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Abstract: The efficiency of a vineyard management system is directly related to the effective man-
agement of nutritional disorders, which significantly downgrades vine growth, crop yield and wine
quality. To detect nutritional disorders, we successfully extracted a wide range of features using
hyperspectral (HS) images to identify healthy and individual nutrient deficiencies of grapevine
leaves. Features such as mean reflectance, mean first derivative reflectance, variation index, mean
spectral ratio, normalised difference vegetation index (NDVI) and standard deviation (SD) were
employed at various stages in the ultraviolet (UV), visible (VIS) and near-infrared (N.I.R.) regions
for our experiment. Leaves were examined visually in the laboratory and grouped as either healthy
(i.e. control) or unhealthy. Then, the features of the leaves were extracted from these two groups.
In a second experiment, features of individual nutrient-deficient leaves (e.g., N, K and Mg) were
also analysed and compared with those of control leaves. Furthermore, a customised support vector
machine (SVM) was used to demonstrate that these features can be utilised with a high degree of
effectiveness to identify unhealthy samples and not only to distinguish from control and nutrient
deficient but also to identify individual nutrient defects. Therefore, the proposed work corroborated
that HS imaging has excellent potential to analyse features based on healthiness and individual
nutrient deficiencies of grapevine leaves.

Keywords: Vitis vinifera; hyperspectral imaging; nutrient deficiency; variation index

1. Introduction

Hyperspectral (HS) imaging has numerous applications in agricultural research. It is
a non-contact and non-destructive approach that collects spectral and spatial information
from an object between the UV and IR regions. An extensive volume of information
can be generated utilising its high spectral resolution in recognising, classifying and
measuring target objects [1,2]. This is a widely used technique to study the quality [3–9],
diseases [10,11] and defects of agricultural products such as fruits and vegetables [12].

HS imaging is also widely used in the viticulture sector and the wine industry. In viti-
culture, HS imaging is used for determining phenolic contents in wine grapes [13,14], pre-
dicting sugar content of grapes [15], for the classification of grapevine varieties under field
conditions [16] and modelling water stress in the vineyard [17]. Different diseases [18,19]
of grapevine leaves can also be detected with the aid of HS imaging.

Along with other factors such as climate, temperature, light intensity, and water con-
tent of grapevine, healthiness and nutrient content of grapevine leaves play essential roles
in the production of high quality grapes [18–26]. The photosynthesis process produces food
for the plant to survive, and it is necessary for the production of sugar, and sugar-based
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elements in grapes [20]. Diseases such as powdery mildew [22,23], leafroll [18] and red
blotch disease [19], etc., are deleterious to the production of high-quality grapes. The
macro-nutrients, including nitrogen (N), potassium (K), and magnesium (Mg), are essen-
tial elements that impact vine growth, grape yield and wine quality [24–26]. Currently,
plant tissue or soil sampling, followed up with chemical analysis, informs on whether a
nutrient is deficient, adequate, luxurious or in toxic concentrations. Viticulturists can then
make informed decisions on the particular soil or plant amendments that are required
to correct these inadequacies. Unfortunately, these laboratory analyses are costly, may
take several days or weeks to process, and the results can be difficult to interpret. During
economic hardship, the frequency of plant tissue or soil analysis may be reduced or even
abandoned altogether. This may lead to the inappropriate and/or over-application of
fertilisers contributing to environmental issues such as leaching, run-off and increased
greenhouse gas emissions. Similarly, the incorrect diagnosis of diseases and pests can lead
to the inappropriate application and excessive use of pesticides leading to the contamina-
tion of soil, surface and groundwater. Accurate, simple and rapid tools are required so
that viticulturists can make timely and cost-effective decisions. HS imaging may be one
tool to fill this gap. Studies focused on HS imaging for diseases and nutrient deficiency
detection have been conducted on grapevines [18,19,27,28]. N. Bendel et al. [18] presented
a hyperspectral-based method where spectral pre-processing in combination with a ma-
chine learning model was used to detect leafroll-associated virus 1 and 3 in white and red
grapevine cultivars. In this literature, it was reported that the data were obtained from
plants that were grown both in control laboratory conditions and in the field during three
consecutive years.

