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Abstract: Historically stable areas across North Africa, known as pseudo invariant calibration sites
(PICS), have been used as targets for the calibration and monitoring of optical satellite sensors.
However, two major drawbacks exist for these sites: first is the dependency on a single location to
be always invariant, and second is the limited amount of observation achieved using these sites.
As a result, longer time periods are necessary to construct a dense dataset to assess the radiometric
performance of on-orbit optical sensors and confirm that the change detected is sensor-specific rather
than site-specific. This work presents a global land cover classification to obtain an extended pseudo
invariant calibration site (EPICS) on a global scale using Landsat-8 Operational Land Imager (OLI)
data. This technique provides multiple calibration sites across the globe, allowing for the building
of richer datasets in a shorter time frame compared to the traditional approach (PICS), with the
advantage of assessing the calibration and stability of the sensors faster, detecting possible changes
sooner and correcting them accordingly. This work identified 23 World Reference System two (WRS-2)
path/row locations around the globe as part of the global EPICS. These EPICS have the advantage of
achieving multiple observations per day, with similar spectral characteristics compared to traditional
PICS, while still producing a temporal coefficient of variation (ratio of temporal standard deviation
and temporal mean) less than 4% for all bands, with some as low as 2.7%.

Keywords: global land cover classification; pseudo invariant calibration site (PICS); extended pseudo
invariant calibration site (EPICS); stability monitoring; radiometric calibration

1. Introduction

Understanding the world is a primary concern for humanity, and satellite imagery
is a crucial part of the process of discovering and tracking the Earth’s changes. In order
to have reliable data for scientific applications, it is imperative to have consistent and
calibrated data acquired by sensors onboard satellites for earth observation; hence it is very
important to ensure that these sensors are well calibrated [1]. To guarantee comparability
between data collected from different satellites, radiometric calibration is essential. This
calibration can be conducted using diverse methods, such as pre-launch, on-board, and
vicarious calibration. Pre-launch calibration provides a reference to which the post-launch
calibration is compared and is achieved through a variety of techniques in the laboratory;
for instance, an integrating sphere is widely used for performing this calibration. Since
this device is used as a reference, National Institute of Standards and Technology (NIST)
traceability is crucial for integrating the sphere prior to usage for calibration [2,3]. Yet, in
the process of placing the satellite in orbit and throughout its lifetime, the sensor calibration
can change and, consequently, it is necessary to perform post-launch calibration to assure
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data accuracy. This radiometric calibration can be done using on-board calibrators, such as
lamps, solar diffuser panels, among others [3,4].

On-board calibrators are a good option to ensure the sensor is providing accurate
data. However, due to increased cost, not every satellite has on-board calibrators. In
addition, on-board calibration systems and the sensor can experience degradation, thus it
is necessary to perform the calibration using other independent techniques. An alternative
and widely used approach is the utilization of satellite imagery across very stable areas of
the Earth’s surface, known as PICS. Since these targets on the ground are considered to be
constant over time, the stability or changes in the sensor’s response can be assessed on the
basis that changes in the sensor measurement may be due to the sensor itself, instead of a
variation in the target [1,5]. Several desert sites were identified as spatially, spectrally, and
temporally stable regions. The Committee on Earth Observation Satellites (CEOS) selected
six locations in the North African desert to provide an international context. These sites are
called Libya 1 and 4, Mauritania 1 and 2, and Algeria 3 and 5 [6,7].

PICS have been used to calibrate optical earth remote sensing instruments for several
decades. However, due to temporal resolution, sensor field of view, and environmental
conditions, such as clouds or sandstorms over these test sites, the amount of clear ob-
servations can decrease significantly. This leads to a reduced dataset for assessing the
radiometric calibration of the sensor and means a longer period of time is required to
achieve a dense dataset. Vuppula et al. [8] developed a technique that integrates data,
collected by Landsat-8, over six PICSs in North Africa into a single dataset to address the
temporal resolution limitations using traditional PICSs. Egypt 1, Sudan 1, Libya 1, Libya 4,
Niger 1, and Niger 2 [9] were normalized using Libya 4 as a reference, in what the author
called the “PICS Normalization Process”. In that work, the author reported an improve-
ment in PICS temporal resolution for Landsat-8 from 16 days to 3–4 days. Although the
combination of traditional PICSs increased the temporal resolution significantly, it did not
achieve daily observation. The possibility of observations on a daily basis can be useful
for the detection of long-term changes in the sensor response faster, and therefore address
them sooner, but they can also be used to detect erratic short-term changes that might be
missed otherwise.

An attempt to achieve nearly daily acquisitions was performed by Shrestha et al. [1]
through developing a characterization of North Africa in the search of temporally stable and
spectrally similar regions across the continent, rather than using specific areas as was done
with the traditional PICS approach. Along with temporal stability characterization, the
spectral response of North Africa was also considered, in order to perform a classification
based not only on the temporal stability of the sites, but also their spectral characteristics.
As a result of this classification, 19 “clusters” were identified across North Africa; “Cluster
13” was selected as a possible candidate to be an extended PICS (EPICS) due to its spatial
extent and spectral and temporal characteristics.

This work presents an extension of “Cluster 13” to a worldwide scale. As shown
by Hasan et al. [10] with “Cluster 13” in North Africa, EPICS can provide cloud-free
acquisitions on almost a daily basis. When expanding these sites to a global scale, multiple
acquisitions every day can be obtained. In the same period of time, a global EPICS
can achieve a temporally denser dataset than traditional PICSs, allowing for the faster
assessment of satellite sensor performance. Moreover, an expansion of “Cluster 13” can
provide alternative locations around the globe to perform calibration of optical satellite
sensors that can reduce the impact of potential variability of a single calibration site.

This paper is organized as follows: the first section provides a brief overview about
the topic; Section 2 presents the methodology, materials, methods, and the data processing
performed for this analysis; Section 3 contains the results and the discussion of this extended
classification; Section 4 demonstrates a validation using the Libya 4 Centre National
d’Etudes Spatiales region of interest (Libya 4 CNES ROI); and, finally, Section 5 presents
the conclusions of this analysis.
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2. Methodology

In this section, the steps followed and the data processing completed to obtain an ex-
panded version of “Cluster 13” are addressed. The selection of the locations that create the
global cluster, the development of zonal masks to obtained top-of-atmosphere reflectance
(TOA reflectance) for Landsat-8 and Landsat-7, bidirectional reflectance distribution func-
tion (BRDF) normalization, and the selection of locations for the final global EPICS are
explained. In this work, “Cluster 13”, established by Shrestha et al. [1], is referred to as
Cluster 13 (C13), while the locations around the globe found in this work are called Global
Cluster 13 (GC13). In addition, sites across North Africa for this Global Cluster 13 are
named GC13-NA, and the optimal locations selected after processing, those regarded as a
global EPICS, are called the Optimal Global Cluster 13 (GC13-O). Figure 1 presents a block
diagram for the steps followed during the classification process, data processing of GC13,
and the selection of locations for GC13-O.

