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Abstract: Deep convolutional neural networks (DCNNs) are driving progress in object detection of
high-resolution remote sensing images. Region proposal generation, as one of the key steps in object
detection, has also become the focus of research. High-resolution remote sensing images usually
contain various sizes of objects and complex background, small objects are easy to miss or be mis-
identified in object detection. If the recall rate of region proposal of small objects and multi-scale objects
can be improved, it will bring an improvement on the performance of the accuracy in object detection.
Spatial attention is the ability to focus on local features in images and can improve the learning
efficiency of DCNNs. This study proposes a multi-scale spatial attention region proposal network
(MSA-RPN) for high-resolution optical remote sensing imagery. The MSA-RPN is an end-to-end deep
learning network with a backbone network of ResNet. It deploys three novel modules to fulfill its task.
First, the Scale-specific Feature Gate (SFG) focuses on features of objects by processing multi-scale
features extracted from the backbone network. Second, the spatial attention-guided model (SAGM)
obtains spatial information of objects from the multi-scale attention maps. Third, the Selective Strong
Attention Maps Model (SSAMM) adaptively selects sliding windows according to the loss values from
the system’s feedback, and sends the windowed samples to the spatial attention decoder. Finally, the
candidate regions and their corresponding confidences can be obtained. We evaluate the proposed
network in a public dataset LEVIR and compare with several state-of-the-art methods. The proposed
MSA-RPN yields a higher recall rate of region proposal generation, especially for small targets in
remote sensing images.

Keywords: high-resolution optical remote sensing images; multi-scale; spatial attention; region proposal

1. Introduction

Deep convolutional neural networks have promoted tremendous advances in com-
puter vision, particularly in the field of object detection. Two networks have attracted the
most attentions of object detection researchers: the Faster RCNN [1], the representative of
two-stage algorithms, and YOLO [2], a typical case of one-stage algorithms. The two-stage
algorithms usually present high recognition rates, and have been extensively used for
detection on remote sensing images. High-resolution remote sensing images usually cover
vast lands and oceans with targets in various sizes, so identifying targets in them is quite
challenging. The two-stage algorithms usually generate object proposals first, that is, to
localize target areas. Thus, object proposals have become the critical issue in detection
tasks on remote sensing images.

Object proposal methods intend to outline candidate areas from images that hypotheti-
cally contain targets. These results exclude class information. Hosang et al. [3] demonstrated
that “for object detection improving proposal localization accuracy is as important as im-
proving recall”. The higher the recall of proposal regions, the greater the accuracies of the
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final detection results. Object proposal methods use coordinates to mark the positions of
objects [3], and hardly have any prior information, like object category, to fulfill this task.

Techniques to generate object proposals can be categorized into three groups [3]:
grouping methods [4,5], window scoring methods [6–8], and deep learning methods [1].
Grouping methods and window scoring methods depend on artificially designed features.
They are inept at large amount of images and diversified scenarios. Within the framework
of the Faster RCNN, He et al. [1] designed a fully-convolutional network, Region Proposal
Network(RPN), to simultaneously predict object boundaries and object scores, integrating
region proposal and object classification into an end-to-end process. RPN inspired a series
of object proposal methods based on deep neural networks, including AttractioNet [9],
DeepMask [10], SharpMask [11] that is based on DeepMask [10], and FastMask [12]. Among
them, DeepMask [10] is outstanding. It outperforms the RPN model in the average recall
rate when being applied to the public image dataset COCO. Different from the RPN [1]
model, it uses object instance segmentation to generate candidate areas.

Many researchers have applied the regional proposal methods for natural images to
remote sensing images. However, remote sensing images are quite different from natural
images: a remote sensing image usually covers a vast area involving large amount of data,
rich texture information, and targets that almost blend into backgrounds; objects in them
hold various sizes, and smaller ones usually crowded together [13]. Some scholars have
intended to improve traditional regional proposal methods specifically for remote sensing
images. Zhong et al. [14] improved the accuracy of region proposals by a position-sensitive
balancing framework. Li et al. [15] introduced multi-angle anchor points based on the Faster
R-CNN [1] framework to construct a rotation-insensitive RPN, which effectively solved the
problem of rotation changes of geospatial objects. Based on Faster R-CNN, Tang et al. [16]
combined a region proposal network with hierarchical feature maps to extract vehicle-like
targets, and improved the accuracy of region proposals. Although some of their efforts have
paid off, their approaches can still hardly improve the accuracy for complex situations, like
diversified sizes of objects co-existing in images where the recall rate of regional proposals
for smaller targets stays low.