H. Al-Saddik et al. [27] applied successive projection algorithms, machine learning
such as support vector machine learning and vegetation indices to detect vineyard disease
based on hyperspectral data. M. Mehrübeoglu et al. [19] obtained modified reflectance
data at 566 nm and 628 nm and modified reflectance ratios computed at 566 nm/628 nm
and 680 nm/738 nm. These features were then used to train a support vector machine
for detecting red blotch disease in grape leaves. There is no comparison study reported
concerning features of visibly healthy relative to unhealthy leaves using HS imaging in
order to study individual nutrient deficiencies in grapevines. The study will provide insight
into vine performance and decision support tools for improved vineyard management.
With this end goal in mind, this research work aims to extract a comprehensive set of
features from healthy and nutritional deficient grapevine leaves using an HS camera. In the
case of the preliminary healthiness study, the features of visibly unhealthy sample leaves
were compared to those that were healthy. For the nutrition deficiency study, features
of different nutrient-deficient leaves were compared with those of control leaves which
were grown in a controlled environment. Finally, a customised multiclass support vector
machine (SVM) technique was used to classify control, unhealthy leaves and individual
nutritional disorders (i.e., N, K and Mg). An SVM is a supervised machine learning model
that uses classification algorithms for two-group classification problems. The SVM is
related to the kernel function. The radial basis kernel (RBF) function is usually the first to
be considered. RBF function via non-linear transformation is used for mapping of samples
to a higher-dimensional feature space. Other competitive machine learning algorithms
such as logistic regression, K-nearest neighbour, and decision tree etc. did not provide
satisfactory results, especially to solve non-linear samples. Therefore, the SVM with RBF
provides the most suitable possibility to solve the nonlinear issue of the hyperspectral data.

Most research groups have used SVM classifiers to recognise a variety of leaf diseases
in crops such as maize [29], tomato [30], chilli [31], potato [32], wheat [33], grapes [34]
and rice [35] using red, green and blue (RGB) image data. The technique proposed in [36]
achieved almost 89.38% accuracy for corn leaves. This classification method only works
with a small number of samples as it is a tedious task to extract relevant features from a
large dataset. Therefore, this method [36] was not able to achieve high accuracy. A proba-
bilistic neural network (PNN) technique improved accuracy (i.e., 90.4%) [37]. However,
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the accuracy was decreased with an increased number of samples and it also increased
computational complexity. An adaptive weighting multiclass technique was proposed and
tested with seven common diseases, achieving 94.71% accuracy [38]. A combination of
an image processing method (i.e., Fisher discriminant and Retinex algorithms), principal
component analysis (PCA), and quantum neural network (QNN) provided the highest
accuracy (95.3%) for leaf disease classification [39]. These authors considered a smaller
number of training and testing samples related to diseases symptoms.

Usually grape growers use their own judgment to identify nutritional disorders. The
advantage of using HS imaging over human judgments is that the human eye cannot
perceive anything beyond the RGB spectrum, whereas some of the features in the proposed
method are based on UV and N.I.R. regions. Moreover, human judgment is also subject
to experience and varies from person to person. Thus, these features provide additional
metrics to distinguish healthiness from nutrition deficiency. The objectives of this paper
are to (i) distinguish features of visibly unhealthy leaves from a control leaf, (ii) distinguish
features of leaves with nutrient deficiencies from control leaves to detect the presence of
nutrient-deficient leaves as well as identify nutrient-deficient leaves individually (i.e., single
nutrient deficiency) and (iii) classify control and leaves with nutritional disorders by using
customised SVM algorithm. In this paper, a novel feature named the variation index
is proposed. It presents the deviation of a leaf’s reflectance with respect to a control
leaf. This index was utilised to conduct experiments related to unhealthy leaves and
nutrition deficiency.

The organisation of this paper follows this structure: Section 2 details the experimental
setup, Section 3 presents the proposed method with feature extractions and analysis
physical features, Section 4 provides the experimental results and Section 5 provides the
conclusion with the proposed future direction of this work.

