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Abstract: Inner Mongolia in China is a typically arid and semi-arid region with vegetation promi-
nently affected by global warming and human activities. Therefore, investigating the past and
future vegetation change and its impact mechanism is important for assessing the stability of the
ecosystem and the ecological policy formulation. Vegetation changes, sustainability characteristics,
and the mechanism of natural and anthropogenic effects in Inner Mongolia during 2000–2019 were
examined using moderate resolution imaging spectroradiometer normalized difference vegetation
index (NDVI) data. Theil–Sen trend analysis, Mann–Kendall method, and the coefficient of variation
method were used to analyze the spatiotemporal variability characteristics and sustained stability of
the NDVI. Furthermore, a trend estimation method based on a Seasonal Trend Model (STM), and
the Hurst index was used to analyze breakpoints and change trends, and predict the likely future
direction of vegetation, respectively. Additionally, the mechanisms of the compound influence of
natural and anthropogenic activities on the vegetation dynamics in Inner Mongolia were explored
using a Geodetector Model. The results show that the NDVI of Inner Mongolia shows an upward
trend with a rate of 0.0028/year (p < 0.05) from 2000 to 2019. Spatially, the NDVI values showed
a decreasing trend from the northeast to the southwest, and the interannual variation fluctuated
widely, with coefficients of variation greater than 0.15, for which the high-value areas were in the
territory of the Alxa League. The areas with increased, decreased, and stable vegetation patterns
were approximately equal in size, in which the improved areas were mainly distributed in the
northeastern part of Inner Mongolia, the stable and unchanged areas were mostly in the desert, and
the degraded areas were mainly in the central-eastern part of Inner Mongolia, it shows a trend of
progressive degradation from east to west. Breakpoints in the vegetation dynamics occurred mainly
in the northwestern part of Inner Mongolia and the northeastern part of Hulunbuir, most of which
occurred during 2011–2014. The future NDVI trend in Inner Mongolia shows an increasing trend
in most areas, with only approximately 10% of the areas showing a decreasing trend. Considering
the drivers of the NDVI, we observed annual precipitation, soil type, mean annual temperature,
and land use type to be the main driving factors in Inner Mongolia. Annual precipitation was
the first dominant factor, and when these four dominant factors interacted to influence vegetation
change, they all showed interactive enhancement relationships. The results of this study will assist in
understanding the influence of natural elements and human activities on vegetation changes and
their driving mechanisms, while providing a scientific basis for the rational and effective protection
of the ecological environment in Inner Mongolia.
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1. Introduction

Vegetation is an important component of ecosystems and plays a key role in the carbon
cycle [1–3]. Distinctive interannual and seasonal variations have been observed while
studying vegetation trends [2,4,5]. Vegetation indices can provide substantial information
on terrestrial vegetation; they are often used as an important parameter in characterizing
surface vegetation for environmental quality assessments. Furthermore, vegetation indices
are important for studying the hydrology, ecology, and regional changes [6,7]. Numerous
studies have shown that the normalized difference vegetation index (NDVI) correlates
well with the biomass and leaf area indices, allowing a good representation of the surface
vegetation coverage. This can be used to effectively characterize vegetation activity and
productivity and is suitable for representing changes in surface vegetation cover [1,8–10].
With recent advancements in remote sensing technology, moderate resolution imaging
spectroradiometer (MODIS) NDVI has become the primary data source for large-scale
vegetation cover research because of its advantageous characteristics, such as high quality,
wide areal coverage, high temporal resolution, and accessibility [11–13].

Currently, researchers mostly focus on the study of the overall trend of NDVI. Sen’s
slope is often used for quantifying the overall trend of the NDVI time series, as it is a
non-parametric method that is less sensitive to outliers and skewed distributions [14].
However, this method can only be used to estimate the magnitude of NDVI changes and
cannot determine the significance of the slope, so the results lack statistical significance.
Therefore, researchers are increasingly applying the Mann–Kendall test to assess the sig-
nificance of monotonic trends (linear or nonlinear) using a combination of Mann–Kendall
test and Sen’s slope algorithm for time series with outliers, to simultaneously assess and
quantify monotonic interannual trends. This strategy is more robust than using parametric
statistics, such as ordinary least squares. Therefore, the Mann–Kendall method is well
suited to examine trends in vegetation [15,16]. However, only studying the interannual
variations in NDVI can ignore the changes in the details of NDVI time series, and for a
detailed description of NDVI changes, the ephemeral disturbances that occur in a time
series need to be assessed [17]. Several methods have been proposed to detect sudden
changes in vegetation, including the Landsat-based detection of trends in disturbance
and recovery [18], breaks for additive season and trend (BFAST) [19], vegetation change
tracker [20], and the detection of breakpoints and estimation of segments in trend methods.
Due to the diversity and uncertainty of vegetation change, only high-frequency time series
can describe the entire process of vegetation change in a short time interval [21,22]. There-
fore, only change detection with dense satellite time series data can meet the requirements
for the dynamic monitoring of vegetation cover changes [7]. A trend estimation method
based on seasonal trend model (STM), originating from BFAST, considers the seasonality
and noise of the NDVI time series. Therefore, it allows changes in the phenological cycle,
as well as long-term NDVI trends, to be detected, distinguished, and quantified [23–25].
Therefore, it has received wide attention in the analysis of mutations that occur in a time
series, and researchers are increasingly using this method for trend and breakpoint analysis
of NDVI time series, time series smoothing and interpolation, and surface phenology analy-
sis [25–27]. In this study, trends in the NDVI time series were explored using a combination
of methods, analyzing both overall and mutational details.

Vegetation trends need to be fully characterized to provide information for decision
making. Therefore, the Hurst index estimated by the R/S method was introduced to predict
the future trend of vegetation in order to understand whether the vegetation trend has
long-range memory. The R/S method provides specific information on correlation and
persistence and is an effective index for studying complex processes such as vegetation
time series [28,29]. Combining R/S and trend methods for future trend studies can provide
insights into the continuity and future direction of vegetation change trends. Multiple
researchers have introduced STM, Sen’s slope, the Mann–Kendall test, and the Hurst index
for studying changes in NDVI [30–32]. However, for the Inner Mongolia region, human
activities such as national ecological projects, changes in grazing practices, and accelerated
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urbanization, together with the impact of climate change on vegetation cover, are all non-
negligible factors for the spatial heterogeneity of NDVI [33–35]. Therefore, it would be too
simple to explore only the spatial and temporal variations in NDVI.

