
remote sensing  

Article

Using Field Spectroradiometer to Estimate the Leaf N/P Ratio of
Mixed Forest in a Karst Area of Southern China: A Combined
Model to Overcome Overfitting

Wen He 1,2 , Yanqiong Li 3 , Jinye Wang 1,*, Yuefeng Yao 2, Ling Yu 4, Daxing Gu 2 and Longkang Ni 2

����������
�������

Citation: He, W.; Li, Y.; Wang, J.; Yao,

Y.; Yu, L.; Gu, D.; Ni, L. Using Field

Spectroradiometer to Estimate the Leaf

N/P Ratio of Mixed Forest in a Karst

Area of Southern China: A Combined

Model to Overcome Overfitting.

Remote Sens. 2021, 13, 3368. https://

doi.org/10.3390/rs13173368

Academic Editor: James Cleverly

Received: 5 July 2021

Accepted: 22 August 2021

Published: 25 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China;
hw@gxib.cn

2 Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute
of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
yf.yao@gxib.cn (Y.Y.); GIB@gxib.cn (D.G.); nlk@gxib.cn (L.N.)

3 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China
Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; liyq2018@scbg.ac.cn

4 School of Geographical Sciences, Southwest University, Chongqing 400715, China; yl0435@email.swu.edu.cn
* Correspondence: 2005010@glut.edu.cn

Abstract: The ratio between nitrogen and phosphorus (N/P) in plant leaves has been widely used to
assess the availability of nutrients. However, it is challenging to rapidly and accurately estimate the
leaf N/P ratio, especially for mixed forest. In this study, we collected 301 samples from nine typical
karst areas in Guangxi Province during the growing season of 2018 to 2020. We then utilized five
models (partial least squares regression (PLSR), backpropagation neural network (BPNN), general
regression neural network (GRNN), PLSR+BPNN, and PLSR+GRNN) to estimate the leaf N/P ratio
of plants based on these samples. We also applied the fractional differentiation to extract additional
information from the original spectra of each sample. The results showed that the average leaf N/P
ratio of plants was 17.97. Plant growth was primarily limited by phosphorus in these karst areas. The
sensitive spectra to estimate leaf N/P ratio had wavelengths ranging from 400–730 nm. The prediction
capabilities of these five models can be ranked in descending order as PLSR+GRNN, PLSR+BPNN,
PLSR, GRNN, and BPNN when considering both accuracy and robustness. The PLSR+GRNN model
yielded high R2 and performance to deviation (RPD), and low root mean squared error (RMSE) with
values of 0.91, 3.15, and 1.98, respectively, for the training test and 0.81, 2.25, and 2.46, respectively,
for validation test. Compared with the PLSR model, both PLSR+BPNN and PLSR+GRNN models
had higher accuracy and were more stable. Moreover, both PLSR+BPNN and PLSR+GRNN models
overcame the issue of overfitting, which occurs when a single model is used to predict leaf N/P ratio.
Therefore, both PLSR+BPNN and PLSR+GRNN models can be used to predict the leaf N/P ratio
of plants in karst areas. Fractional differentiation is a promising spectral preprocessing technique
that can improve the accuracy of models. We conclude that the leaf N/P ratio of mixed forest can be
effectively estimated using combined models based on field spectroradiometer data in karst areas.

Keywords: mixed forest in karst areas; leaf N/P ratio; fractional differentiation; combined model;
overcome overfitting; field spectroradiometer

1. Introduction

Nitrogen (N) and phosphorus (P) are crucial functional elements for organisms [1]
and play a vital role in plant physiological processes [2–4]. Changes of the N and P concen-
tration are essential for the growth of plants, as they are closely related to photosynthesis,
respiration, N2 fixation, and organic matter mineralization [5]. N and P are the primary
limiting nutrients for plant growth in most natural systems. An N/P ratio greater than
16 indicates that plant growth is limited by P, while an N/P ratio of less than 14 is limited
by N. Values between 14 and 16 suggest either N or P can be limited, or plant growth is
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co-limited by both N and P [6,7], although there is no general consensus about an N/P
ratio which is not limiting in either or both nutrients. Therefore, exploring the N and P stoi-
chiometry of leaves plays a critical role in better understanding the survival and adaptation
strategies of plants. However, current methods for monitoring N and P content mainly
rely on laboratory analysis. The precision of these traditional analytical methods is high,
but they are time-consuming, complex, and require difficult storage and transportation
logistics of field samples, which limits rapid on-site and non-destructive detection [8]. As a
real-time, fast, and non-destructive technology, spectral technology plays an increasingly
important role in detecting nutrient acquisition and growth of plants.

