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Abstract: The spatial resolution of multispectral data can be synthetically improved by exploiting
the spatial content of a companion panchromatic image. This process, named pansharpening, is
widely employed by data providers to augment the quality of images made available for many
applications. The huge demand requires the utilization of efficient fusion algorithms that do not
require specific training phases, but rather exploit physical considerations to combine the available
data. For this reason, classical model-based approaches are still widely used in practice. We created
and assessed a method for improving a widespread approach, based on the generalized Laplacian
pyramid decomposition, by combining two different cost-effective upgrades: the estimation of
the detail-extraction filter from data and the utilization of an improved injection scheme based
on multilinear regression. The proposed method was compared with several existing efficient
pansharpening algorithms, employing the most credited performance evaluation protocols. The
capability of achieving optimal results in very different scenarios was demonstrated by employing
data acquired by the IKONOS and WorldView-3 satellites.

Keywords: pansharpening; multispectral images; generalized laplacian pyramid; multilinear
regression; filter estimation

1. Introduction

Pansharpening [1–5] has generated growing interest in the last years due to the numer-
ous requests for accurate reproductions of the Earth surface, which pushed researchers to
enhance the performance of algorithms based on remotely sensed data. Indeed, pansharp-
ening represents a crucial step in the production of images aimed at visual interpretation in
widely exploited software such as Google Earth and Bing Maps. Likewise, many other ap-
plications take advantage of this kind of fused data, for instance, agriculture (e.g., for crop
type [6] and tree species [7] classification and for precision farming [8]), land cover change
detection (e.g., for snow [9], forest [10] and urban [11] monitoring), archaeology [12] and
even space mission data analysis [13].

Although the term is often used for a large set of combined data, the pansharpening
process more exactly indicates the enhancement of a multispectral (MS) image through
fusion with a higher resolution panchromatic (PAN) representing the same scene, as
depicted in Figure 1. This setting allows one to obtain a very high quality final product,
since the acquisitions can be collected almost contemporaneously from the same platform,
thanks to the availability of the two required sensors on many operating satellites.

Several algorithms have been developed for completing the pansharpening process.
They can be categorized in different ways according to their main features. In particular,
an useful taxonomy that can guide the choice of the user distinguishes two main classes
composed of classical and emerging approaches [5]. Essentially, the first group includes
the methods which have been developed over the years, starting from the analysis of
the physical processes underlying the acquisition of the signals involved. It includes
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both component substitution (CS) approaches—for example those based on intensity-hue-
saturation (IHS) [14,15], Gram–Schmidt [16,17] or principal component analysis [18,19]
decompositions—and multiresolution analysis (MRA) methods, which use signal decom-
positions based on box filters, Laplacian pyramids [20–23], wavelets [24–26] and morpho-
logical filters [27–29]. Instead, the methods contained in the second group are more focused
on the optimization of the fusion result, which aim at obtaining the best image quality
through the application of more general estimation approaches. Techniques based on
variational optimization (VO) approaches [30–32] and on machine learning (ML) [33–37]
belong to this class.

(a) (b) (c)

Figure 1. An example of pansharpening: (a) MS (interpolated) image; (b) PAN image; (c) fused image (namely, via the
MBFE-BDSD-MLR method, presented in Section 5).

The literature shows several papers in which the results achievable through these
approaches are compared [1,5,38–41]. As in many other fields, the recent development of
more efficient computational approaches has constituted a major breakthrough in data
fusion, making feasible the utilization of variational and ML-based methods. More in
detail, in the last decade, pioneering works in ML category were compressive sensing
and dictionary-based solutions, such as [31,42–46]. Subsequently, deep learning (DL)
approaches became more and more popular in the remote sensing field [47], including
pansharpening [33–36,48–55], and intimately related tasks such as super-resolution [56–59]
and hyper-/multi-spectral data fusion [60,61]. The main issue of the above-mentioned ML
approaches is the assumption of a training paradigm relying on a resolution downgrade
process (e.g., Wald’s protocol). More recently, different training paradigms, mainly based
on multi-objective strategies, such as in [62,63], have been proposed to address such
a problem.

On the other hand, a careful analysis of the literature testifies that the performance
enhancements obtained through recent implementations of classical methods, such as those
proposed in [64–66], or efficient implementations of VO, such as the one proposed in [30],
lead to high quality pansharpened images that do not require extensive training phases.

For this reason, we focus in this paper on possible improvements of these efficient
approaches, and in particular, we exploit the classical method scheme that is composed
by two successive phases [1]: (i) the extraction of the details from a high resolution PAN
image and (ii) the injection of those details into a low resolution MS image. We tackled the
investigation of both phases, following the lines traced by the recent literature.

In more detail, we focus on an MRA approach based on the generalized Laplacian
pyramid (GLP) [20] with a modulation transfer function (MTF)-matched filter. Namely,
the details are extracted from the PAN image through a filter, whose amplitude response
is matched to the MTF of the MS sensor [21]. This technique points toward obtaining the
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most relevant data to the enhancement of the MS image spatial resolution, since it isolates
the PAN information that was cut out off by the MS acquisition process. The cited reviews
contain a vast list of pansharpening approaches using the MTF-shaped extraction filters.
However, the exact form of the MS sensor’s MTF is frequently unavailable in practice, due
to the lack of accurate and updated on-board measurements of the actual response, which
change over time due to the acquisition device aging [67]. Accordingly, good practice
consists of estimating the actual shape of the detail-extraction filter directly from data [30].
If the response is significantly different across bands, it is advisable to estimate a different
filter for each band [68].