2. Experimental Setup

In this experiment, ten samples were collected from potted grapevines located in
a temperature-controlled glasshouse at the National Wine and Grape Industry Centre
(NWGIC) research centre, Charles Sturt University (CSU), NSW, Australia. Subsequently
the chemical composition of the leaves were assessed at a commercial diagnostic laboratory.
Based on these results, leaves were grouped into four groups: four control, three potassium
deficient, three magnesium deficient and three nitrogen deficient leaves. Control leaves
represent healthy leaves as they contained full nutrition according to reference standards.
The nutrient information of control and nutrient-deficient leaves is presented in Table 1.

Table 1. Comparison of elemental concentration in nutrient deficient and control plants. Elemental
concentration is expressed as the percentage of dry matter in the leaf. K and Mg were analysed in the
petioles while N was analysed in the leaf blades.

Element of Interest Deficient Group Control Group p-Value

K deficiency
K% 0.3 ± 0.088 a 4.2 ± 0.998 b <0.0001

Mg deficiency
Mg% 0.1 ± 0.054 a 0.6 ± 0.059 b <0.0001

N deficiency
N% 1.1 ± 0.24 a 3.6 ± 0.24 b <0.0001

Values are averages of eight replicates ± SD. Different letters show significant differences between the treatment
group and the control group. Prism 8 (Graph Pad Software) was used for the statistical analysis. Significant
difference was determined by t-test, p values < 0.01 were considered to be significant.

Samples were scanned on the same day of collection to generate HS images by utilising
Resonon’s benchtop imaging machine which is presented in Figure 1a. It was comprised of
a Pika XC2 HS benchtop camera, mounting tower, linear translation stage, lighting system,
and an operating software known as SpectrononPro. The imager and stage were controlled
using the SpectrononPro v2.87 software (manufactured by Resonon, Bozeman, MT, USA).
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This software corrects for dark noise, illumination, and sensor response and provides
outputs in standard formats (.bil, .bip, .bsq). It presents spectrum information such as
mean spectrum, means first derivatives and means Z profile for scanned samples. Spectral
and spatial resolutions of Picka XC2 (i.e., HS imager) were 1.3 nm and 5.86 µm/pixel
respectively. The lighting system consisted of four high-intensity halogen lamps that
provide stabilised broad-band illumination across the entire measured spectra. Data were
collected one line at a time by the imaging spectrometers. This HS imager employed in this
study is Resonon’s highest precision device in the ~380–1000 nm wavelength range. An
example is shown in Figure 2, where a small portion of each leaf was selected to determine
the reflectance across the 380–1000 nm wavelength band. This wavelength range could
be divided into three regions: UV: ~380 nm to 400 nm, VIS: ~400+ nm to 700 nm and
N.I.R.:~700+ nm to 1000 nm.

The dark current and white reflectance data were collected for calibration. The
dark current information was obtained without a light source. White reflectance data
were collected by placing a reference material, i.e., a white Teflon sheet of dimension
300 mm × 150 mm × 4 mm on the lighted stage. SpectrononPro subtracts the dark current
noise and illumination phenomenon for calibration purposes. Afterward, the system re-
mained calibrated. Sample leaves were then placed on the reference material and scanned
for 10000 lines. SpectrononPro produced reflectance of images after removing dark current
and white reflectance data from scanned samples. The distance between the leaves and
the imager (i.e., the device which records images) was kept at ~57 cm according to the
camera manual. The frame rate, integration time, speed unit and scanning speed were set
as 62.04 Hz, 244.01 ms, linear and 0.07938 cm/s, respectively, to produce the best HS image
quality. Each leaf scan required approximately 5 min to generate an HS image file. They
were processed by SpectrononPro software. At first, both sides of the leaves were scanned,
but analysis suggested that there was not much difference in characteristics between the
upper and lower surfaces of the leaves for the proposed applications. Hence, the results
reported here are based on the upper surface of the leaves. It should be mentioned here that
we consider the region of interest (ROI) (e.g., a portion from the diseased area) masking
in our experiment, then the means are calculated for the spectra of each pixel for each
wavelength within the ROI. Subsequently, we consider an average across all the leaves
from one group to calculate mean spectra and subsequent features. The data cubes were
obtained by selecting the whole area of nutrient-deficient leaves using SpectrononPro
v2.87 software.