The mechanism and methods of estimating leaf biochemical parameters with remote
sensing techniques have been advanced in recent years, especially ground-based hyper-
spectral remote sensing. For example, Sonobe and Wang [9] used hyperspectral techniques
to estimate the chlorophyll content in leaves of a deciduous forest, and found that the nor-
malized difference spectral index using the first-order differentiation of reflectance at 522
and 728 nm was the best index. Zhao et al. [10] used a hyperspectral stepwise regression
analysis to estimate the water content of apple tree canopies and found that an equidistant
sampling method improved the prediction accuracy. Yamashita et al. found that machine
learning methods can predict chlorophyll and N content based on field spectroradiome-
ter [11]. However, most previous research has focused on estimating chlorophyll, water,
organic carbon (C), and N. Few studies have investigated N/P and other stoichiometric
ratios that are significant indicators of plant growth. The patterns found for N and P cannot
be directly applied to N/P. For example, Cui et al. [8] proposed that N and P display a
strong positive correlation with the spectral reflectance at 650 nm, while the N/P ratio
displays a strong negative correlation with the spectral reflectance at 650 nm. Therefore,
further studies of stoichiometric ratio estimation using field spectroradiometer are needed.

Previous studies on the spectral inversion of biochemical parameters focused on
single species, such as rice [12], wheat [13], tobacco [14], apple [10], and tea [15]. As many
species co-exist within natural habitats, results derived for single species or cropland is
not applicable to investigate patterns in complex mixed forests. Therefore, establishing a
database with multiple plants is critical to estimate plant biochemical parameters through
remote sensing methods. However, mixed species samples are usually more difficult
to collect, and it is more complex to predict biochemical parameters. In contrast, single
plant species are easier to predict with high accuracy. For example, the best coefficient
of determination (R2) for the estimation of leaf mass per area (LMA) in mixed-species by
Cheng et al. [16] was 0.74, while Inoue et al. [17] produced an R2 above 0.9 in rice. Further
research is required to improve model accuracy to estimate biochemical parameters in
mixed-species ecosystems.

In terms of the algorithm employed in previous studies, mainstream empirical meth-
ods can be summarized into three categories; spectral index methods [9], linear regression
methods [13], and machine learning methods [11]. Both the spectral index and the linear
regression methods focus on finding the linear relationship between spectral reflectance
and plant biochemical parameters. By contrast, machine learning methods can calculate
nonlinear relationships between spectral reflectance and plant biochemical parameters.
Each method has limitations and advantages. Linear models use simple principles, are
computationally efficient, and more robust in prediction accuracy, but are often inferior
to machine learning methods in terms of prediction capability. Theoretically, there will
be both linear and nonlinear relationships between spectral reflectance and biochemical
parameters of plant leaves. Therefore, the use of a combined model including both linear
and nonlinear methods may improve prediction capability.

Overfitting is a common problem in many empirical models, especially for machine
learning methods [18], and can cause deceptive diagnostic results and reduce the trans-
ferability of the model. A small number of samples, a large number of variables, and
high-dimensionality may lead to overfitting of the model [19]. Field spectroradiometer
data are characterized by high-dimensionality and a large number of bands (variables),
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meaning that overfitting is a critical issue that has to be considered in the estimation of bio-
chemical parameters. It has been proven that increasing data samples, cross-validation [20],
regularization [19], noise removal [21], and integration of multiple models [22] are effective
ways to overcome overfitting [23,24]. Therefore, combining linear and nonlinear models
may be a way to reduce overfitting.

Spectral differentiation transform methods play an essential role in estimating plant
parameters, and the most commonly used are spectral first-order and second-order dif-
ferentiation [25]. It has been demonstrated that differential transformation of spectra
can improve model performance for estimating plant water [10], chlorophyll [9], and N
content [17,26]. However, the application of integer-order differentiation is not always
sufficient, as the spectral curve shifts in shape from n-order to n + 1-order in a sharply fluc-
tuating way, and there is no smooth transition between the intermediate stages. Fractional
order transform methods allow differentiation from zero to arbitrary real numbers [27].
Using fractional order differentiation transforms spectra more continuously and produces
more detailed information about the spectra.