Figure 1. Block diagram of the classification, data processing, and data selection for the global EPICS.

2.1. Classification and Evaluation of North Africa as an EPICS

Shrestha et al. [1] performed an unsupervised classification of North Africa. In order
to perform this analysis, a mosaic of North Africa was obtained using data cubes created
with Google Earth Engine (GEE), a platform with vast computational capabilities that
contains data for geospatial analysis on a global scale [11]. Landsat-8 OLI data were
selected to accomplish the classification of North Africa as the published radiometric
calibration accuracy for this sensor is 3% [12]. These data cubes of 1◦ latitude by 1◦

longitude contained the number of pixels, the temporal mean, temporal standard deviation,
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and temporal uncertainty (temporal standard deviation divided by temporal mean), and
were generated with a spatial resolution of 300 m for computational and storage proposes
at South Dakota State University (SDSU). A North African mosaic was then processed
locally using an unsupervised classification algorithm that identified 19 “clusters” across
North Africa with pixels that showed temporal (variability of each pixel through time)
and spatial uncertainty of 5% or less. From this classification, “Cluster 13”, which had a
larger number of pixels that were more aggregated together throughout North Africa, was
considered a good candidate for an extended PICS.

Hasan et al. [10] performed the assessment of C13 as an EPICS for calibration and
stability monitoring of optical satellite sensors. To perform this evaluation, Landsat-8 OLI,
Landsat-7 Enhanced Thematic Mapper Plus (ETM+), and Sentinel-2A and -2B multispectral
instrument (MSI) data were used. This work showed that, using 16 WRS-2 path/row(s) that
intersect Cluster 13 across North Africa, the imaging period of Landsat-8 can be reduced to
1.4 days on average, using cloud-free acquisitions, in contrast to the 18 to 20 days required
for traditional PICSs. Moreover, the temporal coefficient of variation of C13 was proven to
be less than 3% for all bands, demonstrating that, like traditional PICSs, it is very stable.

2.2. Expansion of Cluster 13 to a Global Scale

The classification performed in this work was based on the classification done by
Shrestha et al. [1]. Data cubes containing temporal mean, temporal standard deviation,
temporal uncertainty, and pixel count were generated to create a North Africa mosaic.
Each pixel, with a temporal uncertainty of 5 percent or less and a pixel count of at least
25 (number of scenes in the time series), was classified using a k-means as described in
Shrestha et al.’s work. According to the authors, 25 was set as a pixel count threshold
because it is approximately a third of the possible cloud-free acquisitions [1]. In the classifi-
cation performed in this work, a modified version of the k-means classification algorithm
used in the initial North Africa classification was developed and used to achieve a new
global classification that could provide an expanded Cluster 13 from North Africa to the
world (GC13). As input to the k-means classifier, data cubes of 1◦ latitude and 1◦ longitude
were also created for every continent. These data cubes contained temporal mean, temporal
standard deviation, and temporal uncertainty. In order to remove the preference for only
detecting bright stable sites, the thresholds used in the previous North Africa classification
were removed. These past filters included temporal uncertainty greater than 5%, waterbody
filters, and low reflectance filters. In this analysis, every pixel across the world was assessed
not only by considering its spectral characteristics, but also its temporal variability, which
was evaluated via its temporal standard deviation. In this new classification, clusters were
not only grouped by considering their spectral characteristic, but also assessing their vari-
ability without any threshold limiting the outcome. After the classification was completed,
continental scale mosaics for each specific cluster found in the classification were created.
Considering that C13 showed similar spectral characteristics when compared to Libya
4 CNES ROI, a cluster obtained in this classification with similar spectral characteristics
to C13 was selected as a global EPICS (GC13), and the mosaics created for each continent,
with pixels belonging to this cluster, were selected for further evaluation.

2.3. Selection of Locations of GC13 Based on Pixel Count

Hasan et al. [10] selected 16 optimal WRS-2 path/row(s) across North Africa, which
were identified as optimal WRS-2 path/row(s) for the GC13-NA. In order to identify and
select specific WRS-2 path/row(s) to be evaluated in continents other than North Africa,
KML files were generated using the Geospatial Data Abstraction Library (GDAL), a raster
and vector geospatial data converter library that is provided by the Open Source Geospatial
Foundation in the X/MIT style Open Source license [13]. The gdal_polygonize function,
which creates a polygon feature layer using a raster input, corresponding to raster outputs
obtained in this classification, was used. In Google Earth, shaped polygons were displayed
in order to identify the paths imaged by Landsat-8 over GC13. WRS-2 path/row(s) to be
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assessed on each continent were chosen on the basis of an initial visual inspection. WRS-2
path/row(s) with areas where pixels were aggregated together were selected for pixel
count assessment. The row in each path that contained the largest number of pixels was
selected as a GC13 location for further analysis.

2.4. Creation of the GC13 Zonal Masks

In order to make the processing of GC13 more efficient, raster masks were created
using the raster images obtained from the classification. These masks were generated using
GDAL. For the purpose of this analysis, the gdalwarp function was used to create raster
masks for the data processing. The GDAL function requires, as an input, a raster image
(the continental scale mosaics from the classification), a universal transversal de Mercator
(UTM) zone of the mask to be created, and the target extent. In this case, the reference size
for the target extent was the UTM zone dimension, oversized by approximately 100 km in
the east-west direction to account for images positioned in two different UTM zones. The
Gdalwarp function also requires the spatial resolution of the sensor, which in this case was
the Landsat-8, and, therefore, the spatial resolution was 30 m. Twenty-eight raster masks
(zonal masks) were created in total for processing GC13.

2.5. Application of the GC13 Zonal Masks

Zonal masks created in the previous step for all GC13 locations were applied to
Landsat-8 images. Using the geospatial information, every Landsat-8 image was located
over the corresponding portion of the cluster UTM zone sized mask and intersected,
obtaining a Landsat-8 sized image of Cluster 13. An example of this is presented in
Figure 2 below. The WRS-2 path 163/row 45 over the UTM zone 39 raster mask in the
Middle East is shown in Figure 2a, with white areas representing the GC13 pixels and the
small square representing the Landsat-8 image that is masked by the GC13 zonal mask.
Figure 2b shows the resulting Landsat-8 sized image containing GC13 pixels, which was
later used to compute TOA reflectance and conduct further analyses discussed in the
upcoming sections.

