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Abstract: With the advent of very-high-resolution remote sensing images, semantic change detec-

tion (SCD) based on deep learning has become a research hotspot in recent years. SCD aims to ob-

serve the change in the Earth’s land surface and plays a vital role in monitoring the ecological en-

vironment, land use and land cover. Existing research mainly focus on single-task semantic change 

detection; the problem they face is that existing methods are incapable of identifying which change 

type has occurred in each multi-temporal image. In addition, few methods use the binary change 

region to help train a deep SCD-based network. Hence, we propose a dual-task semantic change 

detection network (GCF-SCD-Net) by using the generative change field (GCF) module to locate 

and segment the change region; what is more, the proposed network is end-to-end trainable. In the 

meantime, because of the influence of the imbalance label, we propose a separable loss function to 

alleviate the over-fitting problem. Extensive experiments are conducted in this work to validate the 

performance of our method. Finally, our work achieves a 69.9% mIoU and 17.9 Sek on the SEC-

OND dataset. Compared with traditional networks, GCF-SCD-Net achieves the best results and 

promising performances. 

Keywords: very-high-resolution remote sensing images; semantic change detection; generative 

change field; separable loss 

 

1. Introduction 

Change detection (CD) plays an important role in land-use planning, population 

estimation, natural disasters and city management [1–3]. Change detection is a technique 

for obtaining change regions of interest using remote sensing images in different time 

periods. There are more than thirty years of studies related to change detection [1], and 

many state-of-the-art techniques [4–17] have been proposed to automatically identify 

changes in a region in remote sensing images. However, most of these change detection 

methods [12–17] are binary change detection (BCD), which overlooks the pixel’s catego-

ries that are usually necessary for practical application.  

Semantic change detection (SCD) can detect the change regions and identify the 

semantic labels simultaneously. However, SCD-based datasets that are openly available 

are still limited [18]. Hence, to validate the proposed methods, a large-scale semantic 

change detection dataset (HRSCD) was built by Daudt et al. [18], and a sequential train-

ing framework for semantic change detection was proposed. Based on semantic change 

detection, Mou et al. [19] proposed a recurrent convolutional neural network (ReCNN) 

network, and two data sets were built to validate their work, but the proposed datasets 

are not publicly available. Although, existing methods can achieve the semantic change 

detection with promising results, their studies face the problems of locating and identi-
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fying the area of change [20]. Consequently, Yang et al. [20] proposed an asymmetric 

Siamese network (ASN) for dual-task semantic change detection, and a large-scale se-

mantic change detection dataset was built, named SECOND, to detect change regions 

between the same land-cover types.  

Different from binary labels, semantic change labels contain multiple categories, and 

each period image corresponds to a semantic change label. However, existing change 

detection methods usually can only realize binary change detection (such as References 

[12–18]) or single task semantic change detection [19]. The SECOND dataset contains a 

pair of semantic change labels corresponding to two periods’ images. Consequently, 

conventional methods, such as FC-EF [15], FC-conc [15] and FC-diff [15], do not work 

well. 

With the development of remote sensing and machine learning technology [21,22], 

change detection has achieved great progress. Change detection generally falls into two 

categories, one is binary change detection and the other is semantic change detection. 

Binary change detection mainly focuses on change regions yet overlook categories of 

pixels. Different from binary change detection, semantic change detection not only 

achieves the change regions detection, but also identifies the categories of each pixel of 

change regions. 

In recent years, a lot of studies mainly pay attention to binary change detection [12, 

23–27]; most of the works focus on detecting change regions, labeling them with “0” and 

“1”, where “0” is no change and “1” represents a change region. Consequently, the bi-

nary change map can be obtained through extracting difference features from image 

pairs. The main purpose of change detection in remote sensing images is to obtain the 

change information from the bitemporal images; the change regions usually are highly 

important to analyze land-use and land-cover change. However, binary change detection 

usually fails to identify the ground truth of each pixel in change regions. Consequently, 

semantic change detection (SCD)-based methods have been developed for achieving 

semantic segmentation based on a change region. However, we found that the existing 

works have two shortcomings, as follows: 

(1) Based on the above, since the existing methods are single-task-oriented change 

detection frameworks, they are inappropriate to achieve dual-task semantic change de-

tection. 

