited. A new training strategy should be adopted to obtain a stable ship detec-

tion model with a small number of labeled data. Although CNN networks are data-driven, 

the quality of the data is as important as the quantity. If the dataset contains ambiguous 

examples that are difficult to label accurately, the effectiveness of the model will be re-

duced. Active learning models can automatically label data by selecting those that the 

model considers most optimal, update the model, and repeat the process until the results 

are sufficiently good. Thus, inspired by active learning [24–26], a model was proposed 

that asks humans to annotate data that it considers uncertain. Models trained by active 

learning strategy are not only faster to train but also can converge to a good final model 

by using fewer data. An uncertainty-based approach [27], a diversity-based approach [28], 

and expected model change [29] are three major ways to select the next batch to be labeled 

[24,30]. Various methods for applying active learning to deep networks have been pro-

posed recently; however, almost all of them are either designed specifically for their target 

tasks or operationally inadequate for large networks. 

In this study, an improved two-stage ship detection method by active learning 

scheme with a small number of labeled sample data is proposed. To begin with, an expo-

nential inverse cumulative distribution function [20] is employed to estimate the segmen-

tation threshold and obtain candidate detection results. Then, the candidate detection re-

sults are optimized by the rule of boundary box distance. Finally, the candidate detection 

results slices are input into the lightweight CNN with embedded active learning scheme 

to accurately recognize the ships by labeling a small number of training data. 

The main contributions of this study are detailed as follows: 

1. The boundary box distance is proposed to optimize candidate targets further, which 

makes the boundaries of the candidate targets more reasonable; 

2. In the training stage, the proposed method can achieve better performance with a 

small number of labeled data; 

3. In the ship detection stage, the proposed method is suitable for detecting a small-

level ship on the nearshore. 

2. Methods 

A strategy that combines deep learning with active learning is proposed, as shown 

in Figure 1, to reduce the volume of labeled training samples and the labeling cost for ship 

detection. 
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Figure 1. Deep active learning flowchart. 

Figure 1 shows a typical example of a deep active learning model architecture. Algo-

rithm 1 shows the training strategy. A huge number of unlabeled data NU  is obtained. 

The subscript N  indicates a huge number of data samples. K  samples are randomly 

selected from the unlabeled pool and annotated manually. Then, an initially labeled da-

taset 0
KL  is constructed. We define the size of the unlabeled dataset pool as 0

N KU 
. The 

subscript 0 refers to the initial stage. As soon as the initially labeled dataset i
KL is obtained, 

the loss function evaluates all the data in the unlabeled pool i
N KU 

 to obtain the data loss. 

The top-K data with the highest prediction loss are labeled and then added to the labeled 

training set. After i
KL  is updated with the samples with the K  highest losses, it be-

comes 
2
i
KL , and the unlabeled pool is reduced and denoted as i

N KU 
 at the same time. This 

cycle is repeated until the label budget is exhausted [24–26]. 

Algorithm 1 pretraining of the proposed learning model 

for cycles do 

  for i epoch do 

      if cycles == 0 

Input: initial labeled data 0
kL  and unlabeled data NU  

else 

1. Train the lightweight CNN with embedded active learning scheme, and optimize 

it by stochastic gradient descent. The loss is calculated by target loss and loss prediction 

from the loss prediction module. 

 , ,target t loss tLoss L y y L l l
    

     
   

  

2. Then, get the uncertainty with the data samples of the k  highest losses. 

3. Update the labeled dataset 
2
i
KL  and unlabeled dataset i

N KU 
, respectively. 

end for 

end for 

The loss prediction module is the core to active learning for the task as the total loss 

defined in the model can be learned so as to imitate. This section describes how we design 

and improve the M-LeNet and ResNet models to make them suitable for active learning. 

The ResNet network architecture with residual learning framework has been proven to 

reduce the training error, converge quicky and avoid overfitting; hence, the ResNet18 was 

selected as the CNN baseline backbone target architectures [31]. The four convolution 

blocks of ResNet18 are selected as the loss prediction module. The size of the first convo-

lution kernel size is changed from 5 to 3 to obtain detailed feature information in the Res-

Net18 network architecture. Figure 2 shows the improved ResNet18 contains the baseline 

target backbone (blue dashed rectangle box) and loss prediction module (red dashed rec-

tangle box). The mid-level feature map blocks of the improved ResNet18 target backbone 
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model are used as the input of the loss prediction module. Then, each feature map of the 

loss prediction module is connected by a global average pooling layer, a fully connected 

layer, and rectified linear unit layer. Finally, the total loss prediction could be obtained by 

concatenating target loss and prediction loss. The loss prediction module is much smaller 

and can learn jointly with the ResNet18 target backbone. 