Typically, the subsequent phase of detail injection is completed by adding the image
extracted from the PAN image weighted by an injection coefficient matrix, which can
in general contain a different entry for each pixel and each band. The values of the
specific weights can be derived through physical considerations (as it happens for the HPM
method [67,69]) or through mathematical optimization approaches starting from suitable
criteria. The projective (or regression-based) injection model [21,70] belongs to the latter
type, since it implements the minimum mean square error (MMSE) estimation approach.
However, the described linear injection rule does not always represent the optimal choice,
as it can also be argued from the studies that propose non-linear approaches, implemented
through local methods [15,66,71] or non-linear networks [33,48]. In this work we elaborate
on this thesis, while aiming to preserve the computational efficiency of classical methods.
To that end, we adopted a slight generalization of the linear approach that consists of
estimating the best polynomial approximation of the optimal relationship between the
details extracted from the PAN image and those missing in the MS image. This approach
allows one to estimate the optimal injection coefficients, according to the MMSE criterion,
through a simple closed formula implementing a multilinear regression (MLR) scheme [29].

The original contribution of this study relies on the definition of a novel fusion
architecture. The combination of the filter estimation and the MLR injection approach
has been assessed and compared to several existing approaches. We show that with the
conjunction of the two techniques, it is possible to obtain remarkable robustness against
the diversity of the illuminated scenes, thereby enhancing a key feature of algorithms in
practical applications. We tested the proposed method using two different real datasets,
acquired from the IKONOS and the WorldView-3 sensors, which allowed us to evaluate
the effective performance in different working scenarios. The quality of the final products
has been assessed by exploiting both the reduced scale and the full scale assessment
protocols [30]. The former allowed us to evaluate the performances of the algorithms in a
controlled scenario, where the original MS images were used as references for the fusion of
images that were purposely degraded to lower resolution. The latter constituted a realistic
scenario in which the MS and PAN images were combined at the original resolution, in the
absence of reference images.

In the next section, we describe the problem at hand, define the quantities used in
the paper and provide an overview of the proposed approach. The following two sections
are devoted to detailed descriptions of the chosen implementations of the two phases that
compose the fusion process. In Section 5, we describe the simulation setting and report the
outcomes of the experimental tests. The discussion of the results is in Section 6. Finally,
conclusions are drawn in Section 7.

2. Problem Statement

Firstly, we introduce the mathematical notation that will be used in this paper. Bold
uppercase, example X, indicates an image. Accordingly, P is used to denote the panchro-
matic (PAN) image, which is an Lr × Lc two-dimensional array, where Lr and Lc are the
numbers of rows and columns of the PAN image, respectively. Instead, the multispectral
(MS) image is a three-dimensional array with dimensions Lr/R× Lc/R× B, where B is the
number of bands, and R is the resolution ratio between the original MS and the PAN data;
it is denoted by M = {Mb}b=1,...,B, where Mb indicates the b-th spectral band.
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The purpose of pansharpening is to identify a near-optimal procedure to obtain
Lr × Lc × B MS data—M̂ = {M̂b}b=1,...,B—that is characterized by the same spectral
resolution of the original MS image M and the same spatial resolution of the PAN image
P. We also define an M̃ = {M̃b}b=1,...,B, the Lr × Lc × B MS image obtained by solely
upsampling M to the PAN scale.

The general formulation of a classical fusion process is given by the following expres-
sion [1]:

M̂b = M̃b + Fb[∆Pb], b = 1, . . . , B, (1)

where:

• ∆Pb are the PAN detail images, computed as ∆Pb = Pb − PL
b , i.e., as the differences

between the band by band equalized PAN image Pb (the equalization is performed as
suggested in [27]) and its low-pass filtered version PL

b ;
• Fb[·] are the functions (different for each band b) that inject the PAN details into each

MS band.

According to (1), in classical methods each band is treated independently and an
additive form is assumed for the injection procedure. The different techniques adopted to
compute PL

b (and hence the details ∆Pb) and Fb[·] identify the specific approaches. More
specifically, if PL

b is obtained by combining the channels of the interpolated MS image M̃,
the method is said to belong to the CS class, whereas if PL

b is obtained by extracting the
low-pass part from the PAN image P, the method is said to belong to the MRA class. This
distinction is not purely formal, since the two classes can be shown to be characterized by
very different visual and quantitative features [72].

Starting from this framework, in this work we propose an architecture, depicted in
Figure 2, in which the main steps are the following ones.

(1) Filter estimation. The low-pass filtered PAN image PL
b is obtained via an MRA scheme,

where the low-pass filter impulse response hb (that can be different for each band
b ∈ {1, · · · , B}) is estimated from the data by using semiblind deconvolution [30,68],
as will be detailed in Section 3.