(2) Although, dual-task-based semantic change detection has been developed, its 

generality is not strong, and thus the model has space for improvement. 

Based on the abovementioned problems, our work proposes a novel dual-task se-

mantic change detection Siamese network using the generative change field module to 

help the prediction of change regions and segmentation. The proposed network uses a 

binary change detection branch to guide the two semantic segmentation networks to 

predict pixels’ categories. Since the semantic segmentation branch does not have the 

perception of the change information before the fusion of the change region information 

(generative change field) and semantic information, then only by fusing the change in-

formation can the two semantic segmentation branches realize the prediction of the 

change region. Therefore, the proposed network is called the Generative Change Field 

(GCF)-based dual-task Semantic Change Detection Network (GCF-SCD-Net), as shown in 

Figure 1. Although, in previous work [19], Mou et al. have proposed to use the binary 

change map to help model training, the proposed network exploits the convolutional 

neural network and recurrent neural network to achieve feature extraction and change 

detection, and obtains the binary change maps by using fully connected layers activated 

by the sigmoid function. Their method only used the auxiliary loss method to generate a 

sematic change map. For the SCD task, change features play an important role in helping 

the model predict semantic change labels. They can guide the generative semantic change 

map module to focus on different regions between bitemporal images. In addition, 

change regions can be generated using a change feature map. Fusing the binary change 
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feature map and semantic change feature map is an effective method to improve the 

segmentation results. In this paper, the main contributions are as follows.  

 

Figure 1. Architecture of the proposed network. 

(1) We propose a novel dual-task semantic change network to identify the change 

region in bitemporal images, and it achieves strong results using the SECOND dataset. 

The proposed SCD-based model effectively solves the dual-task semantic change detec-

tion problem. 

(2) To the best of our knowledge, we are the first to exploit the generative change 

field method to guide two branch networks to achieve dual-task semantic change detec-

tion. 

(3) In order to alleviate the influence of an imbalanced label between the change re-

gion and no-change region, we propose a robust separable loss function that enables to 

improve the performance of the network. 

2. Materials and Methods  

To simplify the mathematical modeling, Table 1 depicts the meanings of the abbre-

viated letters we used. 

Table 1. Descriptions of the abbreviations used. 

Number Abbreviation Explanation 

1 R Set of spatial domains  

2 C Channel 

3 H Height 

4 W Width 

5 𝐸𝜃  Learning parameters of network 

6 Concat/ Feature map concatenation  

7 Conv Convolutional layer 

8 ReLU Rectified Linear Units  

9 BN Batch normalization 

10 p Probability of prediction 

11 y Ground truth 
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2.1. Siamese Convolutional Network 

Siam-Conv has been widely used to extract feature information in existing works 

[13,15–18], which shows the effectiveness of Siam-Conv for change detection. Therefore, 

we exploited Siam-Conv to extract the feature information from the image pairs, as 

shown in Figure 1. 

Let 1I  and 2I  represent an input image pair, , {1,2}C H W
iI R i   . Let ( )E 

 be 

Siam-Conv (as shown the Siam-Conv module in Figure 1) for extracting the feature maps 

from the bitemporal images, and    the learning parameters of the Siam-Conv. Then, 

the feature extraction can be formulated as follows: 

𝑓𝑖 = 𝐸𝜃(𝐼𝑖), 𝑖 ∈ {1,2}. (1) 

where 𝑓𝑖 is the feature maps captured from the input image at time Ti, and 𝑅
𝐶

8
×

𝐻

8
×

𝑊

8 . 