In recent years, the ecological problems in Inner Mongolia have become increasingly
severe [36,37]. As an important ecological barrier in the northern region of China, the
ecological condition in Inner Mongolia has an important impact in North China, and explor-
ing the driving mechanism of vegetation change is an important prerequisite for solving
ecological problems. Climate change and human activities are the main mechanisms stud-
ied in vegetation research [38,39]. The Fifth Assessment Report of the Intergovernmental
Panel on Climate Change states that many aspects of vegetation phenology, composition,
and productivity have been affected by global warming over the past 30 years [40–42].
Many studies have attempted to quantify the relationship between vegetation indices and
meteorological factors, but most focused on linear relationships and only on two factors,
temperature and precipitation, leading to inadequate conclusions and failing to quantify
the contribution and interactions of the drivers of vegetation change [43,44]. Additionally,
the impact of human activities on vegetation cannot be ignored. Attempts have been made
to study this using residual analysis, but this method is crude, allowing the quantification
of the overall impact of human activities, but being unable to identify the human activity
factor that is specifically responsible. In addition to the methods mentioned above, multiple
linear regression methods [43], structural equation models [45], random forest models [46],
and other methods have been introduced to study the effects of human activities and
meteorological elements on NDVI. However, the influence mechanisms of vegetation are
complex and diverse, and it is not sufficient to study complex multivariate nonlinear
relationships using simple linear correlations. In order to obtain more objective and ac-
curate evaluation results, we detected NDVI spatial differentiation and related drivers
from a multivariate spatial perspective, using a Geodetector approach that can avoid the
interference of subjective factors [47,48]. We also explored the potential and interactive
effects of anthropogenic and natural factors on vegetation growth.

The Inner Mongolia region is located in the northern frontier of China, with a vast
territory, high terrain, and complex and diverse landscapes, and is one of the most sensitive
regions in the world to external environmental changes due to its arid and semi-arid
climate [49]. Over the past 40 years, temperatures in the region have risen much faster
than the global average, and the rapid rise in temperature and dramatic reduction in
precipitation have exacerbated the degradation of vegetation [50,51]. In addition, since 2000,
the region has entered a phase of rapid socioeconomic development, and climate change
and human activities are rapidly restructuring the structure and function of vegetation
systems at all levels and simultaneously affecting the ecology and future sustainability
of the region [52]. However, current studies on the driving mechanisms of vegetation
growth focus on natural factors, and anthropogenic factors are often neglected. Therefore,
in this study, we use the Geodetector model combined with geospatial data and climate
and human activity factor data, for a comprehensive investigation of the mechanisms
that influence NDVI spatial patterns. DEM, slope and land type, and precipitation and
temperature data were selected for analyzing the driving factors, after considering the
special topographic and climatic conditions of the Inner Mongolia region [53]. In terms
of anthropogenic factors, the impact of human activities on the ecological environment is
becoming more and more complex as urbanization accelerates, and we chose GDP, land
use type, and population data to explore this aspect [54]. In addition, as Inner Mongolia is
a major livestock province in China, the impact of grazing intensity on vegetation change
should not be neglected. We chose the number of livestock as a representative driver to
examine its influence [55].

Overall, the objectives of this study were: (1) To study the interannual variations of
the NDVI characteristics during 2000–2019 for each vegetation type in Inner Mongolia
using time series analyses and Mann–Kendall tests; (2) to assess the NDVI stability over
the last 20 years in Inner Mongolia by calculating the coefficient of variation; (3) to detect
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breakpoints in the NDVI at the pixel scale using the STM method and to conduct a trend
analysis at each stage; (4) to predict future trends in vegetation dynamics in Inner Mongolia
using the Hurst exponent and R/S analysis; and (5) to quantify the mechanisms of single
and compound influences of natural and anthropogenic factors on the NDVI using Geode-
tector. The results of this study can provide a basis for understanding vegetation trends and
ecosystem evolution and for predicting the future direction of vegetation growth in Inner
Mongolia. These results are of great theoretical and practical significance for guiding future
ecological conservation policies and managing the effects of climatic and anthropogenic
factors on vegetation growth in Inner Mongolia.

2. Materials and methods
2.1. Study Area

The Inner Mongolia Autonomous Region is in the northern borderlands of China,
between 7◦12′ and 126◦04′ E and 37◦24′ and 53◦23′ N. With a total area of 118.3 km2, it
is the third largest province in China, accounting for 12.3% of the country’s total land
area. The area predominantly experiences a temperate continental monsoon climate, with
marked regional and seasonal differences. Precipitation decreases from the northeast to
the southwest, exhibiting marked gradient differences. The average annual temperature
increases from the northeast to the southwest [56]. There is a rich variety of soil types
that are distributed from east to west as black soil, dark brown loam, black calcareous soil,
chestnut calcareous soil, brown loam, gray calcareous soil, sandy soil, and gray desert
soil [57]. The vegetation types include forest, grassland, and desert in the order of de-
creasing precipitation from east to west, with three sub-categories of grassland vegetation:
Meadow grassland, typical grassland, and desert grassland, depending on the climatic
zone [58] (Figure 1).
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2.2. Data Sources

The data used in this research (Table 1) were pre-processed to meet the accuracy
requirements of the research and for consistency between different data sources. MODIS
reprojection tool (MRT) was used to pre-process the NDVI data. Analysis included repro-
jection, stitching, and format conversion, while the original HDF format was transformed
into the ArcGIS editable TIFF file, and its coordinate system and projection were defined.
Furthermore, MATLAB was used to remove outliers through the maximum value synthesis
method to obtain the optimal NDVI raster. The meteorological data was interpolated
to monthly scale spatial data using Albers projection and Kriging interpolation, before
being synthesized into annual precipitation and annual mean temperature spatial data
at the monthly scale using Raster Calculator. Finally, the data were masked using the
administrative boundaries of the Inner Mongolia region.

Table 1. Sources of dataset.