Attention mechanism, one of the most valuable breakthroughs in deep Learning, has
been widely used in many fields, such as natural language processing, image recognition,
speech recognition, and image caption [17,18]. Three types of attention mechanism are
popular: spatial attention [19,20], channel attention [21], and hybrid attention [22,23]. The
spatial attention focuses on ’where’ is an informative part, which transforms the spatial
information in the original image into another space and retains the key information [23].
Many networks have been proposed deploying the spatial attention networks, like Spatial
Transformer Network (STN) proposed by Google Deep Mind [19], and dynamic capacity net-
works [20]. The spatial attention locates targets, and then performs certain transformations
or assigns weights. It is proper for tasks of locating regions of interest.

For natural images, some approaches adopted attention mechanism to generate pro-
posals specifically for small targets. Christuan Wihms et al. [24] designed AttentionMask
based on FastMask [12]. They added an extra module to the backbone network of Fast-
Mask to focus on the small objects that might be missed before. They also deployed a
Scale-specific Objectness Attention Model (SOAM) that utilizes the vision attention mecha-
nism [17]. The whole performance of AttentionMask has risen 33% from that of FastMask.
However, given the difference between natural images and remote sensing images, Atten-
tionMask are not quite prepared for remote sensing images. In AttentionMask, the sliding
windows for the attention mechanism are selected subjectively, bringing uncertainty to the
whole system.

Therefore, this paper proposes a regional proposal generation method for remote
sensing images, and focuses on two problems: first, the candidate regions of small objects
would be missed or mis-identified among those of diversified sizes of objects; Second, the
subjectively-selected sliding windows would impose uncertainty on final results. This
approach extracts multi-scale features from deep convolutional nerves and the attention
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mechanism to efficiently generate region proposals. It can lay the foundation for consequent
target detection, and improve the accuracy and efficiency of the detection. Experimental
on the LEVIR dataset [25] demonstrates that the proposed approach holds a 2%∼3%
higher recall rate, compared with those of the state-of-the-art methods, including RPN [1],
FastMask [12], AttentionMask [24], etc.

The proposed approach innovates in the following aspects,

1. Development of the scale-specific feature gate that can obtain features from multi-
scales, representing semantic information of objects of different sizes. It avoids the
misidentification of regional proposals that are caused by various sizes of objects.

2. Development of the spatial attention-guided module that uses the multi-scale features
to greatly reduce the computing power and improve the accuracy of candidate region
generation. It can help the system notice the small objects that might be missed.

3. Development of a selective attention module that can adaptively select the appropriate
sampling windows based on the feedback of the system, instead of subjectively
selecting part of the sliding window of the attention mechanism. It lifts the uncertainty
that the subjectively-selected sliding windows might bring.

The rest of the article is organized as follows: Section 2 describes the principles and
workflows of the proposed method; Experiments are shown in Section 3; Section 4 reports
the experimental results on the LEVIR dataset in comparison with other state-of-the-art
methods, and some ablation experiment results; Conclusions are drawn in Section 5.

2. Materials and Method

This approach proposes a network that incorporates an object proposal method and
a multi-scale spatial attention mechanism (MSA-RPN). The framework is illustrated in
Figure 1. The backbone of MSA-RPN is ResNet-50 [26]. First, the remote sensing image
input into the MSA-RPN is processed by the backbone network and three scales of features
Scale8, Scale16, Scale32 are extracted. These features are processed through the scale-specific
feature gates and smaller feature maps Scale64 and Scale128 are output. Second, a spatial
attention-guided module is assigned on each of the five scales of features. This module
calculates an attention value for each position in the feature maps and determines whether
there is an object at that position. Then all the attention values are jointly ranked. The maps
containing positions of the most-likely-existing objects undergo window sampling, and the
windows are scored. Third, the selective strong attention maps model(SSAMM) adaptively
selects K sampling windows corresponding to the threshold range, and sends them to the
attention decoder. Thus, the region proposals and their respect confidences are obtained.