In this work, we used seven residual blocks, which are from ResNet34 proposed by 

He et al. [28], to extract the shallow features. The details of Siam-Conv are listed in Table 

2. Firstly, we use Layer0 (correspond to “Layer0” in Figure 1) to extract the salient fea-

tures and reducing the size of the feature maps, which contains a convolutional layer 

(Conv) with a kernel size of 7 × 7, Batch Normalization layer (BN), Rectified Linear Unit 

(ReLU) and Maxpooling layer (Maxpool). Next, we used three residual blocks (“Layer1” 

in Figure 1) to extract the low-dimension features with a size of 64 × 64, and four residual 

blocks ((“Layer2” in Figure 1) were used to capture the middle dimension features with a 

size of 32 × 32. 

Table 2. Configuration of Siam-Conv. 

Name Types Filters Output Size 

Layer0 Conv + BN + ReLU + Maxpool 64 64×64×64 

Layer1 Residual block × 3 64 64×64×64 

Layer2 Residual block × 4 128 128×32×32 

2.2. General Networks for Dual-Task Semantic Change Detection 

Traditional change detection methods cannot effectively achieve dual-task semantic 

change detection; the main reason is that the general networks are designed based on a 

single task, so it is impossible to achieve dual-task change detection. Hence, based on 

classical segmentation networks, such as UNet [29] and PSPNet [30], we built two du-

al-task semantic change detection networks, as shown in Figure 2.  

2.2.1. UNet-SCD 

In the Siam-Conv module, we exploited ResNet34 to extract the feature representa-

tion from the bitemporal images, separately. Let 1f  and 2f  represent the feature maps 

captured from the image pairs at two different times, 1T  and 2T . Next, the feature pairs 

were fused by a concatenation operation, which can be formulated by  

1 2f f f=  , (2) 

where 32 32 32

C H W

f R
 

 . In order to obtain the difference features, we used two convolu-

tional groups (Conv + BN + ReLU) to refine the difference maps. The convolutional group 

was defined as follows: 

ˆ Re ( ( ( ))f LU BN Conv f=  (3) 

Then, we used two upsampling branches and a skip connection strategy to guide each 

branch to generate the difference maps.  



Remote Sens. 2021, 13, 3336 5 of 15 
 

 

 

Figure 2. General networks for SCD: (A) is the UNet-based SCD network, and (B) represents the 

PSPNet-based SCD network. 

2.2.2. PSPNet-SCD 

Different from the UNet-SCD network, the bitemporal images were downsampled 

by 1/8 in the Siam-Conv module. Then, we use the concatenation operation to fuse the 

bitemporal features. Meanwhile, we use the pyramid pooling module (PPM) [30] to 

capture features with different receptive fields. Finally, through reusing the bitemporal 

features outputted from the Siam-Conv module, we can achieve the dual-task semantic 

change maps. The fusion process can be defined as follows: 

ˆ , {1,2}i iDf f D i=   , (4) 

where D  means the difference features are taken from PPM, and f̂  represents the 

bitemporal feature maps. In order to extract the difference maps from iDf , we use the 

two convolutional groups to generate the semantic change maps in the different time 

periods, separately.  

2.3. Generative Change Field Network for Dual-Task Semantic Change Detection 

Above, we established two types of dual-task semantic change detection networks. 

However, their results obtained on the SECOND dataset are mediocre. Hence, we de-

veloped a method (GCF-SCD-Net) that can achieve strong performance for dual-task 

SCD in this work.  

We introduce a generative change field (GCF) module that only focuses on change 

regions based on difference maps. Since the details of the Siam-Conv module are given in 

Table 2, we only present the configuration of the GCF-based dual-task semantic change 

detection in Table 3. The process of generating a change field is as follows: 

Firstly, we can obtain the bitemporal features 1( )E I  and 2( )E I . Let Df represents 

the fusion features, 3C H WDf R   , which can be achieved through the concatenation op-

eration  

1 2 1 2( ) ( ) ( ) ( )Df E I E I E I E I   = −   . (5) 
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Then, using two Conv modules, we reduced the dimension of Df  to obtain 

, C H Wf f R    . Next, nine residual blocks were used to obtain the difference maps 

(correspond to “Layer3” and “Layer4” in Figure 1). To effectively capture the feature 

representation from f  , we used the PPM strategy, the PPM module shown in Figure 1, 

to extract the difference feature maps at different scales. In this work, we used four scales 

of the feature maps with bin sizes of 1×1, 2×2, 3×3 and 6×6, respectively. Finally, a con-

volutional group and output layer were used to generate the binary change maps,  , 

which are marked with a green box in Figure 1. 