 

Figure 2. Improved ResNet18 baseline backbone and loss prediction module. 

The performance of ship detection was once discussed in land-contained sea areas 

[19]. First, the candidate targets containing ships and false alarms were obtained by the 

CFAR method. Second, a dataset of 2286 ships and 2276 false alarms was constructed. 

Third, a CNN model was trained with constructed dataset and the final model was used 

to predict the ship [19]. Different from the candidate targets method in [19], a method 

based on exponential inverse cumulative distribution function was used to obtain candi-

date targets, which was proven to be faster and reasonable under different screens [20]. 

The low-complexity and lightweight M-LeNet was once proven to be effective for ship 

detection in the nearshore area [20]. Thus, the M-LeNet model in [20] is improved in the 

present study as the baseline backbone target module and loss prediction module in active 

learning, as shown in Figure 3. The two convolution blocks of M-LeNet are selected as 

loss prediction modules. The network contains two convolutional layers and has fewer 

parameters than the classical object detectors. Thus, the improved M-LeNet has a baseline 

backbone target module (blue dashed rectangle box) and a loss prediction module (red 

dashed rectangle box) consisting of blocks from the mid-level feature maps, as shown in 

Figure 3. Then, each feature map of the loss prediction module is connected by a global 

average pooling layer, a fully connected layer, and rectified linear unit. Finally, the total 

loss prediction could be obtained and jointly learned by concatenating target loss and pre-

diction loss. 
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Figure 3. Improved M-LeNet baseline backbone and loss prediction module. 

Given a training data point x , a backbone target module targetf , and a prediction 

module lossf , the goal of active learning is to obtain the baseline backbone target predic-

tion by  targety f x


  and the prediction loss module by  lossl f h


 . h  is the mid-level 

feature map blocks of the improved ResNet18 or M-LeNet target backbone model. With 

the annotated data ty  corresponding to the input data x , we can calculate the target 

loss by ,target tl L y y
 

  
 

 learning the target model. As the loss l  is a ground-truth target 

of h  for the loss prediction module, the loss of the prediction module can be obtained 

and computed by ,lossL l l
 

 
 

. Then, the final total loss function is defined as Equation (1), 

which could be jointly learned by the target backbone model and the loss prediction mod-

ule [24]. 

, ,target t lossLoss L y y L l l
    

     
   

 (1) 

where λ is set to 1 in the experiment. 

3. Results 

3.1. Dataset 

The dataset is constructed by Level-1 Sentinel-1 Ground Range Detected product 

data, located in the East China sea [20]. The performance of ship detection in VH polari-

zation is better than VV polarization as the speckle-noise and false alarm of VV polariza-

tion can affect vessel-detection results more easily than cross-polarization [20,32]. Hence, 

the VH polarization image is used for ship detection. The training dataset comes from VH 

polarization and contains slices of 2099 false alarms and 1566 different scale ships, as listed 

in Table 1. The false alarms are mainly caused by bridges, lighthouses, buildings, small 

islands, reefs, and rocks, as well as ghosts caused by azimuth ambiguity, as shown in Fig-

ure 4a. The ship mainly has a different large size and a strong scattering intensity, as 

shown in Figure 4b. Figure 5 shows some Google Earth ground truth and the correspond-

ing false alarm candidates. 



Remote Sens. 2021, 13, 3400 7 of 22 
 

 

 

Figure 4. Candidate slices of (a) false alarms, and (b) ships. 

 

Figure 5. Candidate false alarms and their corresponding images in Google Earth. 

Table 1. Number of Ships and false alarms. 

Name Count Polarization 

Ships 1566 
VH 

False alarms 2099 

Using the dataset constructed by [20], we train the lightweight CNN with embedded 

active learning scheme. Then, another two images located in the Qiongzhou Strait and the 

East China Sea are used for the candidate detection by data preprocessing and test the 

efficiency of the CNN with embedded active learning scheme with a few annotated train-

ing samples. The details of the SAR images, including the acquisition time, swath width, 

and imaging mode, are listed in Table 2. 

Table 2. Details of the Sentinel-1 images used in the experiments. 