2.6. Filtering Process Using the Quality Assessment Band (BQA) Data

In order to remove outliers or data points with measurements that do not represent
the nature of the target and can give misleading results, a filtering process to remove clouds
and shadows from the analysis was performed using the BQA data provided for Landsat-8,
collection 1, level 1 data. Considering that GC13 is a wide region formed by contiguous
pixels, a filtering process was created. A binary cloud mask was generated from the BQA
data for every Landsat-8 image. The union of this mask and the Landsat-8 mask of the
cluster (Figure 2b) was taken. While this binary mask can be applied at the pixel level,
we decided to apply it first at the scene level to remove dates where the region of interest
(GC13 pixels) was significantly covered by clouds, given that cloud filters are not perfect
and cloudy pixels can be missed on very cloudy days. After evaluating many potential
threshold values, 50% was chosen because it provided a good balance between the number
of images removed from the study and the presence of outliers (missed cloudy pixels)
in the data. Thus, if the number of clear pixels in the cloud binary mask belonging to
the cluster was greater than 50% of the number of pixels in the Landsat-8 cluster image
(Figure 2b), the image was kept and then the pixel-by-pixel cloud mask was applied to the
scene, otherwise the whole scene was rejected.
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Figure 2. (a) Application of zonal mask for path 163/row 45-Middle East; (b) Binary mask containing GC13 pixels obtained
after the application of the UTM zonal mask.

2.7. Conversion of DN Values to TOA Reflectance

Conversion from unitless digital numbers (DN) to NIST traceable and consistent units
of top-of-atmosphere reflectance (TOA) was necessary to perform this analysis. Since
Landsat-8 is the satellite selected to conduct this study, TOA reflectance was calculated
using the equation provided by the United States Geological Survey (USGS) as shown in
Equation (1) [14].

ρλ =
Mρ × Qcal + Ap

cos(θSZ)
(1)

where Mρ and Aρ are the multiplicative and additive scaling factors provided in the
metadata file, Qcal is the quantized and calibrated product for the pixel values (DN),
and θSZ corresponds to the solar zenith angle for every pixel obtained from the solar
angle product.

2.8. Cluster BRDF Model

Variability in the TOA reflectance can be present in the data acquired by any satellite.
This can come from a number of factors, such as atmospheric effects, sun position, and
view geometry of the acquisition, among others. One of the main contributors to this
variability is the BRDF of the target type. Most of this BRDF variability is driven by the
large change in sun position throughout the different seasons due to the view geometry
being very consistent for these nadir sensors. The BRDF effect impacts, to a different extent,
all wavelengths and, to a greater extent, the longer wavelengths [14,15]. Kaewmanee
developed a 4 angle BRDF quadratic model, where a conversion from spherical coordinates
to Cartesian coordinates is achieved, taking into account that angular information is given in
spherical coordinates and MATLAB performs better with Cartesian coordinates [16]. Hasan
et al. developed an extended version of Kaewmanee’s approach, where all interaction terms
between solar and view angles in the quadratic model were included [10]. This BRDF full
quadratic model was applied to the GC13 data in order to normalize for angular differences:

ρpredicted = β0 + β1X1 + β2Y1 + β3X2 + β4Y2 + β5X1Y1 + β6X1X2 + β7X1Y2 + β8Y1X2 + β9Y1Y2+
β10X2Y2 + β11X1

2 + β12Y1
2 + β13X2

2 + β14Y2
2 (2)
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where X1, Y1, X2, and Y2 are the Cartesian coordinates projected from the angular infor-
mation in spherical coordinates, β0 through β14 are the coefficients in the model, and
ρBRDF predicted corresponds to the predicted TOA reflectance. The Cartesian coordinates
used for this model are:

X1 = sin(SZA) ∗ cos(SAA) (3)

Y1 = sin(SZA) ∗ sin(SAA) (4)

X2 = sin(VZA) ∗ cos(VAA) (5)

Y2 = sin(VZA) ∗ sin(VAA) (6)

where, SZA and SAA correspond to the solar zenith and azimuth angles, respectively, and
VZA and VAA correspond to the view zenith and azimuth angles, respectively.

To calculate the normalized TOA reflectance, the following equation was applied:

ρBRDF Normalized =
ρobserved
ρpredicted

∗ ρre f erence (7)

where ρBRDF Normalized is the BRDF normalized TOA reflectance, ρobserved is the observed
TOA reflectance for every cloud filtered scene available, ρpredicted corresponds to the pre-
dicted TOA reflectance for each observation, and ρre f erence is the mean TOA reflectance
estimated using reference geometry. This reference geometry contains reference solar
zenith and solar azimuth angles as well as view zenith and view azimuth angles. To
choose the reference angles to estimate the reference reflectance, a polar plot of GC13—NA
(locations across North Africa found in this global classification) was obtained. From the
center of the data set, the reference solar azimuth and solar zenith angles were selected
as shown in Figure 3a. For a given date at which the solar geometry corresponds to the
reference angles selected, view angles were selected as reference view angles (Figure 3b)
to estimate a reference TOA reflectance from actual acquisition geometries. The reference
angles were chosen in the center of the dataset so that the TOA reflectance was normalized
to a geometry of acquisition with real acquired angles that provided a reflectance close to
the cluster mean. The reference angles selected were a solar zenith angle of 30◦, a solar
azimuth angle of 130◦, a view zenith angle of 4◦, and a view azimuth angle of 105◦.

2.9. Selection of GC13-O Locations

As mentioned previously, Hasan et al. [10] selected 16 optimal WRS-2 path/row(s)
across North Africa. However, in this study, two of the WRS-2 path/row(s) selected by
Hasan et al. for C13 were replaced. After visually inspecting outliers present in the GC13-
NA dataset, it was possible to determine that WRS-2 path 178/row 47 is subject to sand
storms. Thus, this location was replaced by WRS-2 path 178/row 41, considering that path
178/row 41 also contains GC13 pixels. After observing the temporal trend of this location,
it proved to be stable and was selected as one of the 16 optimal WRS-2 path/row(s) of
the GC13-NA. In addition, WRS-2 path 182/row 40 exhibited a higher temporal mean
TOA reflectance for coastal aerosol and blue bands compared to the temporal trend of
the other WRS-2 path/row(s) in the GC13-NA for these bands. Higher temporal mean
TOA reflectance for any particular location, compared to the rest of the cluster, may be an
indicator that there were pixels marked as part of Cluster 13 that might, in fact, belong
to a different cluster, suggesting that the classification could be improved. Since WRS-
2 path 182/row 40 exhibited higher TOA reflectance for two of the OLI spectral bands
(coastal aerosol and blue band), this location was replaced by WRS-2 path 198/row 47,
considering its spectral characteristics and larger pixel count. WRS-2 path 198/row 47 has
approximately 54 million pixels, whereas WRS-2 path 182/row 40 has nearly 32 million
pixels. The new optimal WRS-2 path 198/row 47 was stable. In addition, the temporal
trend of this site was within the temporal TOA reflectance of the additional 15 sites that
were selected as part of GC13-NA.
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Figure 3. (a) Polar plot of solar azimuth and solar zenith angles of every scene of every location
in North Africa. Data cursor in polar plot shows solar zenith and solar azimuth reference angles
selected to perform BRDF normalization using GC13-NA as reference. (b) Polar plot of view azimuth
and view zenith angles of every location in North Africa found in this global cluster. Data cursor in
polar plot shows view zenith and view azimuth reference angles to perform BRDF normalization
using GC13-NA as reference.