(2) Multilinear regression-based injection. The functions Fb[·] are supposed to have a non-
linear form that can be approximated by a polynomial expansion of order M, whose
coefficients are computed by using a multilinear regression (MLR) approach [29]. The
complete description of this procedure will be provided in Section 4.

Indeed, our purpose was to evaluate the joint effect of both filter estimation and MLR-based
injection on the final fused product. Therefore, in the following sections, we present in
detail our proposal for implementing these two steps.

Equalization
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Figure 2. Block scheme of the pansharpening framework.
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3. MRA via Filter Estimation

In this section we present two MRA approaches based on the estimation of the low-
pass filter impulse response, namely, the filter estimation (FE) and the multi-band filter
estimation (MBFE) algorithms, introduced in [30,68], respectively.

Both these algorithms rely on approaching the estimation problem in the following
form. Let x ∈ RN be a single band lexicographic ordered image, where N = LrLc, and let
y ∈ RN be its spatially degraded version, obtained via a low-pass filter (LPF) with the
finite impulse response h ∈ RN and the addition of noise n ∈ RN . In formulas, we can
write the following equation:

y = C(x)h + n, (2)

where C(·) is an operator that generates a block circulant with circulant block (BCCB)
matrix by suitably rearranging the entries of its argument such that the matrix product
between C(x) ∈ RN×N and h yields the convolution between the image x and the filter
h [68,73].

In this setup, the filter estimation problem is addressed by solving the constrained
minimization problem:

min
h

{
‖y− C(x)h‖2 + λ‖h‖2 + µ

(
‖C(dv)h‖2 + ‖C(dh)h‖2

)}
subject to hT1 = 1, h ∈ H,

(3)

where ·T is the transpose operator; C(dv) ∈ RN×N and C(dh) ∈ RN×N are BCCB matrices
that are computed from the filters dv and dh and that perform the first-order finite difference
in the vertical and horizontal directions, respectively; and 1 is a row vector of all ones.
This formulation derives from the combination of different terms. The first one is the
so-called data-fitting term, which is the main quantity to be optimized. Then, there are two
regularization terms, introduced due to the ill-posedness of this estimation problem [74]
that put some constraints on the resulting solution. The first regularization term (namely,
‖h‖2) helps to obtain a limited-energy solution. On the other hand, the second regularization
term (namely, ‖C(dv)h‖2 + ‖C(dh)h‖2) is useful to enforce a smooth solution. The weights
λ and µ aim to tune the importance of the regularization terms when finding the solution
h, which is subject to two constraints: it has to be normalized (i.e., hT1 = 1) and limited
to a finite, non-empty and convex support, H ⊂ RN . As stated in [30,68], the choice of
the squared `2 norm ‖ · ‖2 allows one to solve the problem in (3) in a closed form. Indeed,
the quadratic cost function within the minimization problem in (3) attains its (global)
minimum when[

C(x)TC(x) + λI + µC(dv)
TC(dv) + µC(dh)

TC(dh)
]
h = C(x)Hy, (4)

where I is the identity matrix and ·H indicates the Hermitian transpose operator.
A computational efficient solution of (4) exists and can be explicitly written in the

frequency domain as

h = F−1
{
◦ F{x}∗ ◦ F{y}
F{x}∗ ◦ F{x}+ λ + µ(F{dh}∗ ◦ F{dh}+F{dv}∗ ◦ F{dv}

◦
}

, (5)

where the ◦ symbol indicates pointwise (entry-by-entry) multiplication and division oper-
ations; F{·} and F−1{·} are the 2-D discrete Fourier transform operator and its inverse,
respectively; and (·)∗ denotes the complex conjugate. Indeed, due to their BCCB struc-
ture, the matrices C(x), C(dh) and C(dv), can be diagonalized by the 2D discrete Fourier
transform matrix, leading to a computational cost dominated by the number of operations
required to perform the fast Fourier transform (FFT) transform, i.e., O(N log N). Finally,
in order to fully profit from the FFT, which assumes a periodic boundary structure of
the image, a preprocessing step aimed at smoothing out the unavoidable discontinuities
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present in the real-world images is needed. The adopted solution relies on blurring the
image borders, as suggested in the image processing literature [75].

In the following, we briefly describe the two most promising and effective approaches
to complete the filter estimation task for pansharpening, i.e.,:

• The filter estimation (FE) method [30], which estimates a single filter for all the MS
channels;

• The multi-band filter estimation (MBFE) algorithm [68], which overcomes the main
limitation of the FE by estimating a filter for each band.

3.1. FE Algorithm

This approach consists of estimating a single filter; i.e., for all spectral bands b ∈
{1, · · · , B}, hb is equal to the same estimated filter, say hP. The P subscript refers to the
implementation of the FE algorithm that exploits the relationship between the PAN image
p ∈ RN and an equivalent PAN image pe ∈ RN generated by projecting the MS image into
the PAN domain via the formula

pe = waugM̃aug. (6)

In (6), M̃aug =
[
m̃T

1 , · · · , m̃T
b , · · · , m̃T

B, 1T]T is obtained by stacking the lexicographic
ordered single band images {m̃b}b=1,...,B and the all-ones row vector 1, and waug =[
wT , w0

]T is composed by the vector w = [w1, · · · , wb, · · · , wB], whose elements are the
weights measuring the overlap between the PAN image and each spectral band, and w0 is a
bias coefficient.