The prediction of leaf N/P ratio of a particular species by field spectroradiometer has
been reported [8,28], but directly estimating the leaf N/P ratio of all plants worldwide is
difficult to achieve with current methods. Therefore, improving model performance and
applying these methods to estimate leaf N/P ratio of regional mixed-species ecosystems
is a pressing issue. Karst landscapes are one of the most crucial landform types globally,
accounting for roughly 15% of the Earth’s total land area and inhabited by about 1 billion
people [29]. Southwestern China has the largest karst area on the planet [30] and is one
of 25 global biodiversity hotspots that contain many endemic and threatened species [31].
The karst areas of Guangxi Province are an important part of the southwest karst region,
containing diverse landscape types, a wide variety of plants, and representing a key area
for biodiversity conservation. However, anthropogenic disturbances have led to species
loss in karst areas [32]. Non-destructive and rapid estimation of leaf N/P ratio of plants is
required for ecological restoration and conservation in karst areas.

In this paper, we simulated the leaf N/P ratio of mixed forest in karst areas of Guangxi
Province using fractional spectral differentiation and multiple models, combined with
field spectroradiometer data. The primary objectives of this study are to (1) explore the
predictive capabilities of linear regression models (partial least squares regression, PLSR)
and nonlinear regression models (backpropagation neural network (BPNN), generalized
neural network (GRNN)) to estimate leaf N/P ratio of mixed species based on field spec-
troradiometer data, (2) evaluate the contribution of fractional differentiation in improving
these linear and nonlinear regression models’ performance, and (3) propose the best models
that can overcome the insufficient accuracy of the PLSR model and overfitting of the BPNN
and GRNN models to estimate leaf N/P ratio of plants in karst areas.

2. Materials and Methods
2.1. Study Area

The study area is located in Guangxi Province (20◦54′–26◦24′N, 104◦28′–112◦04′E) in
south China (Figure 1). The elevation of the study area ranges from 0 to 2141.50 m. This
area borders the South China Sea and has a tropical and subtropical climate. The average
annual temperature ranges from 17.30 to 23.80 ◦C, and annual precipitation ranges from
1024.60 to 2358.60 mm. Karst landforms are distributed widely throughout Guangxi and
cover about 97,000 km2, accounting for 41% of the total area of the province. There are
more than 4000 species of vascular plants, including more than 2000 species of medicinal
plants, in the karst areas of Guangxi Province [33]. Nine typical karst experimental plots
were selected, containing primary forests, secondary forests, and shrubs that represent the
vegetation succession in karst areas. The area of each plot was about 200 m2. Detailed
information on each plot is described in Table 1.
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Figure 1. Location of the nine study plots.

Table 1. Brief description of the experimental plots.

No. Name of the
Experimental Plot

Successional Stages of
the Plant Community Name of Dominant Species Average Annual

Temperature
Average Annual

Rainfall

1 Jingxi Secondary forest

Cladrastis platycarpa (Maxim.)
Makino, Bruguiera gymnorhiza (L.)

Lam., Buddleja officinalis, Abelia
biflora Turcz.

21.68 1621.92

2 Longzhou Primary forest

Canthium dicoccum, Memecylon
scutellatum, Pistacia

weinmanniifolia, Boniodendron
minus, Excentrodendron hsienmu

23.28 1272.72

3 Pingguo Shrubs
Rhus chinensis Mill., Cipadessa

baccifera (Roth.) Miq., Vitex
negundo L., Alchornea trewioides

22.03 1328.63

4 Du’an Shrubs Psidium guajava, Vitis heyneana,
Buddleja officinalis, Serissa japonica 22.03 1733.37

5 Huanjiang Secondary forest

Solanum indicum L., Ficus tinctoria
Forst. F. subsp. gibbosa (Bl.) Corner,
Albizia lebbeck (Linn.) Benth., Vitex

negundo L.

22.50 1392.50

6 Liujiang Secondary forest
Alchornea trewioides, Litsea

glutinosa, Maclura cochinchinensis,
Vitex negundo L.

21.57 1433.62

7 Lingui Scrubs
Bauhinia championii, Zanthoxylum

bungeanum, Sageretia thea, Rosa
cymosa

21.56 1891.94

8 Quanzhou Scrubs
Paliurus ramosissimus, Ilex corallina
var. loeseneri, Bauhinia championii,

Sageretia thea
21.65 1529.96

9 Fuchuan Secondary forest
Albizia kalkora, Pistacia chinensis

Bunge, Sapium sebiferum (L.) Roxb.,
Vitex negundo L.

19.47 1685.97

2.2. Data Collection

The leaves were sampled from July 2018 to September 2020. In each experimental
plot, leaf samples from 8–15 plants of locally dominant species were collected. In total, the
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database includes 301 samples covering 37 families, 59 genera, and 70 species. As plants are
susceptible to light conditions [34], we collected leaves from three directions for each plant
(0–120◦, 120–240◦, and 240–360◦, with 0◦ due north) to reduce random errors in samples.