Dataset Time Scale Spatial Scale Source of Data

NDVI 2000–2019 1 km
MOD13A3

(https://ladsweb.modaps.eosdis.nasa.gov)
accessed date: 23 December 2020

Climate dataset 2000–2019 —
Inner Mongolia Statistical Yearbook

(2000–2019)
accessed date: 23 December 2020

DEM 2007 90 m
SRTM3

(https://earthexplorer.usgs.gov/)
accessed date: 24 December 2020

Slope 2007 90 m Centralized extraction of elevation data
accessed date: 23 December 2020

Soil type 1995 1 km 1:1 million soil map of the People’s Republic of China
accessed date: 23 December 2020

Land Use Types 2018 1 km https://www.resdc.cn
accessed date: 24 December 2020

Number of livestock 2010 0.083◦ https://www.nature.com/articles/sdata2018227 [59]
accessed date: 24 December 2020

Gross domestic product (GDP) 2010 1 km https://www.resdc.cn/DOI [60]
accessed date: 25 December 2020

Human population (POP) 2010 1 km https://www.worldpop.org/project
accessed date: 25 December 2020

We also used livestock data from 2010 [59], gross domestic product (GDP) data,
and human population (POP) data to represent different anthropogenic factors. Specific
information is shown in Table 1 and Figure 2.

2.3. Methods
2.3.1. Spatial Trend Analysis Methods

The combination of the Theil–Sen trend analysis and the Mann–Kendall test does not
require the data to follow a certain distribution when analyzing trends over a time series.
Furthermore, the combination is more resistant to data errors and the results from the
significance level test are more scientifically reliable than other research methods [29].

Theil–Sen trend analysis is a very reliable non-parametric statistical calculation method
that is computationally efficient, insensitive to measurement errors and outlier data, and is
often used in the trend analysis of long time series. This is calculated as follows:

β = Median
(NDVIj −NDVIi

j− i

)
, (1)

where NDVIj and NDVIi are the NDVI values of a certain pixel in years j and i, respectively.
In this study, 2019 ≥ j ≥ i ≥ 2000. Additionally, the median represented here is the median

https://ladsweb.modaps.eosdis.nasa.gov
https://earthexplorer.usgs.gov/
https://www.resdc.cn
https://www.nature.com/articles/sdata2018227
https://www.resdc.cn/DOI
https://www.worldpop.org/project
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of the requested series. When β is greater than 0, an increasing trend is observed in the
NDVI and when β is less than 0, the NDVI presents a decreasing trend. When β is equal to
0, the NDVI is stable.
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The Mann–Kendall method is a non-parametric statistical test that was originally
proposed by Mann in 1945 and further refined by Kendall and Sneyers. It is advantageous
as it does not require normally distributed measurements or a linear trend and remains
unaffected by missing values or outliers. It is widely used for the trend significance testing
of long-series data [61]. The Mann–Kendall statistic S is calculated for the time series
{NDVIi} as follows:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(

NDVIj − NDVIi
)

(2)
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where n is the length of the time series, and sgn is the sign function, defined as:

sgn
(

NDVIj − NDVIi
)
=


1
(

NDVIj
〉

NDVIi
)

0
(

NDVIj = NDVIi
)

−1
(

NDVIj〈NDVIi
) (3)

When n ≥ 8, S follows a normal distribution with a mean of zero and a variance of:

Var(S) =
n(n− 1)(2n− 5)

18
(4)

The standardization of S is as follows:

Zc =


s−1√
Var(S)

(S〉0)
0(S = 0)

s+1√
Var(S)

(S〈0 )
(5)

where Zc is the statistic normalized by the Mann–Kendall test and follows a normal
distribution. When β = 0, there is no monotonic trend in the study series when the null
hypothesis holds and is combined with Theil–Sen trend analysis. Conversely, when the
null hypothesis does not hold, there is significant variation in the analyzed series at the
alpha level if the absolute value of Zc is greater than the standard normal distribution. This
study tested the significance of trends in NDVI time series at a confidence level of α = 0.05.

Additionally, the NDVI values for each pixel in the study area during 2000–2019 were
subjected to Theil–Sen trend analysis to obtain the spatial distribution of the trend values.
If β > 0, the annual average NDVI of the pixel shows an increasing trend, whereas if β < 0,
the annual average NDVI of the pixel shows a decreasing trend. Because there is essentially
no region where β is strictly equal to 0, the interval between−0.001 and 0.001 was classified
as stable and constant in this research, based on the actual situation of β. The results of the
Mann–Kendall test, at a confidence level of 0.05, were classified as significant (|Zc| > 1.96)
or insignificant changes (|Zc| ≤ 1.96).

In this study, areas with a multi-year average NDVI of less than 0.08 were considered
to be unvegetated and were excluded [62].

2.3.2. Coefficient of Variation

The coefficient of variation (Cv) is a statistical index that describes the ratio of a variable
relative to its mean, and is regarded as a useful indicator of interannual variability in an
ecosystem. Specifically, a lower Cv value indicates a lower fluctuation and greater stability
of the vegetation, while a higher Cv value indicates less stable vegetation. The calculation
is as follows:

Cv =
1

NDVI

√
1

n− 1

n

∑
i=1

(
NDVIi − NDVI

)2 (6)

where NDVIi is the NDVI value in year i and NDVI is the average NDVI value from
February 2000 to December 2019.

In this study, the stability of the interannual variation of the NDVI in Inner Mongolia
was expressed using Cv to indicate the fluctuation of NDVI in each region over a 20 year pe-
riod. The Cv of the NDVI in Inner Mongolia during 2000–2019 was calculated pixel-by-pixel.

2.3.3. Trend Estimation Based on Seasonal Trend Model

The STM is based on the BFAST and the classical additive decomposition model,
which constructs estimation methods for trends and breakpoints [63,64]. A segmented
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linear trend and seasonal regression model of NDVI during 2000–2019 to explain the NDVI
value y at moment t can be expressed as:

yt = α1 + α2t +
k

∑
j=1

γj sin
(

2π jt
f

+ δj

)
+ εt (7)

where α1 is the intercept, α2 is the slope of the trend, γ is the amplitude, δ is the phase of the
k harmonic term, ε is the residual error, and f is the number of observations per year. The
parameters α1 and α2 were estimated using an ordinary least squares regression, wherein
the derived time series segments were considered as categorical interaction terms with a
trend slope of α2. The significance of the trend in each segment was estimated using a t-test
for the interaction parameter of the regression between the time series segment and α2.