The algorithm is based on the following two interdependent alternating steps, starting
from an initial estimate for the filter hP.

• Estimation of the weights waug. This step consists of imposing the equality between the
image pe defined in (6) and a low-pass filtered version of Pb computed via the current
estimate of hP. Therefore, the estimate of the weights waug is easily found via a classic
multivariate regression framework.

• Estimation of the filter hP. This estimate is found by using (5) in which pe plays the role
of the blurred and degraded image y and p plays the role of the matrix x. The resulting
filter is finally normalized (in order to have a unitary gain) and the values outside a
given window are set to zero.

In order to help a fast convergence of the iterative algorithm (usually in a couple
of iterations), the Starck and Murtagh low-pass filter [76] (used in pansharpening in
the popular “à trous” algorithm) is chosen as initial guess for the filter hP. Moreover,
the maximum number of iterations is fixed to 10, in order to ensure that the algorithm stops.

3.2. MBFE Algorithm

An effective algorithm aimed at estimating a specific degradation filter hb for each
b ∈ {1, · · · , B} is the MBFE method [68]. The low coherence between some bands of the
MS image and the PAN image prevents satisfying performance by estimating hb directly
from the PAN image [30]. This problem is solved by generating an initial estimate of M̂
(say it M̂0 = {M̂0

b}b=1,...,B) that can be used as an approximation of the ground-truth (GT)
for the filter estimation task, ensuring higher coherence between the high and the low
resolution MS images.

Natural candidates for estimating M̂0 are the CS-based methods. Indeed, they are
able to generate a fused product that completely retains the PAN spatial details [30], which
are key for an accurate estimation of the filters. Therefore, for each band b ∈ {1, · · · , B},
the estimation of hb is performed by using (5) in which m̃b plays the role of the blurred
and degraded image y and m̂0

b (i.e., the lexicographic ordered version of M̂0
b) plays the

role of the matrix x. Among the CS algorithms, the band-dependent spatial-detail (BDSD)
technique [77] and the Gram–Schmidt adaptive (GSA) method [17] have been proved to
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generate initial guess images M̂0 that are well-suited for use in MBFE [68]. Therefore, in the
following, we will consider two MBFE variants: the MBFE BDSD and the MBFE GSA.

4. MLR-Based Injection

In this section we briefly present the MLR-based injection scheme that is the second
pillar of the proposed pansharpening architecture. This scheme is a natural extension of
the following classical approaches, in which Fb[·] is linear.

• CBD Injection Scheme. In the context-based decision (CBD) injection model, for each
channel b, the details of the PAN image are multiplied by a scalar coefficient, namely,

Fb[∆Pb] = gb∆Pb. (7)

The injection coefficients gb, ∀b ∈ {1, · · · , B} are computed by the regression of the b-th
MS channel on the PAN images. It is worth noting that this scheme is also used in
other pansharpening algorithms, such as the aforementioned GSA.

• HPM Injection Scheme. The high-pass modulation (HPM) injection scheme relies on
the pointwise multiplication of the PAN details by a coefficient matrix Gb, according to

Fb[∆Pb] = Gb ◦ ∆Pb. (8)

Additionally, in this case, other pansharpening algorithms use this scheme, such as
the Brovey transform (BT), which is a classic multiplicative scheme belonging to the
CS family [78].

On the contrary, the proposed scheme employs a non-linear injection function Fb[·]
in (1) that is approximated via a polynomial expansion of order M around zero, i.e.,

Fb[∆Pb] =
M

∑
m=0

gb,m(∆Pb)
m. (9)

This formulation is linear with respect to the coefficients {gb,m}m=0,...,M; therefore, it
is possible to use the MLR framework [79] that is the multidimensional extension of the
classic ordinary least square method. More in detail, we should estimate the coefficients
{gb,m}m=0,...,M by solving the problem

∆M̂b =
M

∑
m=0

gb,m(∆Pb)
m + Rb (10)

where ∆M̂b = M̂b − M̃b are the details of the target MS image and the optimal (in the least-
squares sense) coefficients {gb,m}m=0,...,M minimize the Frobenius norm of the residuals
Rb. Unfortunately, it is impossible to compute the details of the MS image, because this
approach would require the knowledge of M̂b—that is, the image to estimate. Therefore,
the solution is to solve the reduced resolution companion problem

δMb =
M

∑
m=0

gRR
b,m(δPRR

b )m + RRR
b , (11)

defined in terms of the corresponding reduced resolution versions, indicated by the super-
script RR. More specifically,

δMb = Mb − hb ∗Mb,
δPRR

b = PRR
b − hb ∗ PRR

b ,
(12)

where PRR
b is the downsampled version of PL

b , defined in Section 2 (see also Figure 2).
Finally, according to the findings of [29], we use M = 2, which shows a good trade-off
between the complexity of the model and its performance.
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5. Experimental Results