 Time (UTC) Polarization Resolution (m) Swath (km) 

1 12 January 2019, 09:53 VH,VV 10 250 

2 7 December 2020, 10:48 VH,VV 10 250 

3.2. Training Details 

The experiments are conducted on a workstation that runs the Ubuntu 14.04 operat-

ing system, which is equipped with TITAN Xp GPU of 12 GB memory and Xeon W-2100 

CPU of 32 RAM. We repeat the same experiment multiple times with different labeled 

sample datasets setting until the unlabeled datasets are exhausted for each active learning 

method. For each of the active learning cycles, we use stochastic gradient descent to opti-

mize the baseline backbone and loss prediction module. The hyperparameters, such as 

initial learning rate, epochs, batch size, moment, and momentum were set at 0.01, 50, 32, 

0.9, and 0.0005, respectively. After 30 epochs, the initial learning rate is divided by 10. The 

number of cycles depends on the number of unlabeled samples, but the total epoch is 1000 
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when iterating all unlabeled samples by active learning training strategy. For the super-

vised learning strategy, M-LeNet, and ResNet18 method, the parameters of the hyperpa-

rameters are set to be the same as those of the active learning method, except that the 

epoch is set to 1000. This setting is used to compare the efficiency between the active learn-

ing and supervised learning strategy under the same hyperparameters. After every 200 

epochs, the learning rate is divided by 10. The support vector machine (SVM) and random 

forest (RF) were set with the default parameters by Python Scikit learn. The input data in 

the experiments were normalized to 0 and 1 to remove the effects of unit and scale differ-

ences between features. In those CNNs-based methods, such as improved M-LeNet and 

ResNet-18 with active learning strategy, the size of input data is 32 × 32 × 1, and in the 

SVM and RF, the data is stretched as a one-dimensional vector with the size of 624 × 1. 

3.3. Evaluation Indexes 

The evaluation indicators of accuracy, precision, recall, and F1-score are introduced 

to evaluate the performance of the different models, as shown in Equations (2)–(5). The 

F1-score can be considered as a kind of reconciled average of accuracy and recall, which 

is widely used in the field of remote sensing classification and target extraction, and it is 

more valuable than precision and accuracy. 

TP TN
Accuracy

TP + FP + FN + TN


  (2) 

T
P

P
re

TP
cisi

 +
on

 FP 
  (3) 

TP

TP
Reca

 +
ll

 FN 
  (4) 

Recall  Precision
F1-Score 2

Recall + Precision


   (5) 

where true positive (TP) means that a positive sample (the ship) is accurately predicted; 

true negative (TN) means that a negative sample (the false alarm) is accurately identified; 

false positive (FP) means that the true category is not a ship, but the predicted category is 

a ship; false negative (FN) means the true category is a ship, but the predicted category is 

not a ship. 

3.4. Candidate Detection 

Two sub-images with 2855 × 2144 and 7833 × 5884 are clipped from Nos.1 and 2 to 

verify the accuracy of our method. Figures 6 and 7 are intensity images in VH that the 

areas located in the nearshore area of the Qiongzhou Strait and the East China Sea area, 

respectively. The background of the Qiongzhou Strait area is relatively simple with land, 

island, and ships. However, the background of the East China Sea area is complex with 

land, radio-frequency interference (RFI) [33], ships, islands, and reefs [19,20], as well as 

the noise effects in VH polarization [34]. CFAR, Ostu, spectral residual, and corner detec-

tion are often used to obtain candidate detection results. However, the method is ineffec-

tive in cases where the variance between the object and the background is very varied. 

The method in [20] is used in the current work to obtain candidate targets for reducing 

the additional calculations and ensuring the candidate targets to be obtained is sufficient. 

However, there weresome invalid candidate targets due to some strong scattering or ship-

like structures. Figures 8 and 9 show the results of candidate detection of two sub-images, 

including the ships and false alarms caused by land targets, islands, and reefs. A total of 

322 candidate targets containing ships and false alarms were obtained by pre-progress 

candidate detection, as in Figures 8 and 9, respectively. A total of 18 true ships in the 

Qiongzhou Strait area and 79 true ships in the East China Sea area were obtained by 

Google Earth and SAR image interpretation. 
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Figure 6. Sub-image of VH polarization in the Qiongzhou Strait area. 

 

Figure 7. Sub-image of VH polarization in the East China Sea area. 
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Figure 8. The candidate detection result of the VH polarization sub-image in the Qiongzhou Strait 

area. 

 

Figure 9. The candidate detection result of the VH polarization sub-image in the East China Sea 

area. 