2.1. Multi-Scale Features

In this study, the multi-scale features refer to those extracted from multiple remote
sensing images of different sizes that have gone through different convolutional layers in
the networks. Features obtained from different convolutional layers represent different
levels of information of the images, those from shallow layers express low-level details of
images, while those from deep layers contain high-level semantic information. Given the
small sizes of most objects in remote sensing images, features representing low-level details
are as important as those containing high-level semantic information for positioning and
classification. Therefore, combing features extracted from different convolutional layers
and conducting correlation fusion can improve the performance of small target detection.
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Figure 1. Framework of the proposed MSA-RPN.

Figure 2 displays the acquisition process of multi-scale features in this work. Suppose
a remote sensing image is input into the ResNet-50 network, and feature maps can be
extracted from layers of Conv3, Conv4, and Conv5, with a size of 1/8, 1/16, 1/32 of the
original image, respectively. These maps further undergo the Scale-specific Feature Gate
(SFG) modules and smaller feature maps with semantic information are obtained. Table 1
lists the scales of features obtained through this process.

ResNet-50

Conv-3

SFG

SFG (Scale-specific Feature Gate)

Conv-4 Conv-5……

SFG

16Scale 32Scale
8Scale

64Scale 128Scale

Figure 2. The process of generating multiscale features.

Table 1. Definition of Multi-scale features.

Feature Size Notation Layer That Outputs the Features

1/8 of the original image Scale8 Conv3

1/16 of the original image Scale16 Conv4

1/32 of the original image Scale32 Conv5

1/64 of the original image Scale64 SFG

1/128 of the original image Scale128 SFG
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2.2. Scale-Specific Feature Gate

Maximum pooling and average pooling are the two widely used pooling methods
in deep convolutional neural networks [27]. After maximum pooling, the value of the
processed feature map is significantly greater than that of the bottom one. Average pooling
is to obtain the average value of all the pixels in a grid, and preserve more information
of the background of the image. The scale-specific feature gates (SFGs) proposed in this
paper adopt the average pooling to reduce dimensions and benefit the transmission of
semantic information to the next modules. Figure 3 depicts the working process of a
SFG. The SFGs condense the feature maps of Scale32 into maps of Scale64 and then Scale128.
A SFG uses two branches to fulfill its task. One branch condenses the feature maps by
sequentially dealing them through a 3× 3 convolution layer a 1× 1 convolution layer, and
an average pooling process; simultaneously, the other branch sends the input feature maps
into another average pooling to retain the semantic information that may be lost through
the convolution layers. Finally, the SFG integrates the features output by the two branches
together. The input of a SFG is denoted as F(h, w, c), which i thes output by Conv5 of the
ResNet, and the output is denoted as F

′
(h/d, w/d, c).

Figure 3. The structure of a SFG.

2.3. Spatial Attention Guided Model (SAGM)

The Spatial Attention Guided Model (SAGM) in MSA-RPN uses the spatial attention
to appropriate location information of objects and extract features that can represent
the locations. It can reduce the processing time by eliminating redundant features, thus
improve the efficiency of the detection. Figure 4 illustrates the structure of a SAGM. Feature
F is processed by both the maximum and the average pooling, and the results of the two
are merged to a new feature. The fused feature goes through a 7× 7 convolution layer, and
the multi classification function sigmoid. Then, the spatial attention map MS is generated
and can be expressed as

Ms(F) = σ( f 7×7([AvgPool(F); MaxPool(F)]))

= σ( f 7×7([FS
avg; FS

max]))
(1)

where FS
avg ∈ R1×H×W and FS

max ∈ R1×H×W represent the average pooling and the maxi-
mum pooling in the channel direction, respectively, and f 7×7 represents the 7× 7 convolu-
tion operation.