Considering the results found for C13, and how Hasan et al. [10] evaluated and
showed North Africa’s potential as an EPICS, 16 optimal WRS-2 path/row(s) in North
Africa found for this classification were used as a reference in this study (optimal WRS-2
path/row 1 to 16 in Table 1). This was for the purpose of determining if locations in other
continents, identified as having similar temporal and spectral characteristics as North
Africa, were, indeed, part of the same cluster and could be regarded as potential candidates
for the cluster 13 global EPICS, or if these sites were part of a different cluster and the
classification needed adjustment. Sites in North America, South America, Australia, Middle
East, Central Africa, and South Africa were included in this analysis.

Table 1. GC13-O optimized WRS-2 path/row for every Landsat-8 acquisition day, pixel count, and
area in km2.

Day of Landsat
Cycle

Site Assigned
Number

WRS-2
path/row

Pixel Count (in
Millions) Area (km2)

1 10 190/43 1.4 1260

2 4 181/40 38 34,200

3
8 188/47 27 24,300

21 172/39 0.15 135

4
2 179/41 20.5 18,450

19 163/45 3.59 3231

5 6 186/47 42.58 38,322

6 13 193/37 18.26 16,434

7
16 200/47 19.79 17,811

22 184/50 0.07 63

8
11 191/37 0.49 441

18 159/46 3.67 3303

9 14 198/47 54.52 49,068

10 9 189/46 10.78 9702

11 3 180/40 28.23 25,407

12
7 187/47 37.55 33,795

20 171/41 3.9 3510
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Table 1. Cont.

Day of Landsat
Cycle

Site Assigned
Number

WRS-2
path/row

Pixel Count (in
Millions) Area (km2)

13 1 178/41 7.57 6813

14
5 185/47 30.16 27,144

23 185/50 0.36 324

15 12 192/37 18.19 16,371

16
15 199/46 18.92 17,028

17 30/38 0.01 9

To evaluate if any of the previously mentioned locations were temporally and spec-
trally similar to GC13-NA, a threshold was set. Figure 4 shows a block diagram with the
steps for the estimation and application of the threshold. In step 1, the temporal mean
of the BRDF normalized TOA reflectance of the GC13-NA (16 WRS-2 path/row(s)) was
chosen as a baseline to set the threshold. A 99.7% confidence interval was chosen and
the threshold was set at three times the temporal standard deviation (±3σ) of the BRDF
normalized TOA reflectance of the GC13-NA for each spectral band.

Step 2 was to compute the BRDF normalized mean TOA reflectance of each site being
evaluated. This normalized TOA reflectance was obtained in a combination with the
North Africa time series using the BRDF model mentioned in Section 2.8. Step 3 was
the application of the threshold. A location was considered as part of the cluster if the
BRDF normalized TOA reflectance of the site under evaluation fell within three times
the temporal standard deviation (±3σ) of the BRDF normalized TOA reflectance of the
GC13-NA for all spectral bands. On the other hand, if the threshold was not met, the
location was not included since it did not present similar spectral and/or BRDF behavior
as that of the North Africa sites. For example, Figure 5a–g shows the BRDF normalized
TOA reflectance of WRS-2 path 171/row 41 (Middle East) being evaluated, as well as
the BRDF normalized TOA reflectance of every WRS-2 path/row of the GC13-NA. The
orange square in every chart corresponds to the BRDF normalized TOA reflectance of the
location under study (WRS-2 path171/row41) showing it is within the threshold (dashed
lines-shaded areas), and indicating that this location meets the threshold requirements and,
consequently, is part of Cluster 13 and included in the GC13-O.

Figure 4. Steps followed for the evaluation of BRDF normalized TOA reflectance of every site
within GC13.
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Figure 5. Individual behavior of 16 different WRS-2 path/row(s) of GC13-NA and WRS-2 path 171/row 41 in evaluation for
the Middle East. (a) CA band, (b) blue band, (c) green band, (d) red band, (e) NIR band, (f) SWIR 1 band, and (g) SWIR 2
band. Each WRS-2 path/row can be seen in Table 1 using the assigned number shown in the x-axis of each chart.

2.10. Uncertainty Estimation

In order to perform the uncertainty analysis of the GC13-O, uncertainty was estimated
through the consideration of the random variability present in the data, as well as the
uncertainty that could be introduced to the results through data processing. Uncertainty
sources included in this study were accounted for from a temporal perspective, through
spatial variability between sites (WRS-2 path/row within the cluster), the stability of the
sensor, and the impact that the BRDF normalization process could have on the results. Tem-
poral uncertainty (U2

temporal) corresponds to the temporal variability of the site throughout
the time series in combination with the uncertainty of the sensor, considering that there is a
random variability associated with it in every measurement. Likewise, the BRDF model
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uncertainty (U2
BRDF) was included given that the BRDF normalized TOA reflectance was

obtained using a mathematical model that has an uncertainty associated with it. In addition,
spatial variability between sites (U2

spatial) was considered to account for differences that
could exist between sites.

Total uncertainty for this GC13-O was calculated as shown in Equation (8). The
temporal component, U2

temporal , which was assumed to contain temporal variability of the
site as well as the stability of the sensor, was estimated as the average of temporal standard
deviations of the BRDF normalized TOA reflectance of every path/row in the GC13-O time
series. This is shown in Equation (9), where σpath/row N is the temporal standard deviation
of the BRDF normalized TOA reflectance for each location in the GC13-O and N is the total
number of locations in the GC13-O (23 in this analysis).

Given that this global EPICS is a combination of multiple locations for every day
of the Landsat cycle, a different portion (but on those cycle days the same exact portion)
of the cluster is imaged, contrary to what occurs with the traditional PICS, where every
observation is achieved over the exact same target. In order to account for variability
that could exist between sites (portions of the cluster), spatial uncertainty (U2

spatial) was
considered. This variability was estimated as shown in Equation (11). Standard deviation
of the BRDF normalized TOA reflectance of the entire cluster was estimated (U2

cluster). This
standard deviation contained the temporal component (U2

temporal) as well as variability

between sites. The spatial component (U2
spatial) was then estimated as the difference be-

tween the temporal standard deviation of the cluster (U2
cluster) and the temporal component

(U2
temporal), as shown in Equation (11).

Additionally, Equation (12) shows the estimation of U2
BRDF, which corresponds to the

BRDF error measuring the differences between the observed TOA reflectance (ρobs) and the
predicted TOA reflectance of the BRDF model shown in Section 2.8 (ρmodel).

Total uncertainty =
√

U2
temporal + U2

spatial + U2
BRDF (8)

Utemporal =
σpath/row 1 + σpath/row 2 + · · · σpath/row N

N
(9)

U2
cluster = U2

temporal + U2
spatial + U2

sensor (10)

U2
spatial = U2

cluster − U2
temporal (11)

U2
BRDF = ρobs − ρpredicted (12)

3. Results and Discussion

In this new classification achieved using global data, 160 land cover types (clusters),
across the world, with different temporal, spectral, and spatial characteristics were found.
Considering the potential of C13 as an EPICS, one of the 160 clusters obtained in this
classification that exhibited similar spectral characteristics to C13 was selected as a global
EPICS (GC13). Results obtained after evaluating every site within this GC13 are shown in
this section, including spectral similarities between sites and a comparison of the GC13-
O (23 WRS-2 path/row(s) selected after the evaluation described in Section 2.9) with
C13. In addition, a comparison between the GC13-O and the traditional PICS approach,
using Libya 4 CNES ROI, is presented, given that it is a well-known site in the remote
sensing community.