The presence of breakpoints can, under certain circumstances, indicate a shift in the
mechanism of influence on the time series. Therefore, if breakpoints are not considered,
the results of the trend analysis may lead to a misjudgment of the factors that influence
vegetation changes in Inner Mongolia [65,66]. Therefore, in this study, the times at which
breakpoints occurred were used as time splitting points, at which the time series was split
into two subseries; before and after the breakpoint. Then, the time trends and significance
levels of the subseries were monitored separately to obtain accurate conclusions regarding
the fluctuations in vegetation trends in Inner Mongolia during 2000–2019.

2.3.4. Hurst Exponent and R/S Analysis

The Hurst exponent and R/S analysis have developed a fractal theory for studying
time series and have been widely used in the research of urban environmental change,
climate change, population, and economic development [67,68]. R/S analysis can be used
to predict future trends in vegetation cover, wherein the main principle is to construct
a time series that defines an average series { ξ(t), t = 1, 2 · · · ·} , for any positive integer
τ ≥ 1. First, the mean sequence must be defined:

〈 ξ〉 τ =
1
τ

τ

∑
t=1

ξ(t)τ = 1, 2 · · · · (8)

Cumulative deviation:

X(t, τ) =
t

∑
µ=1

(ξ(µ)− 〈ξ〉τ)1 ≤ t ≥ τ (9)

The range:
R(τ) = max

1≤t≥τ
X(t, τ)− min

1≤t≥τ
X(t, τ)τ = 1, 2 · · · · (10)

Standard deviation:

S(τ) =

[
1
τ

τ

∑
t=1

(ξ(t)− 〈ξ〉τ)
2

] 1
2

(11)

For R(τ)/S(τ) ∆
= R/S, if there is a relationship as follows:

R/S ∝ τH (12)

where H is the Hurst index. According to the value of (τ, R/S), H can be obtained using
least squares fitting (Equation (8)) in a double logarithmic coordinate system. The H value
provides information on whether the sequence is completely random or if it follows a trend.
Furthermore, trends can be expressed as persistent or anti-persistent. Overall, H= 0.5
indicates that vegetation change is random, 0.5 < H < 1 indicates that vegetation change
is sustainable, and 0 < H < 0.5 indicates that future vegetation trend is expected to be the
opposite of that in the past.
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2.3.5. GeoDetector Model

GeoDetector is a statistical method used to explore spatial differentiation and quantify
drivers [69]. In this study, four detector tools of the geographical detector model were used
to quantify the drivers of NDVI in Inner Mongolia.

The dependent variable Y is the NDVI value for Inner Mongolia and the independent
variable X includes natural and social drivers.

(1) The factor detector focuses on exploring the spatial heterogeneity of the depen-
dent variable Y and the extent to which the independent variable X explains the spatial
heterogeneity of Y. The expressions are:

q = 1−

L
∑

h=1
Nhδ2

Nδ2 = 1− SSW
SST

(13)

SSW =
L

∑
h=1

Nhδ2
h, SST = Nδ2 (14)

where q represents the explanatory power of the metric factors on Y. Specifically, a larger q
indicates that the explanatory power of each metric factor is stronger, indicating that it has
more influence on the spatial distribution of the NDVI, and the range of q values is {0,1}.
Note that h = 1, 2 . . . , L is the classification or partition of Y or X; Nh and N represent the
number of cells in layer h and the entire area, respectively; δ2

h and δ2 are the variances of
layer h and the entire area, respectively; and SSW and SST are the sum of the within-layer
variance and total variance of the entire area, respectively.

(2) An ecological detector was used to determine if a significant difference existed
between the effects of two drivers on the spatial distribution of the dependent variable, as
measured by the F-statistic:

F =
Nx1 × (Nx2 − 1)× SSWx1

Nx2 × (Nx1 − 1)× SSWx2
(15)

where Nx1 and Nx2 denote the sample sizes of the two drivers, and SSWx1 and SSWx2
denote the sum of the within-layer variance for the stratum formed by the two drivers.

(3) An interaction detector was used to identify interactions between the different
drivers by assessing whether the explanatory power of factors X1 and X2 increases or
decreases for the dependent variable Y when they function together [70]. It is also possible
that the effects of these factors on the dependent variables were independent. The results of
this assessment were obtained by comparing the q-values q(X1) and q(X2) for the two factors
on Y, with the q-values on Y after the interaction between the two factors.

(4) A risk detector was used to detect the appropriate extent or type of vegetation
cover impact by different drivers, and uses the t-statistic as follows:

t =
Yh=1 −Yh=2[

Var(Yh=1)
nh=1 + Var(Yh=2)

nh=2

] 1
2

(16)

where Yh is the mean value of the NDVI attributes in sub-region h, nh is the number of
samples in sub-region h, and Var denotes variance.

GeoDetector was used to analyze variables that must be discretized for continuous
types of data. Additionally, the natural intermittency grading method was used to maxi-
mize the differences between the groups. This method considers the large latitudinal span
of Inner Mongolia, the diverse climate, temperature, soil, etc., and examines the representa-
tiveness, typicality, and scientificity of various driving factors. Nine representative and
available datasets were selected as drivers for exploring the distribution and changes in
the NDVI in Inner Mongolia, including five natural factors: Precipitation, temperature,
elevation, soil type, and slope; and four social factors: Population, GDP, land use type,
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and livestock density. Based on the closest distance method, the average NDVI and nine
drivers during 2000–2019 were resampled using ArcGIS 10.6, and the spatial resolution
of the raster data was unified to 10 × 10 km. The natural breakpoint method was used to
discretize the continuous driver data, and the spatial distribution is shown in Figure 2.