Remote Sens. 2021, 13, 3362 6 of 13

Figure 4. The structure of a SAGM.

2.4. Selective Strong Attention Maps Model (SSAMM)

In MSA-RPN, after SAGMs, a set of attention maps and their respect attention values
are obtained. The attention values are ranked in an ascending order, and the maps with
the top values are selected for the window sampling (with a sliding window of 10× 10).
Then multi-windows are obtained. Different networks deploy different strategies to select
windows. FastMask selects all sampling windows, resulting in increased calculation cost
and decreased system efficiency. AttentionMask selects the first 1000 windows as strong
feature windows, and 1000 is an empirical value. This paper proposes the selective strong
attention maps model (SSAMM) that can adaptively select the appropriate number of
windows based on the feedback of the system. The loss value output by the attention
module is input to the SSAMM, and the SSAMM determines K windows to be selected
according to the range of the loss value. This adaptive mechanism can help the system
to obtain better features, and improve its robustness. Table 2 lists values of K and their
corresponding loss values. It should be noted that when the network is initiated, the Loss
value is unknown, and K is set as 5000 for the first iteration.

Table 2. K values and their corresponding ranges of loss values.

Range of Loss The Value of K

(+∞,1] 5000

(1,0.5] 4000

(0.5,0.3] 3000

(0.3,0.2] 2000

(0.2,0) 1000

2.5. Loss Function

MSA-RPN intends to complete multiple tasks, so different loss functions are needed.
We deploy a regression loss function similar to that in the Faster RCNN, and describe it as

smoothL1 =

{
0.5x2, i f |x| < 1
|x| − 0.5, otherwise

(2)

Then the loss function of the candidate region proposal can be expressed as

Lloc(b, b̂) = smoothL1(b, b̂)

{
0.5(b− b̂)2, i f |b− b̂| < 1
|b− b̂| − 0.5, otherwise

(3)

where b = {bx, by, bw, bh} represents the four parameterized borders of the ground truth
labeled in the original image, and b̂ = {b̂x, b̂y, b̂w, b̂h} represents the output, that is, the four
parameterized coordinates of the predicted candidate anchor box.
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Training SAGMs is different from other loss functions, as the number of the negative
samples is much larger than that of the positive samples in the feature layers. This imbal-
ance will hinder the work of the binary cross-entropy loss function. Therefore, we adopt
two strategies to calculate the loss function when training SAGM. First, we add weight to
the binary cross-entropy loss function to alleviate the imbalance between classes, and the
weighted binary cross-entropy loss function is described as

Lr,wr (y, ŷ) = −y ∗ log(σ(ŷ)) ∗ r ∗ wr − (1− y) ∗ log(1− σ(ŷ)) (4)

where r denotes the ratio of the number of pixels with the label of non-object to that of
pixels with the label of object in the ground truth of an objectness spatial attention map, that
is, the ratio of the negative samples to the positive ones; wr represents the weight factor.
When y = 1 and ŷ 6= 1, there is a larger loss. Next, we deploy the negative sample mining
strategy that randomly selects three non-object pixels for every object pixel, and establishes
a set of positive and negative samples of locations AREA. Then the standard binary cross
loss function is combined with the spatial normalization to process the set of positions. The
loss function of the SAGM can be expressed as

Lsa(s, ŝ) =
1

AREA ∑
(x,y)∈AREA

L(sx,y, ŝx,y) (5)

where s represents the feature label in the spatial attention, and ŝ represents the predicted
feature label of the object.

In summary, for an image that contains multi objects to be detected, the loss function
of MSA-RPN can be expressed as

L(s, o, a, b; ŝ, ô, â, b̂) = wsa

M

∑
m=0

Lsam (sm, ŝm)

+
1
N

N

∑
n=0

(wobjLobj(on, ôn + L(on)(wattdLattd(an, ân + wlocLloc(bn, b̂n)))

(6)

where M represents the number of feature maps generated by SAGM. L is the indicator
function that indicates the attention decoding Lattd and the candidate anchor box Lloc are
calculated only when the sample is positive.