The aim of the GCF-SCD-Net is to achieve dual-task semantic change detection; 

thus, we exploited two branches to generate bitemporal semantic change maps. A “Seg1” 

module contains two convolutional layers is used to increase the dimensions of 1f  from 

128 to 512, therefore, we can obtain the feature maps 1f   at time of 1T , 512 32 32
1f R   . 

After that, we make use of difference feature maps generated by GCF module to guide 

branch-1 (top side of Figure 1) to predict the pixels’ categories of the T1 image ( 1p ). Sim-

ilarly, the semantic change map of T2 image ( 2p ) can be obtained in the same way; this is 

shown on the bottom of Figure 1.   

The final binary change map and semantic change maps are generated by the soft-

max activation function, which can be formulated by 

max( )B  = , (6) 

1 1 max( )P p= , (7) 

2 2 max( )P p= , (8) 

where 
( ) 

 is the softmax function and max( ) 
 represents the maximum index of pre-

diction, so we have 

( , )
max( ) =Max x y

c
c S

p p


 (9) 

where ( , )x y
cp  represents the prediction of a pixel in the x-row and y-column of the c-th 

channel. S is the channels, which is equal to the total number of change types and 

no-change types. Through the abovementioned strategy, we can obtain the change region 

maps and semantic change segmentation maps simultaneously. 

Table 3. Configuration of the generative change field module. 

Name Types Output filters Output size 

Concat Conv + BN + ReLU + Conv 128×3128 128×32×32 

Layer3 Residual block × 6 256 256×32×32 

Layer4 Residual block × 3 512 512×32×32 

PPM Adaptivepool × 4 2560 2560×32×32 

Conv Conv + BN + ReLU 512 512×32×32 

Output3 Conv + BN + ReLU + Conv 512,2 2×32×32 

Upsample Bilinear interpolation _ 2×256×256 

Seg1 Conv + BN + ReLU + Conv 512,512 512×32×32 

Output1 Conv + BN + ReLU + Conv 512,7 7×32×32 

Upsample Bilinear interpolation _ 7×256×256 

Seg2 Conv + BN + ReLU + Conv 512,512 512×32×32 

Output2 Conv + BN + ReLU + Conv 512,7 7×32×32 

Upsample Bilinear interpolation _ 7×256×256 
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2.4. Dual-Task Semantic Change Detection Loss Function 

Model training plays an important role in achieving surprising results. A suitable 

loss function is good for obtaining better performance and reducing training time. In this 

article, a loss function consists of generative change field loss (gcf_loss) and semantic 

change loss (sc_loss). The loss function can be written as 

_ _gcf loss sc lossLoss += . (10) 

2.4.1. WCE_loss 

For our task, cross-entropy loss (CE_loss) is capable of measuring the similarity be-

tween prediction and ground truth, which is an appropriate choice for calculating the 

loss. The CE_loss can be formulated as follows: 

1

1
_ = [ log (1 ) log(1 )]

N

i i i i

i

CE loss y p y p
N =

− + − − , (11) 

where N is the number of training samples, and yi and pi are the ground truth and pre-

diction of the i-th samples. However, the distribution of the target class is unbalanced. 

Hence, according to the statistics of the pixels for each class, we added a distribution 

weight based on the number of each category to the cross-entropy loss function 

(WCE_loss), so Equation (11) can be rewritten as 

1

_ [ log (1 ) log(1 )]
N

i i i i

i

w
WCE loss y p y p

N =

= − + − − , (12) 

where w is the weight, 1 2( , , , )Sw w w w= .  