3.5. Boundary Box Optimization 

Candidate targets on the binary map can be discontinuous due to the effect of speck-

les noise and sidelobe interference. Therefore, the bounding box of candidate targets may 

be inaccurate, as shown in Figure 10. Figure 10a,b show the bounding box of candidate 

targets without optimization. Further processing steps are applied to improve the bound-

ary box of candidate target quality. A first quality improvement resides in the candidate 

target caused by sidelobe interference [35,36]. For the strongly scattering target, the pres-

ence of weak scattering features around strong scatterers due to sidelobe interference. The 

severe sidelobe of a strong scattering target is quite high and in many cases can be mis-

taken for a ship [35]. Hence, when an eight-connected or four-connected method is used 
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to identify the target region of interest and obtain the bounding box of candidate targets, 

multiple bounding boxes will be generated for the same strongly scattering target. If the 

amplitude of one target is significantly higher than that of another, then the low boundary 

box of a weak scattering target close to a strong scattering target should be suppressed by 

the high sidelobe of the strong scattering target. The bounding boxes should be optimized 

to reduce the number of bounding boxes caused by sidelobe interference for the same 

candidate target and obtain accurate bounding boxes. Figure 11 shows the eight situations 

of bounding boxes. The red bounding box coordinates are X1to p_ le ft , Y1to p_ le ft , X1bottom_right  

and Y1bottom_right , and the other irrelevant bounding boxes are typed in green and blue color 

with X 2 top_left , Y 2 top_left , X2 bottom_right  and Y2 bottom_right . The distance rule is introduced to 

reduce the irrelevant bounding boxes. The distance rule is defined in Table 3. If the dis-

tance rule is less than 12, the bounding boxes are merged and updated by Equations (6)–

(9). Figure 10c,d show the optimization result of the candidate targets bounding box. After 

the optimization, the position of the candidate targets bounding boxes is more accurate 

and reasonable. A second quality improvement resides in candidate targets caused by 

noise. The area and length of the bounding box from the candidate target are used to re-

duce the invalid candidate targets. Candidate target areas with less than 10 pixels, as well 

as side lengths greater than 180 pixels, are also considered noise and false alarms and are 

subsequently removed. 

 Xnew min X1 , X 2top_left top_left top_left  (6) 

 Ynew min Y 1 , Y 2top_left top_left top_left  (7) 

 Xnew max X1 , X 2bottom_right bottom_right bottom_right  (8) 

 Ynew max Y 1 , Y 2bottom_right bottom_right bottom_right  (9) 

 

 

Figure 10. Results of bounding box optimization. (a) and (b) are the bounding box of candidate 

targets without optimization; (c) and (d) are the bounding box of candidate targets with optimiza-

tion. 
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Figure 11. Position of bounding boxes (red box: the main box, blue and green boxes: the box caused 

by sidelobe interference that needs to be merged). 

Table 3. Rule of box merging. 

Index Position Distance 

1 Top  Y2 Y1left right  

2 Bottom Y1 Y2left right  

3 Left X1  X2left right  

4 Right X2 X1left right  

5 Top and Left     X1 Y1 2 X2 Y2 2left right right leftsqrt
 

  

6 Top and Right     X1 Y1 2 X2 Y2 2right right left leftsqrt
 

   

7 Bottom and Left     X1 Y1 2 X2 Y2 2left left right rightsqrt
 

   

8 Bottom and Right     X1 Y1 2 X2 Y2 2right left left rightsqrt
 

  

3.6. Effect of the Size of the Initial Labeled Training Set 

In this experiment, we randomly select 3000 unlabeled slices from the dataset to form 

a training set NU . The other slices are labeled and form the validation set. The test set 

comes from the other SAR image. We initialized a labeled dataset 

 0 50,100,150, 200, 250,300kL k   with different sizes in the training stage to analyze the 

effect of the size of the labeled set on the detection results. The labeled training set size of 

50 is taken as an example, and 50 slices are chosen from the 3000 unlabeled slices, and 

then inputted into the proposed learning model. Each of the 50 slices is labeled with the 

class with the maximum probability. A newly labeled slice is added to the labeled dataset, 

and the labeled set is trained once again until all the unlabeled slices are labeled. The same 

process is conducted for the labeled sets of other sizes. Figures 12 and 13 show the change 

in the training accuracy with the initialed number of labeled slices by M-LeNet and Res-

Net18 with embedded active learning. 