3. Results
3.1. NDVI Temporal Annual Variation Characteristics

To study the annual changes in the NDVI during 2000–2019 in Inner Mongolia, a time
series analysis of the vegetation cover was conducted for each year (Figure 3). The results
showed that the annual NDVI values in Inner Mongolia fluctuated upward from 0.42 to 0.51
between 2000 and 2019, at a growth rate of 0.0028/year (p < 0.05) and a multi-year average
of 0.46. The NDVI fluctuated less throughout Inner Mongolia considering interannual
variation, with the maximum NDVI of 0.51 recorded in 2018, and the minimum of 0.42
recorded in 2001.
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Considering each vegetation type as a unit, forest had the highest mean NDVI value
of 0.83, which fluctuated moderately, with a maximum NDVI value of 0.85 occurring in
2019 and a minimum of 0.81 in 2000. The difference between the annual maximum (0.75)
and minimum (0.66) values of the NDVI for the meadow steppe was 0.09. The fluctuating
trends were similar to those of typical steppe, with the maximum and minimum values
occurring in 2018 and 2007, respectively. Meanwhile, the typical steppe NDVI values
showed an overall increasing trend over the 20 year period, with NDVI values decreasing
from 2000 to 2009, reaching a minimum value of 0.42 in 2009, and then increasing for three
consecutive years. Relatively large fluctuations were observed from 2010 to 2013, reaching
a maximum value of 0.57 in 2018. The NDVI value for the desert steppe was relatively low
at 0.19, with a peak of 0.25 in 2012. It is noteworthy that the desert had the lowest NDVI
value of 0.1 and the value fluctuated the least.
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3.2. Spatial Variability of NDVI
3.2.1. Spatial Distribution and Trend Analysis of NDVI

The remaining regions were classified into five levels using the equal spacing method
in ArcGIS 10.6, into low (0.08–0.25), medium-low (0.25–0.41), medium (0.41–0.58), medium-
high (0.58–0.75), and high (0.75–0.92) vegetation cover (Figure 4a) [29]. From the spatial
distribution of NDVI levels, the high vegetation cover (0.75–0.92) area was the largest,
accounting for 24.95% of the total area. Influenced by the large east-west span of Inner
Mongolia, diverse and complex topography, large vertical differences in vegetation growth,
and the complex spatial distribution, the NDVI gradually decreased from east to west from
a regional perspective. Hulunbuir, the Xing’an League, Tongliao, and Chifeng, locations
with forests and typical steppes, recorded high NDVI values, while areas with NDVI values
less than 0.41 were mainly in the western Alxa League, Ordos, and Bayannur areas, where
the vegetation cover types largely consist of desert and desert steppe.
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Figure 4b shows the results of the Sen’s slope and Mann–Kendall test for annual NDVI.
Referring to the grading method of Lu Hao et al. [71], we identified three trend types,
“increased,” “stable and constant,” and “decreased.” Increased and decreased represent
areas where the rising and falling NDVI trends pass the 0.05 significance level in the Mann–
Kendall test, respectively, and we classified the remaining areas with NDVI trends that
did not pass the 0.05 significance level into stable and constant. Area increasing NDVI
were larger than those with decreasing NDVI, which is 34.65%, while 33.71% of the regions
showed stable and constant NDVI. Increased and decreased NDVI mostly occur in eastern
Hulunbeier, Xing’an Meng, Tongliao, southern Erdos, and southeastern Chifeng. The areas
with stable and constant NDVI were mainly located in Alxa League. Finally, areas where
NDVI decreased significantly were concentrated in Baotou, Hohhot, Ulanqab, Xilingol
league, and the western part of Hulunbuir.

3.2.2. NDVI Stability Analysis

In terms of the area occupied by each type of variation level, low fluctuation areas
> medium-low fluctuation areas > high fluctuation areas > medium fluctuation areas >
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medium-high fluctuation areas. As shown in Figure 5, areas with large fluctuations in
NDVI accounted for 27.2% or the entire area, and were mainly distributed in Xilingol
league, parts of Ulanqab and Baotou, and Alxa league. This is due to the sparse pre-
cipitation and poor soils in these areas. The corresponding vegetation types are mainly
grasslands, deserts, or transition areas between grasslands and deserts. These have fragile
ecological environments and vegetation cover that is vulnerable to external influences.
Areas with low NDVI fluctuations accounted for 61.7% of the total area, mainly distributed
in Hulunbuir, the Xing’an League, Tongliao, and Chifeng, with the vegetation types of
forest, typical steppe, and meadow steppe. Fluctuation of NDVI in the Xilingol League,
where typical steppes are distributed, was also low, which may be related to the good
ecological environmental conditions of its forest and grassland areas; these are not easily
influenced by external forces [1]. Additionally, the amplitude of fluctuations in grassland
areas was greater than that in forest areas, which may be attributed to the grassland areas
being under high pressure from population and livestock, and more strongly disturbed by
human activities than forest areas.
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3.2.3. Evaluation of Estimated Breakpoints and Trends

STM was applied to the NDVI sequences in Inner Mongolia, and the number of break-
points and trend changes before and after the mutations and corresponding significance
levels were calculated (Figures 6 and 7). Considering the variations, approximately 16.49%
of breakpoints occurred during 2002–2005, mainly in Genhe, Hulunbuir, the central Alxa
League, southern Baotou, Bayannur, and northwestern Hohhot. Approximately 9.17%
of the breakpoints were observed during 2005–2008, concentrated in the Alxa Right Ban-
ner and the northwestern part of Erdos. However, most of the pixels mutated during
2008–2011, distributed in the territory of the Alxa League. Finally, the largest number of
pixels mutated during 2011–2014, accounting for 29.34% of all breakpoints, most of which
were distributed in the areas of the Alxa League and Ordos, as well as a small part in the
northeast of Hulunbuir. The remaining 22.35% of the pixels mutated during 2014–2017 and
were concentrated in the southeastern part of the Alxa League, Baotou, and the northern
part of Wulanchabu.
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According to the trends and the significance of changes before and after the mutations,
we divided the trends into three levels of “increased,” “stable,” and “decreased.” The
vegetation changes in the southeastern part of Alxa League, northwestern part of Bayannur,
and most parts of Ordos before the mutation showed a significant upward trend. An
obvious decreasing trend was observed in the south-central and eastern part of Alxa Left
Banner, the south-central part of Ulanqab, Erguna, and Genhe of Hulunbeier, while the
vegetation in the areas along the northwestern border of Baotou and Ulanqab showed a
stable NDVI. Meanwhile, the areas with significantly increasing vegetation trends after the
mutation occurred in the northern part of Alxa League, the northwestern part of Bayannur,
and the border areas of Baotou and Ulanqab. The areas with significantly decreasing trends
were in the central and eastern parts of Alxa League. Northwestern Hulunbeier, northern
Hohhot, southern Ordos, and northwestern Bayannur, as well as small areas in Xing’an
League, Tongliao, and Chifeng showed stable NDVI trends after mutation.