Leaf spectral reflectance was measured in attached leaves using a spectroradiome-
ter (Fieldspec 4, Analytical Spectral Devices, ASD, Boulder, CO, USA), with a spectral
resolution of 3 nm in the visible and near-infrared (NIR) (350–1000 nm) and 8 nm in
shortwave-infrared (SWIR, 1000–2500 nm) [14]. Reference plate (white reference) calibra-
tion was performed every 10 min during the measurement. Three branches of each tree
were selected for measurement. As the instrument battery only has a continuous operating
time of about 4 h in the field, only two mature and healthy leaves per branch were taken
for spectral scanning due to time limitations. Finally, the scanned spectral reflectance of all
leaves on each branch were arithmetically averaged, and the average value was taken as
the spectral sample of each tree.

After the spectral measurements, the healthy and mature leaves on the branches
were collected. It was then kept intact in a self-sealing bag and immediately placed in an
incubator (ICERSICE940). Leaf samples were transported back to the laboratory within
24 h and dried at 75 ◦C. The dry samples were entirely sieved through a 100 mesh sieve
for physicochemical analysis. Finally, the total nitrogen (TN) content of plant leaves was
measured using the Kjeldahl method [35], and the total phosphorus (TP) content of plant
leaves was measured by the phosphomolybdate blue spectrophotometry method [36]. The
ratio of TN to TP was determined as the leaf N/P ratio.

2.3. Methodology
2.3.1. Fractional Differentiation (FD)

Fractional differentiation is an extension of integer differentiation to arbitrary differen-
tiation [37] and is widely applied in electromagnetic field theory, control systems, nonlinear
dynamics, biomedicine, and digital signal processing [38]. The most common method of
fractional differentiation is mainly in the form of Riemann–Liouville, Grünwald-Letnikov,
and Caputo [25,35]. The Grünwald–Letnikov is a finite-difference expression:

dv f (x) = lim
h→∞

1
hv

t−a
h

∑
m=0

(−1)m Γ(v + 1)
m!Γ(v−m + 1)

f (x−mh) (1)

where v is the order of differentiation, h is the step size, and t and a are the upper and lower
limits of differentiation, respectively. Γ(·) is the Gamma function:

Γ(β) =
∫ ∞

0
e−ttβ−1dt = (β− 1)! (2)

where β is an arbitrary variable (we defined it as the order of differentiation in this study).
In this paper, the plant leaf spectra were differentiated in the range between 0 to 3 orders
(at an interval of 0.1 order). The integer order refers to zero, first, second, and third orders,
while the other values are fractional orders.

2.3.2. Partial Least Squares Regression (PLSR)

The Partial Least Squares Regression (PLSR) model (Höskuldsson 1988) combines the
merits of principal components, typical correlation, and multiple linear regression analysis.
This method is essentially based on the assumption that the sample size is n and the data
sets for the independent and dependent variables are Z = [z1, z2, · · · zk]n×k, Q = [q]n×1,
respectively. The first component f1 is extracted from Z. f1 is a linear combination with
z1, z2, · · · zk that carries the maximum variance information in Z and reaches the maximum
correlation with q. If the accuracy of the model is satisfied, the component extraction is
stopped. Otherwise, the next principal component is extracted until the requirement is
satisfied.

q = f1a1 + f2a2 + · · ·+ fkak (3)
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fm = wm1z1 + wm2z2 + · · ·+ wmkzk (4)

where m is the number of principal components, k is the number of independent variables,
a is the regression coefficients of y on f , and w is the linear coefficient of f on z. In this
study, the fractional differentiation spectral reflectance of each order that had a significant
correlation (p < 0.05) on the leaf N/P ratio of karst plants was used as the independent
variable Z. This method is the same as used for the BPNN and GRNN models described
later.

2.3.3. Back Propagation Neural Network (BPNN)

Back Propagation Neural Network (BPNN) is a multilayer feed-forward neural net-
work [39]. The key traits of this method are the forward transmission of signals and the
backpropagation of errors [39]. During forward transmission, the input signal is transferred
from the input layer through the hidden layer and is then output. The neuron state of each
layer only affects the neuron state of the next layer. If the output layer does not return
the expected results, it transfers to backpropagation. The weights and thresholds of the
network are adjusted according to the prediction error, resulting in the predicted output of
the BPNN continuously approximating the expected results.

In this study, a one-hidden layer with the tansig function and an output layer with
the purelin function neural network was built. The number of nodes in the hidden layer
significantly impacts the output result [40], so 5-fold cross-validation was used to select
the optimal number of hidden layer nodes (from 4–20). We used the arithmetic mean
value of 10 consecutive operations of the BPNN model as the final results to eliminate
fluctuations of the neural network operation. This threshold was also applied to the GRNN,
PLSR+BPNN, and PLSR+GRNN models.