3.1. Optimal Global Cluster GC13-O

A cluster containing pixels with similar characteristics to C13 was found in this
classification across North and South America, Africa, Middle East, Australia, and East
Asia, as shown in Figure 6. Pixels found across East Asia were sporadic and pixel count
was much lower than other locations, such as the Middle East. East Asia contained 8079
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disperse pixels, whereas the Middle East had over 40 million pixels, most of which were
aggregated together in vast areas. In addition, when there are single pixels belonging to
a cluster scattered across a scene, as it is the case of East Asia, geometric accuracy can
be a problem. Considering that if a scene is displaced by at least one pixel, the terrain
features may differ from those defined as a certain cluster, which, in this case, was Cluster
13. Therefore, locations in East Asia were not considered for further analysis. Using the
Landsat acquisition calendar tool [17], 38 WRS-2 paths imaged over this GC13 for every
day of the Landsat cycle, with multiple rows containing Cluster 13 pixels, were identified,
demonstrating a capability to achieve multiple acquisitions for every day of the Landsat
revisit cycle. Five WRS-2 path/row(s) in the Middle East were unstable at the end of the
time series (2018 to 2020) and, therefore, were not considered for further analysis (WRS-2
path 160/row 47, WRS-2 path 161/row 48, WRS-2 path 162/row 48, WRS-2 path 170/row
39, and WRS-2 path 173/row 36). Moreover, WRS-2 path 99/row 79 in Australia exhibited
changes from the year 2014 to 2016, and, thus, this site was also excluded from additional
analysis. Table 1 shows the WRS-2 path/row(s) selected as part of the GC13-O produced
after the application of the threshold. It likewise contains the locations for every day in the
Landsat-8 revisit cycle, assigned number, pixel count, and area in km2.

Figure 6. Global Cluster 13 pixel distribution across the globe found in the classification performed for this work. Red areas
over each continent within each red square represent the pixels identified as part of the expanded Global Cluster 13 in
each continent.

Figures 7–10 show the resulting pixel distribution of the new GC13-O and the selected
WRS-2 path/row(s) (Landsat-8 images), distributed across North Africa, North America,
Middle East, and Central Africa. The WRS-2 path/row(s) in North Africa are the locations
assigned numbers 1 through 16 in Table 1, where path 1 is the first WRS-2 path/row
located in the east side of North Africa and path 16 corresponds to the last optimal WRS-2
path/row located on the west side of the continent, as shown in Figure 7. The site assigned
number 17 corresponds to the selected location in North America, while sites assigned
numbers 18 to 21 in Table 1 are sites located in the Middle East and, lastly, sites assigned
numbers 22 and 23 are those in the Central Africa region.
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Figure 7. Sixteen different WRS-2 path/row(s) within North Africa in the GC13-O.

Figure 8. One WRS-2 path/row for the GC13-O in North America (area: 9 km2).
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Figure 9. Four WRS-2 path/row(s) for the GC13-O in the Middle East.

Figure 10. Two WRS-2 path/row(s) for the GC13-O in Central Africa.
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Table 2 shows the rest of the WRS-2 path/rows in the GC13 that were not included
in the GC13-O after their evaluation, as explained in Section 2.9 For instance, WRS-2 path
232/row 78 in Argentina was stable throughout the time series as well as WRS-2 path
100/row 81 in Australia. Moreover, WRS-2 path 164/row 44, WRS-2 path 165/row 41,
WRS-2 path 166/row 41, and WRS-2 path 167/row 40 in the Middle East were stable for
the time period in study (2013 to 2020). However, based on the selection performed using
the threshold explained in Section 2.9, these sites were not spectrally and BRDF similar
to the GC13-NA, and therefore were not included in the GC13-O. It is possible that these
sites belong to a different cluster (with different spectral characteristics), suggesting that
the classification may need adjustments. Despite the difference in spectral characteristics
between these sites and GC13-NA, these locations might be used to perform calibration
and stability monitoring of optical satellite sensors using them as additional EPICS, but
further study over these sites would be needed.

Table 2. GC13 WRS-path/row identified as Cluster 13 in the classification, but not included in the GC13-O.

Day of Landsat Cycle GC13 WRS-2 path/row Rejected from the GC13-O

1 not found

2 181/41,181/42,181/43,181/48,165/41,165/42

3 188/46,188/48,220/62

4 179/40,179/42,179/44,179/47,179/48,179/72,99/79,163/43,163/44

5 186/42,186/47,186/48,186/49,186/50,170/83,170/39,202/46

6 177/40, 177/41,177/42,177,44,177/45, 177/46,193/42/161/48

7 184/40, 184/41,184/42,184/46,184/47,184/49,200/48,232/78

8 175/50,38/37

9 182/40, 182/42,182/43,182/49,198/46,198/48, 29/42,166/41,201/47

10 189/44,189/45,173/36

11 180/41,180/42,180/44,180/47,100/81,164/42,164/43,164,44,164/45

12 187/42,187/43,187/44,187/46,187/48,187/49,187/50,203/45,203/46 203/47

13 178/41,162/48

14 185/40,185/42,185/44,185/45,185/47,185/48,185/49,201/46,201/47

15 176/41,176/42,176/43,176/44,192/37,160/47

16 183/40,183/41,183/42,183/43,183/49,199/47,199/48,183/50,103/82,30/38,
167/40

A total of 23 WRS-2 path/row(s) around the globe were chosen as optimal WRS-2
path/row(s) to be part of a global EPICS (GC13-O) because they were spectrally, temporally,
and BRDF consistent with each other. For this extended cluster, the analysis conducted
was based on data from 2013 to August 2020. Using GC13-O, a total of 2569 cloud-free
acquisitions were obtained for Landsat-8 and 4625 for Landsat-7. Two observations per
day were accomplished for days 3, 4, 7, 8, 12, 14, and 16 of the Landsat acquisition cycle,
where the second observation per day corresponds to a different site outside of North
Africa, in contrast to C13, where daily observations could only be made over North Africa.
This is a valuable advantage that GC13-O offers, providing stable regions for calibration
and stability monitoring of optical satellite sensors using multiple locations not only on a
continental scale, but also on a global scale.
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3.2. Optimal Global Cluster Spectral Similarities