The spatial distribution of NDVI trends before and after the mutation shows obvious
variability. For example, most pixels in the south-central region of Alxa League showed
a significant increasing trend before an abrupt change to a decreasing trend after the
mutation. Meanwhile, the NDVI values at the borders of Baotou and Ulanqab changed
from a stable trend to an obvious increasing trend after the mutation, and the NDVI trends
in most of the central-eastern parts of Inner Mongolia, which originally showed obvious
decreases, gradually stabilized after the mutation. The occurrence of breakpoint years and
the differences in the trends before, and after, the mutation may indicate changes in the
potential influence mechanisms of NDVI in Inner Mongolia.

3.3. Future NDVI Trends

In this study, the Hurst index values for annual NDVI data were calculated on a pixel-
by-pixel basis using MATLAB (Figure 8a). The Hurst index of NDVI in Inner Mongolia
is low, with maximum, minimum, and mean values of 0.93, 0.09 and 0.44, respectively.
The proportion of areas with a Hurst index less than 0.5 was 74.91%, while that of areas
greater than 0.5 was 25.08%, indicating that the reversal of the vegetation trend in the future
is likely in most areas of Inner Mongolia. This indicates that future changes will be the
opposite to those in the present. Furthermore, the Hurst values are low in the border areas
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between Inner Mongolia and Mongolia and relatively high in other areas. Additionally, the
areas with a Hurst index greater than 0.5 are concentrated in the south of Chifeng, Xilingol
League, and Alxa League.
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The Sen’s slope and Mann–Kendall test can gradually quantify trends in the NDVI,
and the Hurst index can be used to qualitatively predict whether future trends will be
similar to those at present. However, neither of these methods can predict future increases
or decreases in trends. The NDVI trends were coupled with the Hurst index classification
results to obtain the spatial distribution of future changes of vegetation cover in Inner
Mongolia (Figure 8b), and the future change trends were classified into the following four
levels: “increased,” “constant,” “decreased,” and “unable to determine,” which were used
to provide reasonable predictions of future vegetation change trends. Where “increased”
and “decreased” represent predicted increases and decreases in future NDVI trends passing
the 0.05 significance level in the Mann-Kendall test, respectively. The remaining NDVI
trends that did not pass the 0.05 significance level, as well as the areas that were unchanged
were notes as constant. The results showed that the area with stable and constant NDVI
was the largest. Areas with increased NDVI in Inner Mongolia are larger than areas with
decreased NDVI. Increased areas account for approximately 24.62% of the total area and
are mainly located in Hulunbeier, Xing’an League, eastern Tongliao, and south-central
Alxa League, which may be due to the large-scale ecological management and soil and
water conservation and afforestation policies in these areas. Meanwhile, decreased areas,
which account for about 10.56% of the total area of Inner Mongolia, are concentrated in the
southern part of Inner Mongolia, which is mainly arable land and highly influenced by
human activities. In addition, the Wuliang Suhai area in Bayannur, located in the lower
reaches of the Yellow River, has experienced vegetation degradation due to increasing eco-
logical pollution [72]. The areas with stable and constant future trends of NDVI accounted
for 64.81% of the total area and were distributed throughout the region. In the areas with
stable and constant NDVI levels, areas with positive Sen’s slope values and p > 0.05 are
the largest. This indicates that areas with increasing NDVI in Inner Mongolia will increase
more areas with decreasing NDVI in the future.
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3.4. Geographical Detection Model for NDVI Drivers
3.4.1. Driving Factor Impact

The results of the factor detector reflect the influence of the magnitude of each driver
on the NDVI in Inner Mongolia, as expressed by the q value of each driver (Figure 9).
Specifically, higher q values indicate a greater influence on the NDVI. As shown in Figure 9,
the q value of the total annual precipitation is the largest, reaching 0.81, followed by that
of soil type, mean annual temperature, and land use type, all of which have a significant
influence greater than 0.5. This indicates that total annual precipitation was the dominant
factor of NDVI change in Inner Mongolia during 2000–2019, followed by soil type. Among
the factors with an influence below 0.5, the influence of natural factors is higher than that
of social factors, in the following order: DEM > slope > population > GDP > livestock
density. DEM has a significant influence of 0.34, and the slope has an average influence of
0.13 on the NDVI. The other three drivers had q-values below 0.1, indicating that they did
not have a substantial influence on the NDVI.
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3.4.2. Appropriate Range of Different Driving Factors

The most suitable range or type of vegetation growth in Inner Mongolia for each factor
was analyzed using the risk detector method, and the results of each factor passed the
statistical test at 95% confidence (Figure 10). Among the findings, total annual precipitation,
which was the most influential driver of the NDVI in Inner Mongolia, showed a positive
correlation with the NDVI, and the mean value of the NDVI reached a maximum when
the total annual precipitation was 452–535 mm. The areas with the highest precipitation
are mainly located in Hulunbuir and the Xing’an League in northeastern Inner Mongolia,
where forests and typical steppe are present; these areas had the highest vegetation cover in
Inner Mongolia. This indicates that arid and semi-arid areas are more sensitive to changes
in precipitation conditions, and that increased precipitation has a more pronounced effect
on the growth of forests and typical steppe landscapes [73,74]. As grassland forest areas
with high vegetation cover in Inner Mongolia are widely distributed with luvisols, which
have high soil fertility and are suitable for forestry, the mean NDVI values were the highest
in areas with luvisols. Moreover, an increase in temperature stimulates the growth of
vegetation, but also leads to a decrease in soil moisture, negatively impacting vegetation
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growth. Therefore, the annual mean temperature in Inner Mongolia is negatively correlated
with NDVI, and the overall annual mean temperature in Inner Mongolia ranges from −3.7
to 11.2 ◦C, while the most suitable mean temperature range for vegetation growth is
within this range. The mean NDVI value is the highest in Inner Mongolia. The mean
NDVI of vegetation fluctuates with DEM and slope, wherein the highest mean NDVI
values occur at a DEM of 505–840 m and a slope of 15–21◦. Among social drivers, the
implementation of ecological restoration projects in recent years played an important role
in the recovery of vegetation in Inner Mongolia, while population, GDP, and livestock are
unevenly distributed in a few areas, occupying a small proportion of the area, thereby
having a low overall impact on vegetation growth.
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3.4.3. Driving Factor Interactions