2.4.2. Separable Loss 

Due to the influence of the imbalance label, we propose a separable loss function 

that calculates the loss of the no-change regions and change regions, respectively. Let 

( )   indicate the softmax function, where 0
,( )i jp

 
is the prediction of the 0th channel of 

,i jp  activated by the softmax function, ,
C H W

i jp R   . We define the separable loss as 

follows: 

2
0

, ,

1 1

_

2

, , , ,

1 1

_

(1 ) l

1 ˆ_ log( ( ))

1
( ) [ lo ]og(1 )g

N

i j i j

i j

nochange loss

N

i j i j i j i j

i j

change loss

Sep loss B p
N

y p y p
N


= =

   

= =

−

= +

− −

−

+





 , (13) 

where B̂ E B= − : E is the matrix with all the elements of one, and B is the ground truth of 

the binary change. ,i jy  and ,i jp  are the ground truth and prediction of the j-th sample 

at time Ti without the no-change type, ( -1)
,

S H W
i jp R   , ( -1)

,
S H W

i jy R   . We use the 

no-change loss to train the network through calculating the loss of the no-change chan-

nel. Meanwhile, change loss that ignores the no-change channel can contribute to the loss 

without the influence of the imbalance label between change and no change.  

2.4.3. Union Loss 

In this work, we make use of the WCE_loss and separable loss to punish the network 

based on the generative change field and semantic change prediction during the training 
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process. Let y
 and ŷ

 represent the prediction and ground truth, and b and B are the 

binary change prediction and ground truth; then, the loss can be formulated as 

_ _

ˆ ˆ_ ( , )  + _ ( ,  ) _ ( , , )

gfc loss sc loss

WCE loss bL B WCE loss y y Sep loss y y Boss = +  
(14) 

3. Results  

In this section, we first introduce the experimental setup in Section 3.1. Next, we 

describe the dataset used in this work and the evaluation criteria of the models in Sec-

tions 3.2 and 3.3. Further, in Sections 3.4 and 3.5, we present the experimental results and 

analysis.  

3.1. Implementation Details 

To ensure a fair comparison, all experiments were conducted with the same training 

strategy, software environment and hardware platform. The details are as follows. 

The total number of training epochs is 100 for all experiments. We use the stochastic 

gradient descent (SGD) algorithm [31] to train the networks; the momentum is set to 0.9, 

with a weight decay of 5e-4. The initial learning rate was 0.005, which dynamically de-

creased every 30 epochs by 1/10 during training. The input size of the image pair was 256 

× 256 pixels. Due to the limitation of GPU memory, the batch size was set as 16. All ex-

periments were implemented in Ubuntu 18.04.1 LTS. Pytorch 1.6 and Python 3.6 were 

used to build the CNN-based networks. We implemented all experiments on a DELL 

platform, which was built with an Inter Xeon(R) Silver 4210 CPU, RTX 2080Ti 11-GB GPU 

and 256-GB of RAM. 

3.2. Dataset 

Currently, the public semantic change detection datasets are still limited. Most of the 

existing public benchmarks [32–35] mainly focus on binary change detection. Mou et al. 

[19] built a multi-class change detection benchmark for SCD, while the dataset is a sin-

gle-task SCD and is not publicly available.   

Hence, we used the dual-task SCD benchmark (SECOND) 

http://www.captain-whu.com/PROJECT/SCD/ (accessed on: 8 March 2021) proposed by 

[20] to validate our methods. The dataset is a dual-task-based semantic change detection 

dataset. There are six categories in the SECOND dataset, including non-vegetated ground 

surface, tree, low vegetation, water, buildings and playgrounds. It contains 4662 pairs of 

aerial images, and each sample has size of 512×512, in three bands (red, green and blue). 