To ensure spectral and BRDF similarities for all sites within the GC13-O, the BRDF
normalized mean TOA reflectance of every optimized WRS-2 path/row selected as part of
these new EPICS was evaluated to see if every location was within the threshold described
in Section 2.9. In order to visualize the behavior of each site within the GC13-O, the BRDF
model, shown in Section 2.8, was applied to the entire cluster (23 WRS-2 path/row(s)).
The BRDF normalized TOA reflectance of each location is shown in Figure 11, where the
error bars indicate the uncertainty estimated, as shown in Section 2.10. From Figure 11,
it is possible to see that every site’s BRDF normalized mean TOA reflectance is within
the threshold (dashed lines-shaded area), showing that all the sites selected have similar
temporal, spectral, and BRDF characteristics, and, thereby, belong to the same cluster.
BRDF normalized TOA reflectance for all paths and rows in the coastal aerosol, blue, green,
red, NIR, and SWIR 2 band are within the threshold. WRS-2 path 30/row 38, with assigned
number 17, located in North America showed a BRDF normalized mean TOA reflectance
outside of the dashed line for the SWIR 1 band (0.63 ± 0.06) and NIR band (0.56 ± 0.03).
In addition, WRS-2 path 184/row 50 in Central Africa (assigned number 22) also showed
a BRDF normalized mean TOA reflectance outside of the dashed line for the red band
(0.44 ± 0.02). However, the error bar crossed the mean TOA reflectance of the cluster,
0.669 ± 0.0266 for the NIR band, 0.583 ± 0.0216 for the SWIR 1 band, and 0.46 ± 0.17 for
the red band, showing that these sites can be still considered statistically similar to the rest
of the cluster.

The temporal mean TOA reflectance over the OGC-13 for Landsat-8 and Landsat-
7 is shown in Figures 12 and 13, respectively, illustrating the large dataset that can be
achieved using this technique. Table 3 shows the corresponding temporal mean, coefficient
of variation (CV), and spatial variability of the GC13-O. For Landsat-8, this EPICS exhibited
a CV ranging from 2.7% to 4.6%, and the spatial variability within the site was less than 7%
across all bands. Table 4 shows that for Landsat-7, the CV ranged from 3.1% to 5.5%, and
the average spatial variability within the site was less than 7% across all bands. Although
the temporal and spatial variability is larger than a traditional PICS, it is important to
remember that this is a pseudo-invariant calibration site on a global scale (23 locations
across the globe). These results are very encouraging considering that, although this
technique shows slightly higher uncertainties, it provides an incredibly large number of
calibration points that allow for the faster determination of gain changes and drifts in the
sensor response when compared to the traditional PICS approach, as is shown in Section 4.
In addition, removing the dependency on a single site to be invariant reduces the impact of
a single location determining a sensor’s performance.

Table 3. GC13-O (23 WRS-2 paths/rows) temporal and spatial characteristics after BRDF normaliza-
tion for Landsat-8 OLI.

Landsat-8 OLI Spectral Bands

Coastal Blue Green Red NIR SWIR1 SWIR2

Mean TOA reflectance 0.239 0.256 0.342 0.463 0.583 0.669 0.571
Temporal CV (%) 3.297 3.269 2.858 3.829 2.781 3.015 4.621

Average path/row spatial
variability for GC13-O (%) 6.474 7.01 5.996 5.472 5.168 4.842 5.676
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Figure 11. BRDF normalized temporal mean TOA reflectance (with associated uncertainty) of the 23 individual WRS-2
path/row(s) for (a) CA band, (b) blue band, (c) green band, (d) red band, (e) NIR band, (f) SW1R 1 band, and (g) SW1R 2
band. Each WRS-2 path/row can be seen in Table 1 using the assigned number.
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Figure 12. TOA reflectance of Landsat-8 OLI over the GC13-O (23 WRS-2 path/rows(s)) as a function of time. Dots indicate
observations; shading indicates uncertainty of each observation in the cluster (uncertainty estimated using Equation (8)).

Figure 13. TOA reflectance of Landsat-7 ETM+ over the GC13-O (23 WRS-2 path/rows(s)) as a function of time. Dots indicate
observations; shading indicates uncertainty of each observation in the cluster (uncertainty estimated using Equation (8)).
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Table 4. GC13-O (23 WRS-2 paths/rows) temporal and spatial characteristics after BRDF normaliza-
tion for Landsat-7 ETM+.

Landsat-7 ETM + Spectral Bands

Blue Green Red NIR SWIR1 SWIR2

Mean TOA reflectance 0.249 0.341 0.470 0.535 0.658 0.536
Temporal CV (%) 3.511 3.101 4.190 3.797 3.623 5.525

Average path/row spatial
variability for GC13-O (%) 6.949 5.937 5.431 5.257 5.116 6.341

The total uncertainty for the GC13-O, including temporal Uncertainty (U2
temporal),

BRDF uncertainty (U2
BRDF), and spatial uncertainty (U2

spatial), is shown in Table 5 for
Landsat-8 and Table 6 for Landsat-7. The total uncertainty across all bands for this global
EPICS was less than 7% for Landsat-8. Moreover, for this sensor, the BRDF component is
the element that contributes most to the uncertainty, showing less than 3% for the green
and NIR bands, less than 3.3% for the coastal aerosol, blue, and SWIR 1 bands, and 4%
and 5% for the red and SWIR 2 bands, respectively. In the case of Landsat-7, the BRDF
uncertainty is also the largest contributor to the uncertainty, exhibiting less than 3% for
blue and green bands, within 4% for the red, NIR, and SWIR 1 bands, and less than 5%
for the SWIR 2 band. The temporal and spatial components showed an uncertainty less
than 3.3% across all bands for Landsat-8. While the temporal and spatial components for
Landsat-7 had an uncertainty of less than 3% for the blue, green, NIR, and SWIR bands,
and less than 4% for the red and SWIR 2 bands.

Table 5. Uncertainty of GC13-O (%), Landsat-8 OLI.

Uncertainty of GC13-O (%)

Bands CA Blue Green Red NIR SWIR 1 SWIR 2

Temporal 2.1401 2.1102 1.9974 2.1125 1.6482 1.6514 3.2566
Spatial 2.5092 2.4977 2.0444 3.1939 2.2409 2.5234 3.2788
BRDF 3.2283 3.2296 2.8685 3.834 2.7974 3.2274 4.9047
Total 4.6149 4.5958 4.0494 5.4188 3.9451 4.4171 6.7388

Table 6. Uncertainty of GC13-O (%), Landsat-7 ETM+.

Uncertainty of GC13-O (%)

Bands Blue Green Red NIR SWIR 1 SWIR 2

Temporal 2.5318 2.3051 2.622 2.7769 2.691 3.9347
Spatial 2.4333 2.0746 3.269 2.5904 2.4271 3.4757
BRDF 2.8563 2.6527 3.9081 3.2301 3.4789 5.0821
Total 4.9398 4.4237 6.1158 5.4142 5.354 7.7376

4. Validation

In this section, the new EPICS obtained in this study (GC13-O, containing 23 sites) is
compared to the traditional and well-known Libya 4 CNES ROI. In addition, a comparison
with the previous classification, where C13 was identified across North Africa, will be dis-
cussed. The comparison of BRDF normalized mean TOA reflectance of the temporal trend
of these sites, as well as the coefficient of variation and spatial variability, are shown below.