The crucial phase of this study was constituted by the experimental tests that have
allowed us to verify the suitability of the proposed technique. Due to the above-mentioned
lack of a reference image, the assessment of fusion algorithms had to be performed in two
distinguished steps, involving the evaluation of the performance at both reduced scale and
full scale [1]. The former consisted of reproducing the fusion problem at a lower resolution
through the appropriate degradation of the available images. In particular, the choice of
a scaling factor equal to the resolution ratio R allows one to downsize the PAN image
at the resolution of the original MS image, which can thus be used as the fusion target.
In this case, some indexes can be used for the evaluation of the image quality. On the other
hand, changing the working resolution does not represent an ideal solution for two main
reasons. The information concerning the illuminated area is somewhat different at the two
scales, due to a substantial reduction of perceivable details. Moreover, the image processing
algorithms employed for coarsening the available images can only approximate the sensor
acquisition, leading to significant deviations form the actual operating scenarios. For this
reason, the analysis of the algorithms’ behavior at the original resolution is mandatory,
especially if the reliability of the applicable quality measures is highly questionable.

We utilized two different datasets for the assessment of the proposed technique,
comparing it to the MS image interpolation using a polynomial kernel with 23 coefficients
(EXP) and many classical approaches, i.e., non-linear IHS (NLIHS) [15], Gram–Schmidt
(GS) [16], Gram–Schmidt adaptive (GSA) [17], band-dependent spatial-detail (BDSD) [77],
smoothing filter-based intensity modulation (SFIM) [69], additive à trous wavelet transform
(ATWT) [26] and the pyramidal decomposition scheme using morphological filters based
on half gradient (MF-HG) [80]. Obviously, we included in the comparison the baseline
methods that constitute the starting point of the proposed approach, namely, the GLP
using MTF-matched filter [21] with both multiplicative (HPM) [26] and regression-based
(CBD) [70] injection models. Moreover, we considered the more recent versions of the
MTF-GLP approaches that include the filter estimation procedure, based on the estimation
of either a single filter (FE) [30], or a different filter for each band (MBFE) [68]. Analogously,
we report the results related to the sole introduction of the MLR injection scheme [29]
within the baseline methods.

5.1. Datasets

The datasets were selected to cover the most typical settings encountered in the
practice. For this reason, two different cases have been considered: the fusion of a PAN
image with a 4-band MS image and the fusion of a PAN image with an 8-band MS image.
Moreover, the two datasets refer to different scenarios, one constituted by a mountainous,
partly vegetated area, and one representing an urban zone.

The China dataset was also used in the assessment of the classical methods presented
in [1] and is composed by images collected by the IKONOS sensor over the Sichuan region
in China (see the images on the left in Figure 3). The MS image had four channels (blue,
green, red and near infra-red (NIR)) and the spatial sampling interval (SSI) was 1.2 m.
The IKONOS resolution ratio between the MS and the PAN image was R = 4 and the
radiometric resolution was 11 bits. A cut of size 300 × 300 pixels of the original MS image
was employed in this work as the ground-truth (GT) for the reduced resolution assessment.

The Tripoli dataset was acquired by the WorldView-3 satellite and was used to test the
capability of the proposed method for the enhancement of an MS with a larger number of
bands (coastal, blue, green, yellow, red, red edge, NIR1 and NIR2). The employed imagery
included a PAN image of size 1024 × 2048 pixels and an MS image of size 256 × 256 pixels,
which was also in this case R = 4. The MS WorldView (WV)-3 sensor is characterized by a
1.2 m SSI and the radiometric resolution is 11 bits. The Tripoli dataset was used both at the
original scale for performing the full resolution assessment and at a lower scale, obtained
by degrading the original images by a factor R = 4.
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G
T

M
S

China Tripoli

Figure 3. Reduced resolution datasets: China dataset (on the left), Tripoli dataset (on the right). The first
row reports the original MS image (used as the ground-truth) and the second row reports the
degraded MS image, upsampled to the ground-truth size.

5.2. Reduced Resolution Validation

The reduced resolution (RR) assessment represents a very crucial phase in the evalu-
ation of algorithm performance, since the availability of the reference image allows one
to accurately evaluate the quality of the final product. The method consists of using the
original MS image as the target product that has to be obtained by combining the degraded
versions of the same MS image and of the original PAN. The procedure for completing
such experiments has been formalized through Wald’s protocol [81], which is based on
both the consistency and the synthesis properties. While the latter points at specifying the
characteristics of the fused image, the former requires that the fused high resolution MS
image obtains the low resolution MS image once properly degraded. This means that the
degradation systems should reproduce the overall acquisition process that yields the real
images. Accordingly, the amplitude frequency responses of the MS degradation filters are
matched to the MTFs of the MS sensor, while an ideal filter is employed to decimate the
PAN image [21].

The quality of the fused products can thus be assessed through several indexes that
have been developed. We adopted four widespread measures: the well-known peak signal-
to-noise ratio (PSNR); the relative dimensionless global error in synthesis (ERGAS) [82] that
is a normalized version of the root mean square error (RMSE); the spectral angle mapper
(SAM) [83] that quantifies the spectral distortion as the mean angle between the fused
and reference pixel vectors; the Q2n [84,85] that extends the universal image quality index
(UIQI) [86] to multi-channel images.