3. Experiments
3.1. LEVIR Dataset

We conducted our experiments on the LEVIR (LEarning VIsion and Remote sensing
laboratory) dataset [25]. This dataset was established by Zou et al. from Beijing University
of Aeronautics and Astronautics. It collects 20,000 high-resolution remote sensing images,
mostly from Google Earth, at a size of 800× 600 pixels, and a spatial resolution range of
0.2∼1.0 m/pixel. These images cover most of the geographical types of areas, including
cities, villages, mountains, and oceans, and contain three types of targets: aircraft, ships
(landed ships and offshore ships) and oil tanks. A total of 11,028 targets have been labeled,
including 4724 aircraft, 3025 ships and 3279 oil tanks. Averagely, 0.5 labeled targets exit in
one image. Given the small sizes of the targets, mostly within a range of 30× 30 pixels to
10× 10 pixels, performing object detection on this dataset is challenging.

3.2. Evaluation Metrics

The recall rate can be regarded as an indicator of the performance of object proposal
algorithms [3]. the higher the recall rate, the better the performance of the algorithm. The
calculation of the recall rate is defined as

Recall =
NTP
NC

(7)
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where NTP refers to the number of the candidate boxes that contain real targets within
the set of the regional proposals, and NC represents the number of predicted boxes within
the set of the regional proposals. Ref. [3] demonstrated that the average recall rate can
objectively and effectively evaluate region proposal algorithms. So we adopt the average
recall rate as the indicator. Since objects of different sizes in the regional proposals might
lead to different detection results, we referred to the evaluation method on the COCO
dataset (refer to Table 3), and prepared the same number of region proposals for detection
experiments on the large, the medium and the small objects separately.

The definitions of the large, the medium and the small objects in high-resolution
remote sensing images are quite different from those in the COCO dataset [28]. We adopted
the definitions in Sig-NMS [29] that uses the “object-image ratio” as the threshold. Namely,
RatioS = st/S,where st = wt × ht is the area of the object and S = W × H the are of the
image. When RatioS ∈ (0, 0.001], the corresponding object t is defined as a small object;
When RatioS ∈ [0.001, 0.01], t is a medium object; and when RatioS ∈ [0.01,+∞], t is a
large object.

Table 3. Denotations of the average recalls for different situations.

Regional Proposals 10 100 1000 Small Objects Medium Objects Large Objects

Representation AR@10 AR@100 AR@1000 ARS@100 ARM@100 ARL@100

3.3. Implementation Details

We performed the MSA-RPN within the Caffe Version 1.0 framework [30], on a
computer with the operating system of Ubuntu 18.04, and the GPU of NVIDIA 2080Ti
12G. MSA-RPN was trained by the standard stochastic gradient descent (SGD) with an
initial learning rate of 0.0001. To begin with, the learning rate was multiplied by 10, the
momentum selection was set to 0.9, the weight decay was 0.00005 [31], and the batch size
was 8. The weight factors are wobj = 0.55, wsa = 1.15, wattd = 1.25, wloc = 1.75. This
experiment used the anchor point method to represent region proposals, same with those
in Faster RCNN [1], YOLO [2], and AttractNet [9].

4. Results and Discussions
4.1. Comparison of the MSA-RPN and Other State-of-the-Art Methods

We conducted RPN, FastMask and AttentionMask on the LEVIR dataset, together
with the proposed MSA-RPN, and compared the results.

Table 4 lists the average recall rates of MSA-RPN and the other algorithms. The
recall rate of MSA-RPN for 10 regional proposals is not as high as those of the RPN and
the FastMask algorithms, but those of MSA-RPA for 100 and 1000 regional proposals are
relatively high. Particularly, for small objects in 100 regional proposals, the recall rate of
MSA-RPN is 10% higher than that of the AttentionMask algorithm.

Table 4. Average recall rates of MSA-RPN and the other State-of-the-Art methods on the LEVIR dataset.