2.3.4. Generalized Regression Neural Network (GRNN)

Generalized regression neural network (GRNN) is a radial basis function neural
network model proposed by Specht (1991) [41]. GRNN essentially derives the maximum
probability estimate from the training data, which can be considered as an arbitrary function
between input and output vectors. Unlike BPNN, GRNN does not require an iterative
training procedure, making it significantly faster than BPNN in terms of computational
efficiency [42]. This method displays greater prediction capability for nonlinear estimation.
The prediction function can be expressed as:

Ŷ(X) =

j
∑

i=1
Yi exp

[
− (X−Xi)

T(X−Xi)
2δ2

]
j

∑
i=1

exp
[
− (X−Xi)

T(X−Xi)
2δ2

] (5)

where j is the number of training samples, δ is the smoothing factor, X is the network input
variable, and Xi is the learning sample corresponding to the ith neuron. The weights factor
for each observation Yi is the squared Euclid distance between the corresponding sample
Xi and the input variable X. The smoothness factor δ has a significant effect on the model.
In this study, 5-fold cross-validation was used to identify the value of δ.

2.3.5. Combined Models, Sample Segmentation, and Accuracy Assessment

The principal components extracted from PLSR were used as input variables for
the BPNN and GRNN models to overcome the overfitting problem of artificial neural
network models. The purpose of extracting the principal components is to reduce the
dimensionality of the spectral data, thus reducing the complexity of the BPNN and GRNN
model. Therefore, the number of principal components should not be too large. The
number of input variables can influence the structure and performance of the BPNN and
GRNN models. We found that for most of the fractional differential spectra, it is able to
represent more than 60% of the variability when the number of principal components is
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six. To better compare the performance of different fractional differential spectra, we set
the number of extracted principal components as six. The combined PLSR+BPNN and
PLSR+GRNN models were used to compare their simulated performance against PLSR,
BPNN, and GRNN.

The field samples were randomly split into two datasets using the randperm function
in MATLAB R2020a, with the training dataset accounting for 3/4 of the validation datasets
and 1/4 of the total samples (Table 2).

Table 2. Descriptive statistics for data sets.

Samples Number Mean Standard Deviation Coefficient of
Variation (%)

Total samples 301 17.97 6.05 33.68
Training sets 225 17.93 6.23 34.75

Validation sets 76 18.08 5.53 30.57

The accuracy of the model was assessed using the coefficient of determination (R2),
root mean squared error (RMSE), and the ratio of performance to deviation (RPD) [15].
An RPD greater than or equal to 2 indicates that the model has excellent predictability,
while less than 2 and greater than or equal to 1.4 indicates that the model can make a rough
estimate of the sample. An RPD of less than 1.4 indicates that the model cannot predict the
sample [43].

3. Results
3.1. Leaf N/P Ratio, Fractional Differentiation of Reflectance, and Their Correlation

The mean values of leaf TN, TP, and N/P ratio are 18.51 mg/g, 1.17 mg/g, and 17.97,
respectively (Figure 2). The TN content of our study is slightly lower than global and
continent levels, with values 20.1 mg/g [44] and 20.20 mg/g [45], respectively. This TP
content is significantly lower than the global average of 1.80 mg/g [44] or 1.99 mg/g [46].
The leaf N/P ratio from our study is similar to the results of Yang et al. [47]. The maximum
and minimum value of the N/P ratio is 1.34 and 36.94, respectively, with a variation
coefficient of 33.68%.
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Remote Sens. 2021, 13, 3368 8 of 17

Figure 3 shows the variation of the differential spectral reflectance from 0 to 3 orders.
The shape of spectral curves of different orders is smoothly transitional. Compared to
integer differentiation (FD (0.0), FD (1.0), FD (2.0), and FD (3.0)), fractional differenti-
ation methods produce more detailed information about the spectrum, and these data
subsequently allow for more complex leaf N/P ratio inversion training methods.
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The leaf N/P ratio of plants displays a significant correlation with the fractional
differential spectra for wavelengths ranging from 400–730 nm (Figure 4). From FD (0) to
FD (3), the maximum absolute value of the correlation coefficient displays a unimodal
distribution as the fractional differentiation increases from FD (0) to FD (3) with a peak
value of 0.44 for FD (1.6).
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3.2. Performance of a Single Model Using Fractional Differentiation of Reflectance

The accuracy of the PLSR model for predicting leaf N/P ratio of plants continuously
increases with increasing fractional order for training sets but displays a unimodal distribu-
tion for validation sets (Figure 5a), yielding the highest R2 values of 0.66 for FD (2.1). The
prediction capability of the PLSR model gradually improves with the increase in fractional
order from FD (0.6) to FD (2.1). However, the prediction capability of the PLSR model
displayed a higher accuracy in training sets than for validation sets, especially after FD
(2.1). This finding suggests that overfitting of the PLSR model is an issue for using this
method to predict the leaf N/P ratio of plants.