The accuracy of the training in the initial stage for M-LeNet with embedded active 

learning is higher when the number of the initially labeled training samples is larger. In 

addition, the profiles show that the initial training accuracy increases rapidly with the size 

of the labeled training set, and it reaches 95% when the labeled size is larger than 500 

except the initially labeled 250 in Figure 12. The accuracy tends to convergence when the 

size of the training set is higher than 1500. A similar phenomenon is shown in Figure 13, 

and the accuracy of the training in the initial stage for ResNet18 with embedded active 

learning is higher when the number of the initial labeled training samples is increased. 
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The difference is that the ResNet18 shows better performance than M-LeNet. ResNet net-

work architecture was proposed by He et al. [30], and it achieved the best performance in 

ILSVRC 2015 classification task. In the initially labeled 50 training samples, the accuracy 

of ResNet18 is close to 90% at the first stage. The accuracy and convergence speed improve 

fast with increasing training samples, compared with M-LeNet with embedded active 

learning. The outstanding performance also illustrates that the ResNet architecture is suit-

able for ship detection. In Table 4, the training time and accuracy with different sizes of 

initially labeled training sets are listed. In the iterative training process of M-LeNet and 

ResNet18 with active learning, the accuracy for each iterative is recorded, and the mini-

mum and maximum accuracy, average accuracy, and running time are counted for all the 

iterations. Meanwhile, the supervised learning strategy, with a large number of the la-

beled dataset of 2932 manually labeled training samples and 733 test samples, was used 

to train the M-LeNet, ResNet18, RF, SVM, and CNN methods. During the testing stage, 

the minimum and maximum accuracy, average accuracy, and running time are calculated. 

Table 4 also shows that the training time is highly correlated with the initially labeled set 

size. The model training time is shorter when the initially labeled set is larger. The maxi-

mum and the average accuracy rates exceed 98% and 97%, respectively, in all the experi-

ments with different sizes of initial training labeled set. 

Data-driven M-LeNet and ResNet18 in the supervised learning mechanisms, as well 

as SVM and RF in the machine learning mechanisms, are also used for evaluation. In those 

methods, the ratio of initial training and test sample is 8:2. The highest and the average 

accuracy rates of ResNet18 exceed 99% and 97%, which is better than that of ResNet with 

embedded active learning mechanisms. The highest accuracy and the average accuracy of 

M-LeNet exceed 98% and 97%, which are better than those of M-LeNet with embedded 

active learning mechanisms. The RF and SVM show poor accuracy with 95%, which is less 

than that of the CNN model. Similar performances from RF, SVM, and CNN are also 

shown in [19]. 

In the active learning mechanism, the accuracy gradually becomes better and rapidly 

converges with increasing numbers of labeled samples. However, the accuracy oscillation 

is relatively large compared with those of other models in the M-LeNet with embedded 

active learning mechanisms when the number of samples initially labeled is set as 150 and 

250. When the data-driven CNN is applied to classification and recognition tasks, the steps 

are to train the model with a great number of labeled samples, obtain feedback from the 

model, and then adjust the parameters, continue to label the data, or modify the model 

architecture according to its performance until it meets the requirements. However, active 

learning is to train the model during the data labeling process. Thus, the quality of the 

data strongly influences the model. Under the condition of initially labeled 150 and 250 

training samples in M-LeNet with active learning mechanism, or initially labeled 200 and 

250 training samples in ResNet18 with active learning mechanism, the accuracy increases 

to a certain point and then suddenly decreases, and finally the accuracy increases and 

converges again during the iterative process. The reason for the decrease in accuracy is 

that the ships and false alarms are not completely and effectively distinguished, and there 

are samples which are difficult to separate, resulting in labeling errors. Thus, compared 

with convergence when the initial label sample size settings of 50 and 100, when the num-

ber of initially labeled samples is a set of 150 and 250, performance is slow due to the 

quality of data for each batch. However, as the number of samples increases, the learning 

ability of the model becomes strong and the accuracy increases and tends to be stable. The 

model architecture also influences the performance of active learning. The ResNet18 

shows better performance than M-LeNet with embedded active learning, and this perfor-

mance illustrates the effect of the model architecture. Moreover, the performance of M-



Remote Sens. 2021, 13, 3400 14 of 22 
 

 

LeNet and ResNet18 by active-learning strategy can be comparable to that of supervised 

training strategy when achieving 1000 epochs. However, the training time is greatly re-

duced. 