The main results of the RR assessment are summarized in Table 1, where the com-
parison of the proposed technique with both the baseline methods and the other cited
pansharpening approaches is shown.

In order to give some additional insight about data fusion performance, we also
present some closeups for the two RR data in Figures 4 and 5, focusing only on the GLP
details extraction scheme, we show several Q2n maps for the Tripoli dataset in Figure 6.
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Table 1. Reduced resolution assessment: the first row contains the reference value for each index.
The best results among the different versions of the MTF-GLP approaches are in boldface; the second
best are underlined.

Algorithm
China Tripoli

PSNR ERGAS SAM Q4 PSNR ERGAS SAM Q8

Reference ∞ 0 0 1 ∞ 0 0 1

EXP 36.012 3.8736 4.4268 0.7389 20.408 9.2964 8.6679 0.6197

NL-IHS 38.115 3.2280 4.0268 0.7968 22.685 7.2531 8.8094 0.7719
GS 39.833 2.8310 3.5399 0.8475 23.554 6.5690 8.3871 0.8166
GSA 40.711 2.5829 3.0053 0.8756 26.597 4.7677 7.5888 0.9220
BDSD 41.003 2.4361 2.9272 0.8884 25.645 5.2490 8.1877 0.9133
SFIM 39.904 2.6076 3.2165 0.8731 24.381 5.9649 8.1231 0.8585
ATWT 40.270 2.5483 3.0916 0.8793 24.769 5.7169 7.8750 0.8750
MF-HG 40.085 2.6472 3.1053 0.8669 24.880 5.6423 7.9807 0.8874

H
PM

MBFE BDSD 41.010 2.4904 2.9926 0.8824 25.181 5.4896 8.0262 0.8899
MBFE GSA 40.973 2.5100 3.0095 0.8816 25.234 5.4580 7.9807 0.8887
FE 41.011 2.4913 2.9871 0.8820 25.222 5.4672 7.9785 0.8882
GLP 40.993 2.4834 2.9985 0.8825 25.147 5.5124 7.9880 0.8839

C
B

D

MBFE BDSD 40.914 2.5495 3.0055 0.8776 26.298 4.9096 7.9474 0.9224
MBFE GSA 40.866 2.5754 3.0209 0.8762 26.641 4.7440 7.6183 0.9248
FE 40.914 2.5495 3.0036 0.8773 26.627 4.7530 7.6086 0.9247
GLP 40.936 2.5311 2.9709 0.8784 26.614 4.7546 7.5353 0.9211

M
LR

MBFE BDSD 41.179 2.4149 2.9249 0.8885 26.305 4.9091 7.9526 0.9235
MBFE GSA 41.158 2.4304 2.9179 0.8877 26.687 4.7251 7.5565 0.9263
FE 41.177 2.4145 2.9255 0.8882 26.670 4.7358 7.5441 0.9262
GLP 41.220 2.4006 2.8589 0.8876 26.660 4.7341 7.4512 0.9222

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. Cont.
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(k) (l) (m) (n) (o)

Figure 4. Close-ups of the fused results using the reduced resolution China dataset: (a) GT; (b) GSA; (c) MF-HG; (d) MBFE-
BDSD-HPM; (e) MBFE-GSA-HPM; (f) FE-HPM; (g) GLP-HPM; (h) MBFE-BDSD-CBD; (i) MBFE-GSA-CBD; (j) FE-CBD;
(k) GLP-CBD; (l) MBFE-BDSD-MLR; (m) MBFE-GSA-MLR; (n) FE-MLR; (o) GLP-MLR.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 5. Close-ups of the fused results using the reduced resolution Tripoli dataset: (a) GT; (b) GSA; (c) MF-HG; (d) MBFE-
BDSD-HPM; (e) MBFE-GSA-HPM; (f) FE-HPM; (g) GLP-HPM; (h) MBFE-BDSD-CBD; (i) MBFE-GSA-CBD; (j) FE-CBD; (k)
GLP-CBD; (l) MBFE-BDSD-MLR; (m) MBFE-GSA-MLR; (n) FE-MLR; (o) GLP-MLR.
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Figure 6. Tripoli dataset (RR): differences between the Q2n maps computed for the best algo-
rithm, i.e., MBFE-GSA-MLR, and the baseline methods, i.e., (a) GSA, (b) GLP-MLR, (c) GLP-CBD,
(d) MBFE-GSA-CBD, (e) GLP-HPM and (f) MBFE-GSA-HPM. Green values: better results obtained
by MBFE-GSA-MLR; red values: better results obtained by the other algorithm.

5.3. Full Resolution Validation

The full resolution (FR) assessment allowed us to analyze the behavior of the algo-
rithms at their effective working scale. In particular, the Tripoli dataset contains images
with high resolution details, namely, with physical dimensions very similar to the SSI of the
sensors. Accordingly, it can be properly used for this second investigation phase, in which
the visual analysis assumes a central role. In fact, all the available quality indexes cannot be
considered totally reliable because they assess the final product without a reference image.

For this reason, the quantitative evaluation is typically performed by measuring the
coherence of the pansharpened product with the original available images. In particular,
one assesses the spectral similarity of the fused image and the low resolution MS image and
the correspondence between the PAN and MS spatial details at the original and enhanced
resolutions [87,88].