3.3. Metrics 

For change detection, the Over Accuracy (OA) and mean Intersection over Union 

(mIoU) are usually utilized for validating the performance of the methods 

[15,18,19,26,35]. Since the numbers of categories are unevenly distributed, Yang et al. [20] 

proposed a Separated Kappa (SeK) coefficient to alleviate the influence of an imbalance 

label.  

In this article, we utilize three types of metrics, namely, OA, mIoU and SeK, to 

evaluate the performance of our methods. Then OA is defined as 

,

0

,

0 0

=

S

i i

i

S S

i j

i j

p

OA

p

=

= =





, (15) 

where S represents the total number of change categories and no-change type (“I = 0”). 

,i ip  indicates the total number of pixels correctly predicted by network, and ,i jp  rep-
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resents the total number of pixels that are predicted for i-th change type, but in fact they 

belong to the j-th type. 1 2( ) / 2mIoU IoU IoU= + , where 1IoU
 is used to evaluate the 

prediction in the no-change regions, and 2IoU  is used for validating the change regions.  

0,0
1

,0 0, 0,0

0 0

=
S S

i j

i j

p
IoU

p p p
= =

+ − 

 , 
(16) 

,

1 1
2

, 0,0

0 0

=

S S

i j

i j

S S

i j

i j

p

IoU

p p

= =

= =

−





  (17) 

The SeK can be formulated as follows: 

2( 1)IoUSeK e −=  , (18) 

where  is the consistency between the prediction and the ground truth [20].  

3.4. Effect of the GCF Module 

Firstly, we evaluate the effect of the GCF module for dual-task semantic change de-

tection on the SECOND dataset. For a fair comparison, all experiments were with the 

conventional cross-entropy loss function, to contribute to the loss during training pro-

cess. As illustrated in Table 4, in terms of the SCD task, the conventional methods, such as 

FC-EF, FC-Siam-conv and FC-Siam-diff, cannot achieve competitive results. Compared 

with the FC-Siam-diff, the proposed dual-task-based PSPNet-SCD increases the perfor-

mance of the semantic change detection considerably by 1.2% of IoU2, 1.2% of mIoU and 

1.8 of SeK, respectively. More surprisingly, the GCF-based network can effectively im-

prove the IoU2 and SeK by 2.6% and 2.7 compared with FC-Siam-diff, which demon-

strates that the proposed GCF module is effective. We can also see in Table 4 that the 

GCF-based network shows higher performance compared with PSPNet-SCD, with the 

improvements in IoU2 and SeK achieved by GCF-SCD-Net being 1.4% and 0.9, respec-

tively. Therefore, the use of the GCF module can effectively increase the performance of 

the models. 

Table 4. Comparison with the state-of-the-art methods on the SECOND dataset (% for all except 

seK). 

Methods OA IoU1 IoU2 mIoU SeK Flops Parameter 

FC-EF [15] 83.7 84.2 43.0 63.6 8.7 62.9G 17.59M 

FC-Siam-conc [15] 84.6 85.0 45.7 65.3 11.4 62.9G 17.59M 

FC-Siam-diff [15] 84.5 85.2 46.7 65.9 11.4 24.5G 17.59M 

UNet-SCD 83.3 83.5 42.5 63.0 9.2 19.6G 21.87M 

PSPNet-SCD 85.0 85.4 47.9 66.7 13.2 56.3G 25.55M 

GCF-SCD-Net 85.3 85.9 49.3 67.6 14.1 56.1G 25.57M 

3.5. Performance Analysis of Separable Loss 

An imbalance label is a severe problem that causes difficulty in network training. In 

order to obtain strong results for the SCD task, this article introduce a separable loss to 

improve the performance of semantic segmentation in the change region. As shown in 

Table 5, it is obvious that the proposed separable loss can alleviate the imbalance label 

problem. Networks with separable loss outperform those with WCE_loss, such as 

PSPNet-SCD and GCF-SCD-Net achieving improvements in IoU2 by 1.9% and 1.7%, re-

spectively. The increments in SeK obtained by PSPNet-SCD and GCF-SCD-Net are 1.4 

and 1.5. Although the cost of improvement is that OA and IoU1 would be influenced or 
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even slightly decreased, the segmentation results in the change region are greatly im-

proved.  