The accuracy of the BPNN model in predicting the leaf N/P ratio of plants increases
with increasing orders of fractional differentiation. The highest R2 value for this method is
0.48 for validation sets and 0.92 for training sets around FD (1.1), with values remaining
stable across higher fractional orders (Figure 5b). However, the overfitting problem is still
present in the BPNN model when predicting the leaf N/P ratio of plants, as shown by the
large differences in R2 between the training and validation sets.

The value of R2 of the GRNN model displays a general increasing trend as the frac-
tional differentiation orders increase between FD (0) and FD (1.2) for training sets and then
remain stable (Figure 5c). The R2 value for the validation set increases with increasing
fractional order from FD (0.0) to FD (1.7). However, similar to the BPNN model, the
overfitting problem still exists in the GRNN model, as shown by the differences in the
values of R2 between training and validation sets.



Remote Sens. 2021, 13, 3368 10 of 17Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 5. Trends of single model ((a) is the PLSR model, (b) is the BPNN model, and (c) is the GRNN 
model) methods from zero to third order of fractional differentiation R2. The error bars represent 
two standard errors of each estimate, where available. The red vertical line indicates the position of 
the optimal fractional differentiation. 

3.3. Performance of Combined Models Using Fractional Differentiation of Reflectance 
To overcome the overfitting problem of models in predicting the N/P ratio of plant 

leaves, a combined model using PLSR+BPNN methods was applied. This PLSR + BPNN 
model used the principal components extracted from the PLSR model as input variables. 
The overfitting issue appears to be well-controlled by this method, as shown by the minor 
differences in R2 between the training and validation sets (Figure 6a). The PLSR + BPNN 
model displays the best performance in predicting the leaf N/P ratio of plants when frac-
tional differentiation was set to FD (2.3), yielding R2, RMSE, and RPD values of 0.90, 1.94, 

Figure 5. Trends of single model ((a) is the PLSR model, (b) is the BPNN model, and (c) is the GRNN
model) methods from zero to third order of fractional differentiation R2. The error bars represent two
standard errors of each estimate, where available. The red vertical line indicates the position of the
optimal fractional differentiation.

3.3. Performance of Combined Models Using Fractional Differentiation of Reflectance

To overcome the overfitting problem of models in predicting the N/P ratio of plant
leaves, a combined model using PLSR+BPNN methods was applied. This PLSR+BPNN
model used the principal components extracted from the PLSR model as input variables.
The overfitting issue appears to be well-controlled by this method, as shown by the minor
differences in R2 between the training and validation sets (Figure 6a). The PLSR+BPNN
model displays the best performance in predicting the leaf N/P ratio of plants when
fractional differentiation was set to FD (2.3), yielding R2, RMSE, and RPD values of 0.90,
1.94, and 3.21, respectively, for training sets and 0.79, 2.71, and 2.04 for validation sets
(Figure 7).
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The combined PLSR+GRNN model also uses principal components extracted from
the PLSR model as input variables. When the fractional differential is larger than 1.7, the
differences in R2 values between the training and validation sets are minor (Figure 6b),
suggesting that the overfitting is well-controlled compared to using the PLSR or GRNN
models individually. The PLSR+GRNN performed well when the fractional differentiation
was set to FD (2.6), with R2, RMSE, and RPD values of 0.91, 1.98, and 3.15, respectively, for
the training sets, and 0.81, 2.46, and 2.25, respectively, for validation sets (Figure 7).
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3.4. Model Comparison and Optimal Model Selection

In this study, five models, namely PLSR, BPNN, GRNN, PLSR+BPNN, and PLSR+GRNN,
combined with fractional differentiation techniques, were used to predict the leaf N/P
ratio of plants in the karst area of Guangxi Province. The optimal fractional differentia-
tion prediction results of each model are shown in Figure 7. The prediction accuracy of
these five models can be ranked in descending order as GRNN, BPNN, PLSR+GRNN,
PLSR+BPNN, and PLSR according to the coefficient of determination (R2) of the training
sets, and PLSR+GRNN, PLSR+BPNN, PLSR, GRNN, and BPNN according to the coefficient
of determination (R2) of the validation sets.
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The PLSR+BPNN and PLSR+GRNN are excellent models for predicting the leaf N/P
ratio of plants in karst area, as they display high prediction accuracy and successfully
control overfitting. The PLSR+GRNN model is slightly better than the PLSR+BPNN and is
selected as the optimal model in this study.