Method AR@10 AR@100 AR@1000 ARS@100 ARM@100 ARL@100 Times

RPN 0.287 0.455 0.575 0.165 0.528 0.697 0.38 s

FastMask 0.289 0.487 0.581 0.168 0.532 0.701 0.35 s

AttentionMask 0.272 0.483 0.595 0.189 0.527 0.722 0.24 s

MSA-RPN 0.285 0.490 0.603 0.285 0.533 0.735 0.22 s

Figure 5 displays the visualized results of MSA-RPN and the other algorithms. Figure 5a–c
are three original images that contain aircraft, ships and oil tanks, respectively. These objects
are of different sizes, including the small, the medium and the large, and concentrate
together. Especially in Figure 5c, about 70 oil tanks huddle together. Figure 5d–f present
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the region proposals of FastMask. Compared with the original images, Figure 5d misses
an airplane and Figure 5f ignores two small ships. This is because FastMask focuses on
the high-level semantic information, and outputs feature maps at a size of 1/16 of the
original image. This causes the easy losing of small objects. Figure 5g–i depict the results
of AttentionMask. Compared with FastMask, AttentionMask detects the same number of
small airplanes and one more small ship. This indicates that AttentionMask is improved
compared to FastMask. The reason is that it notices details in lower layers by retaining the
features of Figure 5j–l exhibit the results of the proposed MSA-RPN algorithm. MSA-RPN
successfully detects all the airplanes and ships, and the oil tanks with black appearance. It
demonstrates that MSA-RPN can detect objects of various sizes from complex backgrounds
with rich textures.

(a) original image. (b) original image.

(c) original image. (d) Visualized result of FastMask.

(e) Visualized result of FastMask. (f) Visualized result of FastMask.

(g) Visualized result of AttentionMask. (h) Visualized result of AttentionMask.

Figure 5. Cont.
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(i) Visualized result of AttentionMask. (j) Visualized result of MSA-RPN.

(k) Visualized result of MSA-RPN. (l) Visualized result of MSA-RPN.

Figure 5. Visualized result of MSA-RPN and the other algorithms.

4.2. Ablation Experiments
4.2.1. Influences of Scales

We selected one or more combinations of Scale8, Scale16, Scale32, Scale64, Scale128 and
Scale192 to investigate the influences of scales on regional proposals. We defined MSA-
RPNb

e as the combination of scales, where b means the starting size, and e the ending
size. For example, when b = 8 and e = 128 the combination of scales extend from Scale8
to Scale128, when b = 8 and e = 8, only Scale8 is selected. The experimental results on
the LEVIR data set are listed in Table 5. In the top four rows in Table 5, as the ending
scales are increased from 128 to 192, the recall rates in the four situations stay the same,
while the time consumptions largely rise. Comparing MSA-RPN8

128 with MSA-RPN128
128,

we could find that MSA-RPN8
128 achieves a greater improvement from MSA-RPN128

128. This
is because Scale8 can better retain the feature information of small targets. We further
conducted two experiments using the maximum and the minimum scales, denoted as
MSA-RPN8

8 and MSA-RPN128
128, respectively, and the results are listed in the bottom two

rows in Table 5. Obviously, MSA-RPN8
8 obtains better results on small objects while MSA-

RPN128
128 performs better on large objects. So we chose the combination of MSA-RPN8

128 for
the following experiment.

Table 5. Results of different combinations of scales on the LEVIR dataset.

Combination ARS@100 ARM@100 ARL@100 Times

MSA-RPN8
192 0.283 0.535 0.736 0.26 s

MSA-RPN8
128 0.285 0.533 0.735 0.22 s

MSA-RPN16
192 0.191 0.532 0.734 0.24 s

MSA-RPN16
128 0.193 0.528 0.736 0.23 s

MSA-RPN8
8 0.190 0.310 0.345 0.13 s

MSA-RPN128
128 0.050 0.451 0.612 0.15 s

4.2.2. Influence of the SFG

FastMask uses a Neck [12] component to obtain multi-scale features, while Atten-
tionMask obtains the feature maps of Scale8 from the backbone network, and then uses
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the Neck component to extract features of Scale16, Scale32, Scale64 and Scale128. Different
from them, the proposed MSA-RPN outputs features of Scale8, Scale16 and Scale32 through
Conv3, Conv4 and Conv5 in the ResNet50 backbone network, respectively, and obtains
features of smaller sizes of Scale64 and Scale128, from the proposed SFGs.