The quality with no reference (QNR) [88] index is the best known measure adopting
this rationale. It is composed by a spectral index that measures the relationships among
the MS channels and a spatial index that quantifies the quantity and the appropriateness of
the spatial details present in each band. Several other quality indexes have been proposed
in the literature for the full resolution assessment [23,89–92]. We adopted here the hybrid
QNR (HQNR) [93] that combines the use of the QNR spatial index DS and of the spectral
index Dλ proposed in [89], thereby providing appreciable soundness and computational
efficiency [5].

Table 2 reports the values of the HQNR indexes computed by applying the considered
pansharpening algorithms to the Tripoli dataset.
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Table 2. Full resolution assessment on the Tripoli dataset: the first row contains the reference for
each indicator. Best results for the two tested injection schemes (HPM and CBD) are in boldface;
the second best are underlined.

Algorithm Ds Dλ HQNR

Reference 0 0 1

EXP 0.0717 0.0317 0.8989

NL-IHS 0.0602 0.0795 0.8651
GS 0.0767 0.0536 0.8738
GSA 0.0775 0.0377 0.8877
BDSD 0.0755 0.1399 0.7952
SFIM 0.0657 0.0216 0.9141
ATWT 0.0654 0.0174 0.9183
MF-HG 0.0591 0.0183 0.9236

H
PM

MBFE BDSD 0.0650 0.0181 0.9181
MBFE GSA 0.0667 0.0188 0.9157
FE 0.0679 0.0179 0.9155
GLP 0.0684 0.0183 0.9146

C
B

D

MBFE BDSD 0.0637 0.0169 0.9205
MBFE GSA 0.0661 0.0178 0.9173
FE 0.0674 0.0167 0.9171
GLP 0.0697 0.0171 0.9144

M
LR

MBFE BDSD 0.0590 0.0196 0.9226
MBFE GSA 0.0626 0.0199 0.9188
FE 0.0634 0.0188 0.9190
GLP 0.0698 0.0158 0.9156

6. Discussion

The reduced resolution and the full resolution assessment protocols allowed us to
provide a clear illustration of the results achievable through the proposed pansharpening
scheme. The key considerations that can be derived from these two complementary phases
are detailed in the following sections.

6.1. Reduced Resolution

The most evident property is the high performance achieved by the proposed approach
in both the tests. This behavior stood out on our datasets, presenting complementary
features of the illuminated scene. Indeed, as it can be noticed by examining most of
the compared algorithms, it is difficult to find algorithms that were characterized by
optimal performance in both the scenarios. Additionally, the baseline methods, namely,
the implementations of the GLP approaches exploiting the HPM and the CBD injection
schemes, were not immune to this performance tradeoff, due to the large presence of high
resolution details in the Tripoli datasets, whose counterparts are the large homogeneous
zones in the China dataset.

In both the cases, the best results in terms of the most comprehensive index, namely,
the Q2n, were obtained by the methods that utilize the multi-band filter estimation. In par-
ticular, the MBFE-BDSD-MLR approach achieved the highest value for the China dataset,
and the MBFE-GSA-MLR produced the best image for the Tripoli dataset. An important
remark regards the single filter estimation approach (FE-MLR) that showed remarkable
robustness, since it achieved results very similar to the best methods; this was partly due to
the shape of the MTFs of the various bands, which are characterized by almost equal gains
at the Nyquist frequency. Moreover, one can note that the improvement of the final product
quality implied by the filter estimation procedure is always in terms of spectral quality
of the image, as demonstrated by the higher values of the SAM index with respect to the
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GLP-MLR. In fact, the MLR coefficient estimation points to optimizing the detail injection
scheme for each specific channel, without taking into account the spectral coherence of
the final product. Naturally, this issue is made worse by the multiband approach, which
estimates a different filter for each band, causing a more significant spectral unbalance in
the pansharpened image. Nevertheless, this issue is largely compensated by the greater
ability of injecting the most useful spatial information contained in the PAN image.

The suitability of the proposed approaches is also testified by the closeups shown in
Figures 4 and 5 that highlight the capability of producing images with accurate spatial
reproduction of the details, without excessively sacrificing the chromatic fidelity of the
objects presents in the scene. The performance analysis can be eased by evaluating the
algorithms in pairs, as we show in Figure 6, where the MBFE-GSA-MLR is compared,
in terms of Q2n map, to six other methods based on the GLP detail-extraction scheme.
The green pixels represent the zones of the images in which the MBFE-GSA-MLR achieved
higher quality index scores with respect to the competitors, and the red pixels highlight the
opposite. The proposed method achieved almost uniform performance improvements with
respect to the approaches compared in panels (a)–(d). More specifically, figures (b) and (d)
show that the MBFE-GSA-MLR is significantly superior to the algorithms that implement
either the MLR injection scheme (GLP-MLR) or the MBFE technique (MBFE-GSA-CBD),
thereby motivating the joint use of the two methods. The uniformity of the green pixels
demonstrate that the performance increase was not due to the improvement of a specific
zone of the image, but rather to a more precise evaluation of the best extraction filter and of
a specific formula for the data combination. Panels (e) and (f) illustrate a more diversified
result that is a consequence of an alternative injection scheme. In fact, the HPM modulated
the PAN details point-wise, thereby achieving a very different final product. However,
the higher overall quality of the MBFE-GSA-MLR approach can be easily argued by the
larger extent of the green zones, which are also characterized by high color saturation,
indicating a significant improvement of the Q2n value.