 

Figure 12. Change in the initial training accuracy with the number of labeled slices by improved M-

LeNet with active learning. 

 

Figure 13. Change in the initial training accuracy with the number of labeled slices by improved 

ResNet18 with active learning. 
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Table 4. The accuracy and time consumption of the proposed model with different sizes of initially 

labeled training sets. 

Strategy Method 

Initial Labeled 

Training Set 

Size 

Min 

Accuracy (%) 

Max 

Accuracy (%) 

Average 

Accuracy (%) 
Time 

Active-

learning 

Improved 

M-LeNet 

50 82.41 98.50 96.36 2.32 h 

100 83.61 98.19 96.27 1.17 h 

150 85.86 97.90 95.56 47 min 

200 87.96 97.44 95.75 36 min 

250 86.01 97.44 95.26 29 min 

300 87.97 97.44 95.70 26 min 

Improved 

ResNet18 

50 96.54 98.50 96.04 2.87 h 

100 93.38 98.50 97.37 1.46 h 

150 96.69 98.65 97.81 59 min 

200 96.39 98.20 97.77 45 min 

250 97.14 98.50 97.79 36 min 

300 94.44 97.94 97.75 31 min 

Surpervised 

M-LeNet 

2932 

90.44 97.97 97.08 1.18 h 

ResNet18 92.90 99.13 98.67 2.13 h 

RF - - 95.27 - 

SVM - - 94.54 - 

CNN [19]  - - 97.20 - 

3.7. Comparison of the Results Derived by Different Methods 

We also compared the results achieved by SVM, RF, M-LeNet, and ResNet18 to 

demonstrate the efficiency of the improved lightweight M-LeNet and ResNet18 with em-

bedded active learning scheme. The ratio of training samples and test samples is 8:2 in the 

supervised learning scheme, with 2932 manually labeled training samples and 733 test 

samples. In the active learning scheme, the manually initially labeled sample is set to 50, 

100, 150, 200, 250, and 300. In the improved lightweight M-LeNet with embedded active 

learning schemes, manually labeled training samples of 50, 100, 150, 200, 250, and 300 are 

called M-LeNet-50, M-LeNet-100, M-LeNet-150, M-LeNet-200, M-LeNet-250, and M-Le-

Net-300, respectively. In the improved lightweight ResNet18 with embedded active learn-

ing schemes, manually labeled training sample of 50, 100, 150, 200, 250, and 300 are called 

ResNet-50, ResNet-100, ResNet-150, ResNet-200, ResNet-250, and ResNet-300, respec-

tively. Two sub-images of the East China Sea area and the Qiongzhou Strait area with the 

sizes of 7833 × 5884 and 2855 × 2144, respectively are cropped to test the aforementioned 

methods. The backgrounds of the two sub-images for testing are complex and contain 

different scale-level ships. Figures 8 and 9 show the candidate detection result of two sub-

images, respectively. A total of 322 candidate targets containing ships and false alarms are 

obtained by pre-progress in Figures 8 and 9. A total of 18 true ships in the Qiongzhou 

Strait area and 79 true ships in the East China Sea area are obtained by Google Earth and 

SAR image interpretation. Figure 14 shows the area of ships that can be obtained by the 

LabelImg annotation tool [37]. In those ships, the minimum size of the ship is 6 × 7 pixels, 

and most of the ships are less than 32 × 32 pixels. The targets with an area less than 32 × 

32 are classified as small objects in the MS COCO nature dataset [38]. Most of the small-

sized ships are nonmetallic fishing boats, so it is difficult to generate a strong scattering 

echo due to their simple structure, material, and target wobble [21]. The small-sized ships 

tend to be operated in the morning (02:00–11:00) and seem to be operated near shore [39]. 

Thus, most of the ships are most likely fishing boats; the size of the ships looks small and 

the scattering intensity also looks weak in the two SAR images acquired at 09:53 and 10:48 

in the morning. 
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Figure 14. Areas of ships. 

The Qiongzhou Strait area located in the nearshore is relatively simple. The quanti-

tative assessment performance is listed in Table 5. The best accuracy in the training stage 

is used to evaluate for M-LeNet and ResNet18 by the active learning strategy. The detec-

tion results show that the highest recall, accuracy, and F1-score of 1.0, 100%, and 1.0, re-

spectively is achieved by the M-LeNet-50, M-LeNet-100, ResNet18-50, ResNet18-100, Res-

Net18-250, and ResNet18-300. In the supervised learning strategy, the ResNet18 and RF 

can achieve a recall of 1.0, an accuracy of 100%, and an F1-score of 1.0. The performance 

of M-LeNet-150, M-LeNet-200, and M-LeNet-250 is not as good as the supervised learning 

strategy of M-LeNet, ResNet18, SVM, and RF. Figure 15 shows that the best detection re-

sults are achieved by active learning and supervised strategy. 