To validate the effectiveness of SFGs, we compared it with the Neck component.
Table 6 presents the results. The recall rates of the Neck+SAGM method are lower than
those of the SFG+SAGM method. Under the conditions of 100 regional proposals, the recall
rates of the SFG+SAGM are slightly higher for the small objects but largely higher for the
large and the medium objects. As features of Scale8 retains information of the small objects,
while features of Scale64 and Scale128, and large sizes retain information of the medium
and the large targets, SFGs can increase the recall rate of regional proposals for remote
sensing images.

Table 6. Comparison results of the SFG and the Neck on the LEVIR dataset.

Method AR@10 AR@100 AR@1000 ARS@100 ARM@100 ARL@100 Times

Neck+SAGM 0.221 0.389 0.591 0.278 0.516 0.709 0.28 s

SFG+SAGM 0.285 0.490 0.603 0.285 0.533 0.735 0.22 s

4.2.3. Impact of the SAGM and SSAMM Module

SOAM in AttentionMask can improve the recall rate of regional proposals. Therefore,
we compared the proposed SAGM with SOAM, and the results are listed in Table 7. SAGM
performs better on the small targets. The experiment also validated that SAGM costs less
time on a single image.

As FastMask selects all sampling windows and AttentionMask selects the first 1000 windows
as strong feature windows for their attention mechanism, the proposed SSAMM adap-
tively selects the appropriate number of windows based on the feedback of the system. To
demonstrate the effectiveness of SSAMM, we conducted MSA-RPN both with and without
SSAMM, and the results are compared in Table 8. For MSA-RPN without SSAMM, k
is set as 2500. The results indicate that SSAMM improves the recall rates of all the sets,
specifically increasing the recall rate of the small objects to that of the large objects.

Table 7. Comparison results of the SAGM and the SOAM on the LEVIR data set.

Method AR@10 AR@100 AR@1000 ARS@100 ARM@100 ARL@100 Times

SFG+SOAM 0.221 0.389 0.591 0.191 0.522 0.712 0.23 s

SFG+SAGM 0.285 0.490 0.603 0.285 0.533 0.735 0.22 s

Table 8. Results of MSA-RPN with and without SSAMM.

Method AR@10 AR@100 AR@1000 ARS@100 ARM@100 ARL@100 Times

NO SSAMM 0.281 0.489 0.601 0.279 0.534 0.732 0.21 s

SSAMM 0.285 0.490 0.603 0.285 0.533 0.735 0.22 s

5. Conclusions

In this work, we introduced a novel MSA-RPN network for region proposal generation
of high-resolution remote sensing images. The introduced MSA-RPN can effectively solve
the problem of inaccurate region proposal of multi-scale and dense objects, especially
small objects. The MSA-RPN is mainly composed of three key models: SFG, SAGM and
SSAMM. The SFG module helps the network to obtain smaller feature to represent more
semantic information in remote sensing images; SAGM adopts spatial attention to focus
on scale-special regions to generate multi-scale attention maps, and then obtains window
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samples; Finally, SSAMM can adaptively send the obtained sampling window into the
spatial attention decoder to obtain region proposal and the corresponding confidence.
We conducted experiments on LEVIR dataset and compared with other region proposal
methods such as RPN, FastMask and Attentionmask. Experiment results showed that
the proposed network outperformed state-of-the-art approaches both quantitative and
qualitatively. We also provided extensive experiments to evaluate the impact of the indi-
vidual components of the proposed architecture. The experimental results showed that
SFG module could improve the recall rate of medium and large-scale objects, while SAGM
module and SSAMM could improve the recall rate of small objects. Therefore, MSA-RPN
can improve the recall rate of candidate regions of multi-scale objects, especially for small
targets. A further direction to investigate is the use of MSA-RPN to efficiently combine
object recognition to improve the accuracy of object detection in high-resolution remote
sensing images.
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