The spatial pattern of the NDVI changes in Inner Mongolia is not influenced by a
single factor, but rather by a combination of drivers. Therefore, interaction detectors were
used to detect the interrelationships between different drivers that affect NDVI changes
in vegetation (Figure 11). The results show that the interactions between different drivers
are all bi-variable or non-linear enhancements, with most being bi-variable enhancements.
There were no cases wherein the drivers were independent or weakened. As previously
discussed, soil moisture and temperature have an important compounding effect on veg-
etation growth through a strong coupling of land and atmosphere [75]. Therefore, the
coupling of precipitation and temperature plays an important role in vegetation growth
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because of the increased evapotranspiration caused by global warming [76]. The results of
the interaction detectors in this study also reflect the influence of the interactions between
the factors, whereof total annual precipitation, mean annual temperature, and soil type had
greater influences, and most exhibited bi-variable enhancements. The interaction between
mean annual temperature and total annual precipitation (Q value = 0.881) specifically had
the greatest influence on the spatial distribution of the NDVI, for which the influence of
the social and natural factors, especially land use type, livestock density, and soil type
factors, increased significantly. The influence of social and natural factors, especially land
use type and livestock density, increased significantly with the soil type factor, whereas the
population and GDP factors, which were the least influential, showed mostly non-linear
enhancements with the natural factors.
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3.4.4. Differences in Influence for Drivers on the NDVI

The ecological detector can reflect significant differences in the effect of factors on
the spatial distribution of NDVI. This can further verify the dominant influencing factors
and evaluate the variability of their mechanisms of action. The results of the ecological
probe (Figure 12) show that meteorological factors, land use type, elevation, and slope all
had significantly different effects, indicating that although these factors play dominant
roles in the NDVI, they have different mechanisms for their effects on vegetation growth.
Specifically, precipitation and soil type exhibit significant differences in their effects on the
NDVI, wherein the effect of soil type on vegetation growth is significant in areas where pre-
cipitation is the main driver. Other factors, such as temperature and soil type, do not show
significant differences in their effect on vegetation, because while increased temperature
enhances photosynthesis, it also leads to faster transpiration by leaves and increased evap-
otranspiration, thereby reducing soil moisture and inhibiting vegetation growth [75,77].
The NDVI values within the different landscape types did not vary significantly according
to landscape changes, and the elevation and slope were not the main factors contributing
to the spatial variation in NDVI.
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4. Discussion

The NDVI values in Inner Mongolia indicated a generally decreasing trend before
2009, and then increasing, which is consistent with the results of existing studies [78].
Additionally, the sudden change in NDVI in the central part of Genhe city in Hulunbeier
between 2002 and 2005 may be attributed to the frequent grassland fire events in the forest
areas of Inner Mongolia during this period [79]. Most of the remaining areas north of central
Inner Mongolia mutated between 2008 and 2014, and vegetation showed an increased
trend after the mutations. This may be attributed to the positive effect of the “Fifth Phase
of the Three-Northern Shelter Forest Program” [80]. The breakpoints in the northern parts
of Baotou and Wulanchabu occurred between 2014 and 2017. This may be attributed to
the government of Baotou that began artificial restoration and the development of heavily
polluted mining areas in 2011, for which physical separation and remediation methods
were used to remove heavy metals in the soil to comply with the National Environmental
Quality Standards for Soil in China [81,82]. Additionally, vegetation in the Siziwang Banner
area increased because of the combined effect of increased precipitation and reduced
anthropogenic grazing [44]. In the northwestern regions of Ordos, Bayannur, and the Alxa
League, the vegetation deteriorated to varying degrees owing to a combination of natural
and human factors, such as reduced precipitation, overgrazing, and human reclamation of
land. Vegetation around water bodies showed a small improvement. For example, Moon
Lake and the surrounding areas of the Alxa League transitioned from a significant decrease
to an increase in NDVI before, and after the mutation, respectively [83].

The average temperature in Inner Mongolia increased and precipitation decreased
from 2000 to 2009, leading to increased drought in Inner Mongolia and inhibiting vegetation
growth [49]. The influence of precipitation on vegetation in Inner Mongolia mainly occurred
in areas where agricultural vegetation and grasslands are distributed. Conversely, the effect
of precipitation is less than that of temperature in forests, probably because agricultural
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vegetation and grasslands are more sensitive to changes in precipitation. The influence of
natural factors is also reflected in the vegetation breakpoint years and the changes in their
trends before and after the breakpoints. The cumulative effect of precipitation and soil
moisture on desert steppe and desert areas in the northwest is more pronounced and lasts
longer than that in other areas because of their fragile ecological environment. This makes
them less adaptable to changes in external natural conditions. Additionally, the increased
frequency and intensity of extreme climatic events, such as droughts and high-temperature
heat waves, can lead to significant changes in vegetation cover [77,84]. Soil types in Inner
Mongolia are distributed from northeast to southwest in the order of black soil, dark brown
loam, black calcium soil, chestnut calcium soil, brown loam, black kiln soil, gray calcium
soil, wind-sand soil, and gray-brown desert soil, and the stability of vegetation growth
varies greatly among different soil types. Black and blackish-chestnut soils in the central
and northeastern parts of the country have high contents of organic matter, strong water
retention properties, and good natural conditions, which are conducive to the growth
of vegetation. The stability of vegetation in this area is correspondingly high, with the
occurrence of fewer breakpoints. Meanwhile, the eolian sandy soil in the northwest gray
desert zone has low soil fertility and poor soil texture, making it susceptible to changes in
external conditions. Therefore, this is the main area where sudden changes in vegetation
occur and the vegetation is less stable [10].

Inner Mongolia is one of the regions currently experiencing significant environmental
changes as a result of tremendous economic development, including changes and intensifi-
cation of grazing systems and increased intensity of external anthropogenic activities, such
as agricultural production. In this study, we highlighted the contribution of anthropogenic
factors to vegetation growth, and found that land use types strongly influence vegetation in
Inner Mongolia. The impact of human activities is more spatially concentrated, with human
activities leading to changes in land-use types and shifts in land-use types affecting the
growth of vegetation. This leads to the spatial differentiation of vegetation, as evidenced by
the effects of policy implementation, such as returning farmland to forest and grazing bans.
Since the late 1990s, the Chinese central and local governments have implemented and
introduced large-scale ecological restoration projects, including the “Returning Farmland to
Forests Project,” the “Returning Grassland to Grass Ecological Project in Northern China,”
and the “National Ecological Protection.” These programs have had a positive impact on
vegetation growth in Inner Mongolia owing to the implementation of specific measures to
protect grasslands and vegetation through rotational grazing, grazing bans, and converting
pasturelands to croplands.