The East China sea area located on the nearshore is relatively complex. The RFI could 

be observed in the left of Figure 7, which has similar intensity to ships and can degrade 

ocean interpretation [33]. A new method was once proposed to discriminate ships from 

RFIs based on non-circularity and non-gaussianity [32]. However, the candidate detection 

results show that the preprocessing reduces the effect of RFI, as shown in Figure 9. Table 

6 shows the quantitative evaluation results by active learning and supervised learning 

strategy. The result shows that the highest accuracy and F1-score of 97.78% and 0.96 is 

achieved by the M-LeNet-50 and M-LeNet-150. The highest accuracy and F1-score of 

97.41% and 0.96 is achieved by the ResNet-50. The performance of M-LeNet and ResNet18 

with the supervised learning strategy can achieve the best performance with the accuracy 

and F1-score better than 96% and 0.94, but the RF and SVM have the worst result. Figure 

16 shows the best detection results by the active learning and supervised strategy. In the 

CNN detector field, an area smaller than 32 × 32 is defined as small objects, and most ships 

in the test data are much less than 32 × 32 pixels. The result shows that 73 true ships are 

detected, six true ships are undetected, and zero false alarm is misclassified as the ship. 

The reason is that the ship’s RCS is weak, and some ships have similar backscattering with 

the ocean [21]. The results of RF and SVM show that some false alarms are misclassified 

as ships due to similar characteristics with islands and reefs. 
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Figure 15. Results of the different methods in the Qiongzhou Strait. ((a): SVM, (b): RF, (c): Super-

vised-learning M-LeNet, (d): Supervised-learning ResNet18, (e): Active learning M-LeNet, and (f): 

Active learning ResNet18). Red rectangle: ship; green rectangle: missed ship; and blue rectangle: 

false alarm. 

Table 5. Quantitative assessment results in the Qiongzhou Strait. 

Strategy Method Accuracy Recall Precision F1-score Missed False Detected 

Active-learn 

 

M-LeNet-50 100% 1.0 1.0 1.0 0 0 18 

M-LeNet-100 100% 1.0 1.0 1.0 0 0 18 

M-LeNet-150 99.08 0.94 0.94 0.94 1 0 17 

M-LeNet-200 98.16 0.78 1.0 0.88 4 0 14 

M-LeNet-250 99.08 0.94 0.94 0.94 1 0 17 

M-LeNet-300 99.08 0.94 0.94 0.94 1 0 17 

ResNet-50 100% 1.0 1.0 1.0 0 0 18 

ResNet-100 100% 1.0 1.0 1.0 0 0 18 

ResNet-150 98.62 1.0 0.86 0.92 0 3 18 
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ResNet-200 99.54 1.0 0.95 0.97 0 0 18 

ResNet-250 100% 1.0 1.0 1.0 0 0 18 

ResNet-300 100% 1.0 1.0 1.0 0 0 18 

Surpervised 

M-LeNet 99.54 1.0 0.95 0.97 0 1 18 

ResNet18 100% 1.0 1.0 1.0 0 0 18 

SVM 99.54 1.0 0.95 0.97 0 1 18 

RF 100% 1.0 1.0 1.0 0 0 18 

 

Figure 16. Result of the different methods in the East China Sea. ((a): SVM, (b): RF, (c): Supervised-

learning M-LeNet, (d): Supervised-learning ResNet18, (e): Active learning M-LeNet, and (f): Active 

learning ResNet18). Red rectangle: ship; green rectangle: miss-detection; and blue rectangle: false 

alarm. 
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Table 6. Quantitative assessment results in the East China Sea. 