6.2. Full Resolution

The results corroborate the analysis carried out at reduced resolution, showing that
the approaches using an estimated filter for the extraction and a multilinear regression
for the injection obtained the best overall results. In particular, the use of a specific index
DS assessing the spatial quality of the images allows one to confirm the deduction that
the main improvements were obtained in terms of a more faithful reproduction of the
geometric information.

Further information can be derived from the visual analysis of the pansharpened prod-
ucts. We present in Figure 7 the injected details, namely, the differences between the final
products M̂ and the upsampled image M̃. Panels (m) and (n) immediately stand out for the
richness and intelligibility of the representation, which testify the accurate reproduction
of the object borders detectable at the highest scale. Moreover, although Table 2 confirms
that the proposed methods resulted in slightly worse spectral quality of the final prod-
ucts, the homogeneity of the detailed images demonstrates that the particulars were not
excessively boosted in any specific zone or band, as happened for the HPM-based schemes.
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(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 7. Close-ups of the details of the fused results using the full resolution Tripoli dataset: (a) PAN; (b) EXP; (c) details
for GSA; (d) details for MF-HG; (e) details for MBFE-BDSD-HPM; (f) details for MBFE-GSA-HPM; (g) details for FE-HPM;
(h) details for GLP-HPM; (i) details for MBFE-BDSD-CBD; (j) details for MBFE-GSA-CBD; (k) details for FE-CBD; (l)
details for GLP-CBD; (m) details for MBFE-BDSD-MLR; (n) details for MBFE-GSA-MLR; (o) details for FE-MLR; (p) details
for GLP-MLR.
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6.3. Computational Analysis

The analysis of the computational complexity of the proposed approach is finally
reported in Table 3, which contains the times required by an Intel®Core™I7 3.2GHz proces-
sor to complete the fusion process. Almost all the approaches exploiting a multiresolution
decomposition of the images required perceptibly more computational effort, since the
considered images are quite large. A further increase occurred for the filter estimation
procedure, whose effort is proportional to the number of impulse responses to be estimated.
Accordingly, the multiband (MBFE) approach took twice as much computational time as
the baseline GLP approach in the case of eight bands, though the additional effort required
by the single filter (FE) method is almost negligible. In any case, the main point is that
the proposed approach strictly preserves the feasibility of the classical methods, thereby
representing a viable technique for processing a large amount of data.

Table 3. Computational times (in seconds) required for the datasets used.

Algorithm China (RR) Tripoli (RR) Tripoli (FR)

NL-IHS 1.104 4.049 74.64
GS 0.0409 0.127 1.79
GSA 0.0970 0.253 2.73
BDSD 0.115 0.207 1.51
SFIM 0.0223 0.102 1.35
ATWT 0.117 0.570 8.76
MF-HG 0.135 0.303 3.62

H
PM

MBFE BDSD 0.298 0.929 14.72
MBFE GSA 0.283 0.979 15.40
FE 0.147 0.427 6.70
GLP 0.123 0.412 5.56

C
B

D

MBFE BDSD 0.314 0.949 14.60
MBFE GSA 0.307 1.013 15.47
FE 0.170 0.429 6.65
GLP 0.123 0.411 5.45

M
LR

MBFE BDSD 0.298 2.058 15.10
MBFE GSA 0.306 2.132 15.88
FE 0.164 1.127 7.08
GLP 0.154 1.103 7.07

7. Conclusions

In this work, a step forward has been made with respect to existing techniques for the
efficient combinations of multispectral and panchromatic images acquired by the same
satellite. The usefulness of pansharpened data for many applications demands the capacity
of providers to efficiently perform the fusion process, and thus most algorithms still resort
to physical models to ease their adaptation to specific datasets.

In this class of approaches, the generalized Laplacian pyramid has emerged as the most
widespread method, since it combines the accurate reproduction of the acquisition process
characteristics with high computational efficiency. However, some improvements that do
not result in an excessive computational burden are conceivable. More specifically, in this
work we validated the joint use of a filter estimation procedure, which allows one to easily
adapt the shape of the detail-extraction filters to the specific imagery, and of a polynomial
combination function, which allows one to more properly inject the PAN information.

The effectiveness of the proposed scheme has been tested on two different datasets,
which are characterized by unalike features of the illuminated scene and have been acquired
by different sensors. The most important quality of the designed approach is the capacity
to achieve the best performance among the tested methods in both the scenarios, differently
from all the existing techniques. Among the possible implementations of the proposed
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approach, it has also been highlighted in this study that the estimation of a single filter for
all the multispectral image channels allows one to obtain a still more efficient algorithm,
without significantly sacrificing the overall quality of the final product.

Finally, future studies and developments will be devoted to extending the proposed
architecture to hyperspectral sharpening, due to the great interest for the related applica-
tions [94,95], and the fusion of thermal data [96].
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