NDVI is the most widely used observation method for vegetation. NDVI is a good
proxy for vegetation density parameters such as leaf area index (LAI), vegetation cover
(FVC), and absorbed photosynthetically active radiation (fAPAR). However, NDVI has
two major limitations in characterizing biomass and productivity. First, the relationship
between NDVI and green biomass is non-linear and can be saturated in areas with high
vegetation cover. The second limitation is that NDVI mainly reflects vegetation greenness
rather than photosynthesis itself. However, total primary productivity (GPP) can decline
without any reduction in LAI or chlorophyll. Combining the shortcomings of NDVI, a
new vegetation index, kNDVI, was proposed by applying the theory of nuclear methods to
NDVI, using machine learning. The kNDVI correlated with GPP similarly or better than
other indices globally. kNDVI correlated with SIF better than other indices in general and
in all biomes, especially in deciduous broadleaf forests and for herbaceous and cultivated
crops. The correlations of kNDVI were higher in nearly all cases (e.g., Spearman correlation,
distance correlation), thus confirming the advantage of kNDVI over other indices. Using
the kNDVI index in future studies on vegetation will increase the significance of geo-
monitoring and terrestrial biosphere studies [85].

The use of MODIS NDVI data as the only input in this study may reduce the accuracy
of the vegetation breakpoint results. This limitation can be addressed in future studies by
incorporating data sources with higher temporal resolution and finer spatial resolution.
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For example, the data provided by the GF-1 and Sentinel-2 satellite multispectral scanners
could be combined into more comprehensive driving force data. The spatial pattern driving
mechanism of vegetation change should be further explored in conjunction with climate
change and ecological protection policies, to provide more scientific data support for
improving the ecological environment in Inner Mongolia.

5. Conclusions

Considering Inner Mongolia as the study area, and MODIS-NDVI, total annual precip-
itation, DEM, mean annual temperature, and data on nine other drivers, this study explored
the spatiotemporal characteristics and drivers of NDVI change in Inner Mongolia using
spatiotemporal abrupt change and trend analyses, significance tests, the Hurst index, and
the GeoDetector model. The spatiotemporal evolution of the vegetation in Inner Mongolia
was characterized, and the trend of breakpoints was used to predict the possible future
direction of NDVI change, revealing the driving mechanisms and dominant drivers of the
NDVI. The detailed conclusions are as follows:

1. Considering the temporal trends in NDVI, the NDVI values in 2000–2019 in Inner
Mongolia show an overall increasing trend in the range of 0.42–0.51, with small
fluctuations and a growth rate of 0.0028/year (p < 0.05). Considering the spatial
trends in NDVI, the values in Inner Mongolia showed an overall gradually decreasing
trend from east to west. During the past 20 years, areas with increased vegetation have
been mainly located in the northeastern part of Inner Mongolia and in the western part
of Erdos, and the majority of the stable and unchanging vegetation areas are located
in the Gobi Desert region in the northwestern part of the Alxa League. Meanwhile,
vegetation mainly decreased in the east-central part of Inner Mongolia. Furthermore,
the overall decreasing trend increased from east to west. The Hurst Index analysis
suggested that future changes will be opposite to those in the present. According
to the NDVI trends overlaid with the Hurst Index classification results, areas with
increasing vegetation are predicted to be larger those with decreasing vegetation.

2. The overall fluctuation in the NDVI in Inner Mongolia during the study period was
small. The largest proportion of regions with Cv values in the range of 0.2–0.3 were
distributed in Hulunbuir, Xing’an League, Chifeng, and Tongliao in northeastern
Inner Mongolia. The Cv and NDVI fluctuations were the greatest in the westernmost
part of Inner Mongolia, indicating a fragile ecological environment and unstable
ecological conditions in the Alxa League. The breakpoints of NDVI in Inner Mongolia
in 2000–2019 were mainly distributed in the northwestern region bounded by Ulanqab
and northern Hulunbuir, with the highest proportion in 2011–2014. The trend of NDVI
in western Inner Mongolia mostly changed from increasing to decreasing before and
after the mutation, while the trend of NDVI in the northeastern region gradually
stabilized after the mutation.

3. Precipitation, soil type, temperature, and land use type were the main driving factors
of NDVI changes in Inner Mongolia, with precipitation being the most influential
factor. Therefore, areas with the highest total annual precipitation had the most signif-
icant impact on NDVI changes, and the soil and land use types with the largest areas
in Inner Mongolia had significant impacts on the NDVI. Nevertheless, the interactions
between factors exhibited mostly bi-variable enhancements. Although meteorological,
land use type, and topography factors dominantly influenced vegetation growth, their
mechanisms of influence showed significant differences.

Author Contributions: Y.K.: conceptualization, methodology, writing—original draft. E.G.: Con-
ceptualization, Supervision, Inspection. Y.W.: Review, editing. Y.B. (Yulong Bao): Investigation,
Validation. Y.B. (Yuhai Bao): Investigation, validation. N.M.: Investigation. All authors have read
and agreed to the published version of the manuscript.

Funding: The project was supported by the Natural Science Foundation of Inner Mongolia Au-
tonomous Region of China (2020LH04003), the National Natural Science Foundation of China



Remote Sens. 2021, 13, 3357 22 of 25

(41807507), The Key Program of National Natural Science Foundation of China (61631011), High-
level introduction of talent research start-up fund in Inner Mongolia Normal University (2018YJRC008
and 2019YJRC003). Research Program of science and technology at Universities of Inner Mongolia
Autonomous Region (NJZY21542). The Special Fund of Inner Mongolia Autonomous region for the
transformation of scientific and technological achievements (2019GG015).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Editors and the anonymous reviewers for
their crucial comments, which improved the quality of this paper. We thank the community of the
R statistical software for providing a wealth of functionality. The methods described in this article
are available as R package under the GNU General Public License on http://greenbrown.r-forge.r-
project.org/ and https://cran.r-project.org/web/packages/GD/ (accessed date: 6 January 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Guo, E.L.; Wang, Y.F.; Wang, C.L.; Sun, Z.Y.; Bao, Y.L.; Naren, M.D.L.; Buren, J.R.G.L.; Bao, Y.H.; Li, H. NDVI Indicates Long-Term

Dynamics of Vegetation and Its Driving Forces from Climatic and Anthropogenic Factors in Mongolian Plateau. Remote Sens.
2021, 13, 688. [CrossRef]
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