Strategy Method Accuracy Recall Precision F1-score Missed False Detected 

Active-learn 

 

M-LeNet-50 97.78 0.92 1.0 0.96 6 0 73 

M-LeNet-100 97.41 0.92 0.99 0.95 6 1 72 

M-LeNet-150 97.78 0.92 1.0 0.96 6 0 73 

M-LeNet-200 95.93 0.89 0.97 0.93 9 2 70 

M-LeNet-250 97.04 0.90 1.0 0.95 8 0 71 

M-LeNet-300 97.04 0.92 0.97 0.95 6 2 73 

ResNet-50 97.41 0.95 0.96 0.96 4 3 75 

ResNet-100 97.04 0.92 0.97 0.95 6 2 73 

ResNet-150 95.19 0.90 0.93 0.92 8 5 71 

ResNet-200 96.30 0.92 0.95 0.94 6 4 73 

ResNet-250 96.30 0.90 0.97 0.93 8 2 71 

ResNet-300 97.04 0.92 0.97 0.95 6 2 73 

Surpervised 

M-LeNet 96.67 0.91 0.97 0.94 7 2 72 

ResNet18 97.04 0.92 0.97 0.95 6 2 73 

SVM 90.74 0.95 0.78 0.86 4 21 75 

RF 89.63 0.82 0.82 0.82 14 14 65 

4. Discussion 

In this article, we mainly discuss ship detection for CNN-based VH polarization. As 

an alternative to end-to-end CNN-based detectors [8,9,40–43], we proposed a two-stage 

ship detection method. Although similar ship detection methods were proposed by 

[19,20,44], a large number of samples needed to be labeled and prepared before the CNN 

began to train. A ship detection method was proposed based on an improved lightweight 

M-LeNet and ResNet18 deep learning network with an active learning strategy to enable 

suitability of the CNN model for detecting small ships with a small amount of labeled 

sample data, as well as reduce labor cost. In the CNN-based active learning strategies, the 

initially labeled sample size only affects the initial accuracy and training time. The perfor-

mance of the different numbers of labeled data is similar to those of [24]. As the unlabeled 

database is updated with the samples by active learning strategy, the accuracy of the 

model is gradually becoming higher and stabilized. He et al. [45] once emphasized that 

the convergence can be accelerated by using models that have been pre-trained on 

ImageNet in the early stage of training. It is not feasible that pretraining on ImageNet 

would require a significant amount of time and computational power [10]. Transfer train-

ing can converge with suitable time and small datasets, but data differences between SAR 

images and natural images are ignored [9]. By the application of a suitable active learning 

method and an adequate number of iterations, we can achieve satisfactory convergence. 

However, some existing ship-like structures produce similar characteristics to ships. In 

addition, the detection effectiveness of SAR ships is influenced by many factors, including 

polarimetry, image resolution, incidence angle, ocean dynamics parameters, ship size, 

and ship orientation [46]. In some active learning strategies, the model appears not very 

well converged. Thus, the poor detection result is obtained in the experiment. In the fu-

ture, the sea state information should be further considered to obtain satisfactory conver-

gence to improve ship detection. In addition, the small-sized ship is difficult to detect due 

to the weak target scattering and few pixels. In the next work, we will consider further 

optimization of the model to improve weak scattering target detection by combining po-

larization features and scattering features. In addition, ship detection in SAR images has 

become an important technology-based on CNNs, several SAR ship detection methods 

have been proposed by scholars using Radarsta-1/2, TerraSAR-X, Sentinel-1 A/B, GF-3 da-

tasets [7,8,14]. However, they do not receive support from AIS information, nor Google 

Earth images, so the annotation process of their dataset relies heavily on the experience of 
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experts, which likely leads to a decrease in the authenticity of the dataset [14,47]. In our 

experiment, the ships and false alarms are annotated by visual interpretation, expert 

knowledge, and Google Earth images; it is progress. Due to a lack of AIS information, it 

may be that there are wrong samples in the dataset. Hence, in the future, it will be neces-

sary to obtain AIS information corresponding to SAR data to improve the performance of 

ship detection. 

5. Conclusions 

We mainly discuss ship detection for CNN-based VH polarization in this article. As 

an alternative to end-to-end CNN-based detectors, a new method was proposed for SAR 

image ship detection in the case of a small number of training samples. The main steps of 

the proposed method include candidate target detection, boundary box optimization and 

ship detection. Compared with the SVM, RF, M-LeNet, and ResNet18, which need a great 

number of labeled samples, the proposed ship detection method based on improved light-

weight M-LeNet and ResNet18 network with an active learning strategy can label the 

training data automatically, and shows high reliability with only a small number of train-

ing samples. The experimental results also show that it performs well for small-sized ships 

nearshore with the proposed method. In the future, the way to use the polarimetric fea-

tures and combine them with CNN to further improvements in the detection accuracy of 

the small-sized ship is worth investigating. 
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