3.5. Advantages of Fractional Differentiation

Fractional differentiation of spectra can improve the performance of models in pre-
dicting the N/P ratio of plant leaves. The optimal differentiation for the five models used
in this study is fractional differentiation rather than integer differentiation (Table 3). For
example, the best fractional differentiation of the PLSR model is FD (2.1), with an RPD
of 2.45 for the training sets and an RPD of 1.57 for the validation sets. The PLSR model
with a fractional differentiation of 2.1 produced more accurate and robust values than
zero, first, second, and third orders differentiation. Additionally, the optimal fractional
differentiation of the PLSR+BPNN model and the PLSR+GRNN model is FD (2.3) and
FD (2.6), respectively, which both produce better values than zero, first, second, and third
orders differentiation. These results suggest that the fractional differential transform plays
a positive role in predicting the leaf N/P ratio of plants.

Table 3. Accuracy of optimal fractional differentiation versus integer differentiation.

Model Orders Training
Sets R2

Training
Sets p

Training
Sets RMSE

Training
Sets RPD

Validation
Sets R2

Validation
Sets p

Validation
Sets RMSE

Validation
Sets RPD

PLSR

FD (0.0) 0.23 0.00 5.51 1.15 0.26 0.00 4.51 1.16
FD (1.0) 0.46 0.00 4.62 1.37 0.33 0.00 4.37 1.19
FD (2.0) 0.84 0.00 2.55 2.47 0.58 0.00 3.40 1.53
FD (3.0) 0.88 0.00 2.17 2.91 0.37 0.00 4.32 1.20
FD (2.1) 0.85 0.00 2.45 2.58 0.60 0.00 3.33 1.57

BPNN

FD (0.0) 0.39 0.00 5.96 1.05 0.13 0.00 8.12 0.68
FD (1.0) 0.88 0.00 2.25 2.77 0.30 0.00 5.33 1.04
FD (2.0) 0.95 0.00 1.59 3.91 0.44 0.00 5.03 1.10
FD (3.0) 0.94 0.00 1.63 3.83 0.46 0.00 4.32 1.28
FD (1.1) 0.92 0.00 1.78 3.49 0.48 0.00 4.70 1.18
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Table 3. Cont.

Model Orders Training
Sets R2

Training
Sets p

Training
Sets RMSE

Training
Sets RPD

Validation
Sets R2

Validation
Sets p

Validation
Sets RMSE

Validation
Sets RPD

GRNN

FD (0.0) 0.60 0.00 4.43 1.41 0.09 0.01 5.38 1.03
FD (1.0) 0.86 0.00 3.27 1.91 0.40 0.00 4.37 1.26
FD (2.0) 0.99 0.00 0.86 7.20 0.50 0.00 4.33 1.28
FD (3.0) 0.99 0.00 0.83 7.54 0.57 0.00 3.69 1.50
FD (1.9) 0.99 0.00 0.71 8.83 0.59 0.00 3.61 1.53

PLSR+BPNN

FD (0.0) 0.56 0.00 4.13 1.51 0.12 0.00 5.67 0.98
FD (1.0) 0.68 0.00 3.54 1.76 0.26 0.00 5.08 1.09
FD (2.0) 0.90 0.00 2.00 3.11 0.76 0.00 2.78 1.99
FD (3.0) 0.90 0.00 2.03 3.07 0.75 0.00 3.01 1.84
FD (2.3) 0.90 0.00 1.94 3.21 0.79 0.00 2.71 2.04

PLSR+GRNN

FD (0.0) 0.68 0.00 3.95 1.58 0.80 0.00 5.08 1.09
FD (1.0) 0.68 0.00 3.87 1.61 0.80 0.00 4.49 1.23
FD (2.0) 0.87 0.00 2.44 2.56 0.80 0.00 2.86 1.93
FD (3.0) 0.88 0.00 2.36 2.64 0.80 0.00 2.67 2.07
FD (2.6) 0.91 0.00 1.98 3.15 0.81 0.00 2.46 2.25