4.1. Traditional PICS vs. GC13-O

As mentioned earlier, there are six CEOS-recommended PICS locations in the Saharan
desert called Libya 1 and 4, Mauritania 1 and 2, and Algeria 3 and 5 [6,7]. Libya 4 CNES ROI
is one of the most common sites among the remote sensing community for the calibration
and stability monitoring of optical satellite sensors. In order to validate if GC13-O can be
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considered an extended pseudo-invariant calibration site on a global scale, a comparison
between Libya 4 CNES ROI and the GC13-O (23 WRS-2 path/row(s)) was performed.
Figure 14 shows the Libya 4 CNES ROI, located in path 181/row 40 of the WRS-2 system,
used to perform this comparison. Figure 14a shows Libya 4 CNES ROI (red square) over a
Landsat-8 OLI image acquired in 2014. Figure 14b shows the Landsat-8 image and Libya 4
CNES ROI over the pixel distribution of GC13 for the area in study. It is evident that most
of the pixels in the Libya 4 CNES ROI were identified in the classification process as part of
Cluster 13.

Figure 14. (a) Libya 4 CNES ROI (red square) over a Landsat-8 image (Left); (b) image described on (a) over the GC13-O,
where white areas represent the pixel distribution of GC13-O (Right).

Figure 15 displays the TOA reflectance over the GC13-O (23 WRS-2 path/row(s)) vs.
the Libya 4 CNES ROI after the BRDF normalization process. The shaded areas in the chart
correspond to the BRDF normalized mean TOA reflectance of the GC13-O, including its
uncertainty, and the markers (dots) correspond to the BRDF normalized temporal mean
TOA reflectance of the Libya 4 CNES ROI. From this chart, it is clear that the temporal trend
of Libya 4 CNES ROI lies within this new EPICS for all spectral bands, except for the coastal
aerosol band. This indicates that the temporal trend of the GC13-O is similar in nature
compared to the traditional approach, but with the advantage of having a significantly
larger amount of data. The dense data sets achieved with the global EPICS provide an
enormous benefit for the calibration and stability monitoring of optical satellite sensors,
and for the possible detection of variations in the sensor’s response in a shorter period
of time. Between the years 2013 and 2020, for the Libya 4 CNES ROI, 143 cloud-free
acquisitions were obtained, giving an average imaging period of 18.4 days for this PICS. On
the other hand, 2569 cloud-free observations were achieved for the GC13-O during the same
timeframe, providing an average acquisition of 1.02 days, indicating a significant increase
in the amount of data. Figure 16 shows a comparison between the mean TOA reflectance
of the Libya 4 CNES ROI and the mean TOA reflectance of the GC13-O, with the error bar
corresponding to each site’s temporal standard deviation (k = 2). As can be seen, for all
spectral bands, the mean TOA reflectance of the Libya 4 CNES ROI was within the standard
deviation of the Optimal GC13, demonstrating that they have similar characteristics.
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Figure 15. TOA reflectance of Landsat-8 OLI over GC13-O (23 WRS-2 path/rows(s)) vs. TOA reflectance of Landsat-8
OLI over Libya 4 CNES ROI as a function of time. Dots indicate observations over Libya 4 CNES ROI; shading indicates
observations over GC13-O, with corresponding uncertainty, from launch to August 2020.

Figure 16. Comparison of the mean TOA reflectance and temporal standard deviation between Libya 4 CNES ROI and
GC13-O (23 WRS-2 path/row(s)). Error bar 2 sigma.

Table 7 shows the statistics for these two datasets containing the mean TOA reflectance,
temporal coefficient of variation (CV), and average spatial variation within the site. The



Remote Sens. 2021, 13, 3350 22 of 27

absolute percentage difference in the mean TOA reflectance between the Libya 4 CNES
ROI and the GC13-O, using the Libya 4 CNES ROI as a reference, ranged between 0.1% and
4.1%, where smallest variation was present in the SWIR 1 band and the largest variation
was for the coastal aerosol band. Furthermore, the absolute percentage difference between
the coefficient of variation for the Libya 4 CNES ROI and the GC13-O, using the Libya 4
CNES ROI as a reference, ranged from 1.9 percent (green band) and 2.8% (SWIR 2 band).
Likewise, the difference in the average spatial variation ranged between 0.21% (SWIR 1
band) and 3.42% (coastal aerosol band). Although there was a difference present in the
spatial variability within the site, and CV between this expanded cluster and the Libya 4
CNES ROI, it is important to remember that the GC13-O is composed of multiple sites at
various locations across the globe, and thus the “n” number of observations is an order of
magnitude larger. Thus, even with this higher uncertainty, the much greater data density
(2569 cloud-free observations for the GC13-O vs. 143 cloud-free acquisitions for the Libya 4
CNES ROI) allows for the quicker determination of change in a sensor’s performance on
both short (abrupt change) and longer (drift) time scales.

Table 7. Comparison between GC13-O and Libya 4 temporal and spatial characteristics with BRDF normalization.

Bands CA Blue Green Red NIR SWIR 1 SWIR 2

Optimal Global
Cluster 13 (BRDF

normalized)

Mean TOA
reflectance 0.239 0.256 0.342 0.463 0.583 0.669 0.571

Temporal CV (%) 3.297 3.269 2.858 3.829 2.781 3.015 4.621

Average spatial variability (%) 6.474 7.01 5.996 5.472 5.168 4.842 5.676

Libya 4 CNES ROI
statistics
(BRDF

normalized)

Mean TOA
reflectance 0.229 0.247 0.335 0.456 0.578 0.668 0.583

Temporal CV (%) 0.930 0.957 0.886 0.834 0.696 0.645 1.787

Average spatial variability (%) 3.054 4.059 4.652 4.762 4.923 4.631 4.679

Figure 17 shows the number of observations achieved for the initial stages of the
Landsat-8 OLI (mid-April 2013 to July 2013) over the Libya 4 CNES ROI, as well as for
the GC13-O. In order to assess and genuinely understand the behavior of the sensor’s
radiometric performance after launch, the first months of operation are crucial. According
to what was reported at CALCON 2013 [18], from the period of time mentioned above
(mid-April 2013 to July 2013) six observations over Libya 4 were achieved and used to
evaluate the radiometric performance of the OLI. The red stars in Figure 17 show that a
small dataset was obtained using traditional PICS for that time frame. On the other hand,
for the GC13-O, 103 observations (green markers) were accomplished for the same period
of time, obtaining a much denser dataset that could allow for the understanding of the
sensor’s performance in those initial stages, and possibly detect changes in trends in a
much faster way.