Lin et al. [36] proposed a focal loss function to alleviate the influence of sample im-

balance. Consequently, to demonstrate the superiority of the separable loss, we report the 

results by using the focal loss in Table 5. Obviously, the proposed loss function performs 

with prominent superiority across all evaluation metrics. 

Table 5. Comparison of the change detection networks with different loss functions (% for all except seK). 

Methods 
WCE_loss Focal loss Separable loss 

OA IoU1 IoU2 mIoU SeK OA IoU1 IoU2 mIoU SeK OA IoU1 IoU2 mIoU SeK 

FC-EF [15] 83.0 83.7 44.7 64.2 8.9 82.6 83.2 43.2 63.2 7.9 82.9 83.5 46.3 64.9 9.8 

FC-Siam-conc [15] 84.1 84.6 48.2 66.4 12.6 83.3 83.7 46.5 65.1 11.1 84.3 84.8 49 66.9 13.2 

FC-Siam-diff [15] 84.2 84.8 48.6 66.7 12.7 83.5 84.1 46.7 65.4 11.0 84.3 84.9 49.5 67.2 13.4 

UNet-SCD 83.4 83.5 43.2 63.4 9.8 82.7 82.8 42.2 62.5 8.8 83.3 83.4 44.1 63.8 10.2 

PSPNet-SCD 84.8 85.3 50.1 67.7 14.5 84.2 84.7 48.5 66.6 12.9 84.9 85.4 52.0 68.7 15.9 

GCF-SCD-Net 85.2 85.8 50.7 68.3 15.0 84.3 84.8 49.7 67.3 13.9 85.3 85.8 52.4 69.1 16.5 

The reason for this phenomenon is that separable loss calculates losses for the 

change region and the no-change region, separately, which guides the model to pay more 

attention to the loss of the change area, and alleviates the problem of over-confidence 

caused by the imbalance label. In particular, the improvements in the overall metrics 

obtained by GCF-SCD-Net further demonstrate the competitive performance of the 

proposed GCF module. 

4. Discussion  

To validate the performance of GCF-SCD-Net, we list the results obtained by [20] 

and our methods in Table 6. The proposed method achieves the best results on the 

SECOND dataset, 16.5 in SeK and 69.1% in mIoU. In the testing process, Yang et al. [20] 

improved the detection results by flip methods and a multiscale strategy. Since the pro-

posed network did not use the multiscale strategy to optimize the parameters of the 

models, we only used the flip method to validate the performance of the networks. As 

shown in Table 6, although ASN-ATL outperforms GCF-SCD-Net slightly in mIoU, the 

proposed network achieves the best results in SeK by an improvement of 1.1. 

Above, the proposed method stably improves the performance of the semantic 

change detection, which effectively demonstrates the superiority and robustness of 

GCF-SCD-Net. 

Table 6. Comparison with the state-of-the-art methods (% for all except seK). 

Methods 
Flip  Flip  

mIoU SeK mIoU SeK 

FC-EF  64.9 9.8 65.4 10.5 

FC-Siam-conc  66.9 13.2 67.4 14.1 

FC-Siam-diff  67.2 13.4 67.7 14.2 

HRSCD.str1 (reported by [20]) 29.3 4.6 29.8 4.9 

HRSCD.str2 (reported by [20]) 59.7 6.3 59.4 6.6 

HRSCD.str3 (reported by [20]) 62.3 8.9 62.1 9.2 

HRSCD.str4 (reported by [20]) 67.5 13.7 67.9 14.5 

ASN [20] 69.0 15.2 69.7 16.2 

ASN-ATL [20] 69.1 15.5 70.0* 16.8 

GCF-SCD-Net 69.1 16.5 69.9 17.9 

* means to train the model with the multiscale strategy. 