4. Discussion
4.1. Distribution of Sensitive Wavelengths

The spectral reflectance from 400–730 nm, and especially 520–650 nm, are sensitive
wavelengths for predicting the leaf N/P ratio of plants. This result is consistent with previ-
ous studies, such as Cui et al. [8], who found that near 650 nm was the best wavelength for
estimating the N/P ratio. Hansen and Schjoerring [48] also showed that spectral reflectance
near 530 nm and 720 nm are important wavelengths for estimating the N concentration
of wheat. In addition, Xu et al. [49] found that spectral reflectance of 540–560 nm and
760–780 nm are sensitive wavelengths for the C/N ratio of wheat and barley leaves. There
are some differences in sensitive wavelengths related to the leaf N/P ratio between the
karst and non-karst plants, which may be caused by adaptions to survive in karst environ-
ments. For example, plants growing in karst areas have decreased stomatal conductance,
thickened palisade tissue, and increased keratinization due to thin soil layers and relatively
low air humidity [50]. These physiological differences can impact the radiative transfer
processes of plant leaves, leading to changes in the sensitive wavebands.

4.2. Control Overfitting

We reduced the noise in the spectral reflectance by fractional differentiation and
improved the representativeness of the feature variables for the model input. Moreover, we
applied the PLSR model to extract principal components to reduce the dimensionality of
the spectral data. The reduced-dimensional spectral data are used as input variables of the
BPNN and GRNN models. In this way, we proposed two composite models, PLSR+BPNN
and PLSR+GRNN. The prediction performance of PLSR+BPNN and PLSR+GRNN models
will be better than simple models such as spectral index and ordinary linear regression.
The simple model is more adapted to a single plant species [14,51,52] and very sensitive
to databases [16]. In contrast, our model is more adaptable to complex environments
as it is set up in a mixed forest database. On the other hand, this method decreases the
complexity of the model while ensuring minimal loss of spectral information and reducing
the occurrence of overfitting. These results are consistent with previous studies [53] that
show overfitting issues could be overcome by using non-negative principal component
analysis (NPCA) to extract principal components as input variables for machine learning.
Although combining PCA or PLSR models with machine learning methods does not help
improve the model prediction capability, it effectively minimizes the overfitting problem of
machine learning methods.

4.3. Application for Mixed Forest

Empirical models tend to be site-, time-, and species-specific and are therefore un-
suitable for large-scale analyses [54]. Previous studies investigating the inversion of plant
biochemical parameters are also biased towards specific regions, such as wetlands [24] or
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grasslands [28], or species such as wheat [55] or rice [17]. Although high accuracy can be
obtained from the inversion of biochemical parameters for a single species [15], plants are
more likely to co-exist in a mixed form in the natural environment, and studies on only one
species are not applicable to diverse ecosystems. Studies across various species need to be
conducted before these methods can be applied to mixed forest environments. However, it
is crucial to improve the model accuracy and robustness before the inversion of biochemical
parameters of mixed species. We applied five models to predict the leaf N/P ratio of plants
in a karst area. Among them, the PLSR+BPNN and PLSR+GRNN models have the best
performance, with high prediction accuracy and robustness. The performance of both
the PLSR+BPNN and PLSR+GRNN models was better than the models used by Cheng
et al. [16] in terms of the coefficient of determination (R2). This improved performance is
mainly due to the full consideration of both linear and nonlinear relationships between
leaf biochemical parameters and field spectroradiometer data in our study.

Sample composition also impacts the model performance. For example, there was
a significant difference in the performance of the BPNN model between our study and
Cui et al. [8] when comparing the coefficient of determination for validation tests, and no
overfitting was observed in the results of Cui et al. [8]. These differences in performance
were due to the large variability in sample composition, with leaf N/P ratio of plants in
this study ranging from 1.34 to 36.94 compared to that of phragmites communis N/P ratio
ranging from 6.7 to 15.9 in the Cui et al. study [8].

5. Conclusions

Estimating the N/P ratio of plant leaves using field spectroradiometer data is chal-
lenging. We estimated the variation of leaf N/P ratio of plants in a karst area of Guangxi
Province using five models, namely PLSR, BPNN, GRNN, PLSR+BPNN, and PLSR+GRNN.
The sensitivity wavelengths of the leaf N/P ratio of plants are mainly in the range of
400–730 nm. Applying a single model (such as PLSR, or BPNN, and or GRNN) can esti-
mate the leaf N/P ratio of plants, but all methods produce significant overfitting of the
data. In contrast, the combined models of PLSR+BPNN and PLSR+GRNN can avoid the
overfitting problem in predicting the leaf N/P ratio of plants, and have high accuracy
prediction capabilities. In addition, using fractional differentiation methods can effectively
improve the prediction capability of the model in estimating the leaf N/P ratio across
a variety of plant species. This study provides a valuable scientific basis for long-term
dynamic monitoring of plant biochemical parameters using field spectroradiometer data.
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