An example of detecting drifts on a short time period can be seen in Figure 18, which
shows the slope estimation for the Libya 4 CNES ROI vs. the GC13-O. The slopes were
calculated by adding data points one month at a time over the course of two years of
operation (January 2014 to December 2015) using Landsat-8 OLI data. Assuming there
was no change in the Libya 4 site, both methods should converge to zero. It is possible to
see that both sites reached this result after using two years of data. However, the GC13-O
reached a stable estimate much faster than the Libya 4 CNES ROI. Using the GC13-O data,
the detection of the slope in the coastal aerosol, blue, green, and SWIR 1 bands reached this
estimate after only three months’ worth of observations. Similarly, the red and NIR bands
stabilized in about 7 months, and the SWIR 2 band in about 10 months. Libya 4, on the
other hand, required about 15 months of data to achieve the same level of stability that the
GC13-O achieved. Furthermore, due to the large amount of data provided by the GC13-O
for regression estimation, the confidence intervals for the slope (error bars), obtained using
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the GC13-O data, are smaller. Moreover, this technique eliminatesd the dependency of a
single site to be invariant. If there is a change in the sensor’s response over the GC13-O, it
is less likely that all 23 sites will be changing at the same time at the same rate, as opposed
to traditional PICS, where changes in the sensor’s response might be due to changes in
the target.

Figure 17. Comparison in the number of observations acquired over the Libya 4 CNES ROI and the
GC13-O for the initial stages of the OLI Landsat-8.

Figure 18. Comparison of slopes detected using Libya 4 CNES ROI and GC13-O from January 2014 to December 2015 by
adding data one month at a time.
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This technique represents a considerable advantage in evaluating the radiometric
performance of sensors in their initial stages of operation. Moreover, this global EPICS is
not only useful for satellites, such as Landsat, with lifetimes over five years [19], but also
for low-cost satellites with shorter lifetimes of months or a few years, where time periods
of traditional PICS might not offer enough data to provide a high confidence assessment of
change in performance. This technique can also be useful for satellites that do not image
traditional PICS continuously. In addition, many of these satellites lack onboard calibrators,
for which this new technique would provide a great advantage when it comes to evaluating
their radiometric performance daily. Considering that, when using global EPICS, dense
datasets can be achieved in a short time frame, and it is possible to assess the response
of the sensors onboard these satellites in a much faster way, not only in the crucial initial
collections after launch, but throughout their lifetime, allowing for the faster detection of
anomalies in the sensor’s response and correcting them accordingly.

4.2. Comparison between C13 and GC13-O

A comparison between C13 and the globally expanded Cluster 13 is discussed in this
section. A total of 1871 observations were achieved over C13 using Landsat-8 OLI data
from its launch until August 2020. For the same time frame, 2569 cloud-free measurements
were acquired for the Optimal GC13. The imaging period for Landsat-8 using the Global
Cluster was reduced from 1.4 to 1.02 days on average relative to C13. This helped to obtain
a considerably larger dataset in an even shorter period of time, and further reduced one
site’s impact, in addition to providing multiple acquisitions across the globe every day
of the Landsat acquisition cycle. Figure 19 shows a comparison between the mean TOA
reflectance of C13 and the GC13-O for all spectral bands. The mean TOA reflectance of both
locations are side by side, and the error bars represent the standard deviation (k = 2) of each
site’s temporal trend, indicating that the GC13-O is statistically the same as C13. Statistics
for those sites are shown in Table 8. Absolute percentage difference in the temporal mean
TOA reflectance between the GC13-O and C13 ranges between 0.29% (green band) and
5.6% (SWIR 2 band). Likewise, the absolute percentage difference in the coefficient of
variation and the average spatial variation between sites ranges from 0.06% (blue band) to
1.5% (red Band) and 1.17% (SWIR 1 Band) to 1.95% (blue Band), respectively. Although
there is a slight increase in the temporal coefficient of variation as well as in the spatial
variability, this increase might be expected considering that seven additional locations are
part of the Optimal GC13, moving from a continental scale to a global scale. Despite this
increase, GC13-O exhibit similar results to C13, but with the advantage of having a higher
imaging frequency, allowing a richer dataset in a shorter period of time.

Table 8. Comparison between GC13-O and C13 temporal and spatial characteristics with BRDF normalization (calculated using
1 sigma).

Bands CA Blue Green Red NIR SWIR 1 SWIR 2

Optimal Global Custer
13 (BRDF normalized)

Mean TOA
reflectance 0.239 0.256 0.342 0.463 0.583 0.668 0.571

Temporal CV (%) 3.297 3.269 2.858 3.829 2.781 3.015 4.621

Average spatial variability (%) 6.474 7.01 5.996 5.472 5.168 4.842 5.676

C13 (BRDF
normalized)

Mean TOA
reflectance 0.229 0.245 0.343 0.480 0.597 0.697 0.603

Temporal CV (%) 3.366 3.329 1.851 2.252 1.303 2.187 3.04

Average spatial variability (%) 4.572 5.058 4.329 3.914 3.919 3.668 3.921
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Figure 19. Comparison of the mean TOA reflectance and standard deviation between C13 and GC13-O (23 WRS-2
path/row(s)). Error bar 2 sigma.

5. Conclusions

This work identified and demonstrated the potential of a global EPICS to perform
calibration and stability monitoring of on-orbit optical sensors. In this analysis, using an
unsupervised classification, pixels across the world with similar spectral and temporal
characteristics were found in North America, North Africa, Central Africa, and the Middle
East. After evaluating the TOA reflectance of each site identified in this work, 23 optimal
WRS-2 path/rows, creating an Optimal Global Cluster 13 (GC13-O), were selected as a
global EPICS. Using this global cluster, two observations for days 3, 4, 7, 8, 12, 14, and 16 of
the Landsat acquisition cycle were obtained, providing the possibility of building a richer,
more temporally dense calibration dataset in a much shorter period of time. This, in turn,
allows for the potential to more quickly detect changes in the sensor’s response due to
drift or to abrupt changes in the sensor’s performance. Since 23 sites are used worldwide,
rather than a single target, it is possible to be certain that changes in sensor response were
produced by the sensor, rather than the ground target.

In this work, a comparison between this new global EPICS and the traditional Libya-4
CNES ROI was performed. Results showed that the global EPICS is statistically the same
as Libya 4, with differences in the coefficient of variation between these sites of less than
3% across all bands. Uncertainty estimations shown in this work may be reduced by
increasing the number of clusters in the clustering k-means algorithm, but further analysis
is in process.

This global EPICS provided the advantage of reaching a stable estimation of slope
more quickly. For Landsat-8, it took only three months of observations to detect any drift
for the coastal aerosol, blue, green, and SWIR 1 bands, seven months for the red and NIR
bands, and 10 months for the nosier (due to water vapor sensitivity) SWIR 2 band. The
Libya 4 traditional PICS took approximately 15 months of observations for all spectral
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bands. This shows that the global EPICS can be key for the assessment of the radiometric
calibration of sensors in the initial stages of their lifetime, or satellites lacking on board
calibrators, since it provides significantly more cloud-free observations compared to using
singular sites. In addition, dependency on a single site to be invariant is removed when
using this technique. If the sensor’s response changes over the GC13-O, it is more likely
that the changes are due to the sensor rather than the target, since all 23 sites are unlikely
to change at the same time.

Even though this work focused on Landsat satellites, the technique could be used to
monitor the radiometric calibration of any satellite that has the capability to image any
portion of this global EPICS.
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