To present the change detection results intuitively, we visualized the segmentation 

results to demonstrate the performance of the proposed methods. Figure 3 shows the 

change detection results generated by FC-EF, FC-Siam-conv, FC-Siam-diff and the three 

types of dual-task semantic change detection networks proposed in this work.  

According to semantic segmentation results in Samples A and B, we can note that 

the proposed GCF module enables to identify the change region accurately and the 

no-change region in complex scenarios. Since “tree” and “low vegetation” have a similar 
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texture and color, most of the SCD networks have a poor detection performance, but this 

does not limit the segmentation results of GCF-SCD-Net, as shown in Sample B. In terms 

of sample C, conventional change detection methods cannot identify the pseudochange 

region well, but the proposed SCD-based UNet and PSPNet are capable of alleviating this 

problem, which demonstrates that existing change detection networks are improper for 

dual-task SCD. Generally, the trees on both sides of the road are elongated. According to 

Sample D, we note that the proposed GCF module performs well for the stripe scenario. 

Due to the small number of samples (such as “Playground”), it is difficult to accurately 

identify these change types; our method performs well under the abovementioned con-

ditions.  

(c1) (c2) (c3) (c4) (c5) (c6) (c7) (c8)

 

Figure 3. Comparisons with state-of-the-art methods on the SECOND dataset. c1 and c2 represent image pairs and 

ground truth, respectively; from c3 to c8 are the semantic segmentation results obtained by various change detection 

methods. (A),(B),(C),(D),(E) are the image pairs. 
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Figure 4 depicts the visual results of the semantic prediction and binary prediction 

based on GCF-SCD-Net, where we can see that the GCF module can extract the change 

regions accurately. Consequently, the semantic change detection module can effectively 

classify the categories of each pixel based on the change field.  

(c1) (c2) (c3) (c4) (c5) (c6) (c7)

 

Figure 4. Semantic change maps and binary change maps generated by GCF-SCD-Net.c1 is an image pair; c2 and c3 are 

the semantic label and prediction; images in c4 were obtained by fusing the raw images and semantic prediction masks; 

c-5,6,7 represent the binary change label, binary change prediction and binary fusion results. 
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Above, the visual results fully demonstrate that our method is effective and superior 

to the existing methods. 

5. Conclusions 

In this work, in order to address the problem that existing methods are incapable of 

obtaining a significant result for dual-task semantic change detection, we proposed a 

generative change field (GCF)-based dual-task semantic change detection network for 

remote sensing images. The proposed network consists of a Siamese convolutional neural 

network (Siam-Conv) module for extracting the feature representation from the raw 

image pairs, a generative change field module for obtaining the binary change map and 

two generative semantic change modules for generating the semantic segmentation maps 

of the bitemporal images. Moreover, it is an end-to-end SCD network. To alleviate the 

sample imbalance problem, we designed a separable loss for better training the deep 

models.  

Extensive experiments were conducted in this work to demonstrate the competitive 

performance that can be achieved by GCF-SCD-Net, compared with existing methods as 

well as the proposed dual-task SCD networks (UNet-SCD and PSPNet-SCD). What is 

more, we validate the effectiveness of the proposed separable loss function; it is worth 

noting that the proposed separable loss is a general strategy to alleviate the sample im-

balance problem. Therefore, it can be applied to other benchmark datasets that suffer 

from label imbalance.  

At present, the SECOND dataset is the only public dataset for dual-task semantic 

change detection. In the meantime, we note that the proposed network and conventional 

networks perform poor regarding edge detection and contour extraction in the inter-

secting zone. Consequently, in future work, we intend to build a large-scale, 

very-high-resolution benchmark dataset for semantic change detection based on mul-

ti-source satellite data. To achieve better segmentation results, we intend to use the 

Markov Random Field (MRF) [37] method as well as boundary loss [38] to optimize the 

segmentation results. 
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