As nutrient information of these visibly healthy leaves was unknown, to find out a
benchmark leaf the mean first derivative reflectance of visibly healthy leaves was compared
with that of control leaves. It was found that the mean first derivative reflectance of the
tenth leaf from the shoot tip presented the best match to that of the control leaves. Figure
1c reveals that apart from different magnitudes of reflectance, the mean first derivative
reflectance of control and benchmark, i.e., the tenth leaves have similar curve shapes
indicating the benchmark leaf was a healthy one. Hence, the tenth leaf was chosen as a
benchmark leaf.



Remote Sens. 2021, 13, 3317 5 of 21
Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 23 
 

 

 

 

 
Benchmark leaf 

 

 
Control leaf 

 
Leaf with potassium defi-

ciency symptoms 

 
Leaf with magnesium defi-

ciency symptoms 

 
Leaf with nitrogen deficiency 

symptoms 

(a) Hyperspectral cam-
era 

(b) Samples of grapevine 
leaves 

(c) Mean first derivative spectra of control and benchmark 
leaves between ~675 nm and ~775 nm, showing the similarity 

between curve shapes of control and benchmark leaves. 

Figure 1. (a) Hyperspectral camera, (b) samples of grapevine leaves, including the benchmark leaf and (c) mean first de-
rivative spectra of control and benchmark leaves between ~675 nm and ~775 nm, showing the similarity between curve 
shapes of control and benchmark leaves. 

Figure 1. (a) Hyperspectral camera, (b) samples of grapevine leaves, including the benchmark leaf and (c) mean first
derivative spectra of control and benchmark leaves between ~675 nm and ~775 nm, showing the similarity between curve
shapes of control and benchmark leaves.



Remote Sens. 2021, 13, 3317 6 of 21

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 22 
 

 

Leaf with magnesium defi-

ciency symptoms 

 
Leaf with nitrogen deficiency 

symptoms 

(a) Hyperspectral cam-

era 

(b) Samples of grapevine 

leaves 

(c) Mean first derivative spectra of control and benchmark 

leaves between ~675 nm and ~775 nm, showing the similarity 

between curve shapes of control and benchmark leaves. 

Figure 1. (a) Hyperspectral camera, (b) samples of grapevine leaves, including the benchmark leaf and (c) mean first de-

rivative spectra of control and benchmark leaves between ~675 nm and ~775 nm, showing the similarity between curve 

shapes of control and benchmark leaves. 

 

Figure 2. Reflectance vs. wavelength (nm) for three control, Potassium (K), Magnesium (Mg) and 

Nitrogen (N) leaves. 

The dark current and white reflectance data were collected for calibration. The dark 

current information was obtained without a light source. White reflectance data were col-

lected by placing a reference material, i.e., a white Teflon sheet of dimension 300 mm x 

150 mm x 4 mm on the lighted stage. SpectrononPro subtracts the dark current noise and 

illumination phenomenon for calibration purposes. Afterward, the system remained cali-

brated. Sample leaves were then placed on the reference material and scanned for 10000 

lines. SpectrononPro produced reflectance of images after removing dark current and 

white reflectance data from scanned samples. The distance between the leaves and the 

imager (i.e., the device which records images) was kept at ~57 cm according to the camera 

manual. The frame rate, integration time, speed unit and scanning speed were set as 62.04 

Hz, 244.01 ms, linear and 0.07938 cm/s, respectively, to produce the best HS image quality. 

Each leaf scan required approximately 5 min to generate an HS image file. They were 

processed by SpectrononPro software. At first, both sides of the leaves were scanned, but 

analysis suggested that there was not much difference in characteristics between the up-

per and lower surfaces of the leaves for the proposed applications. Hence, the results re-

ported here are based on the upper surface of the leaves. It should be mentioned here that 

we consider the region of interest (ROI) (e.g., a portion from the diseased area) masking 

Figure 2. Reflectance vs. wavelength (nm) for three control, Potassium (K), Magnesium (Mg) and
Nitrogen (N) leaves.

3. Materials and Methods

At first, we developed nutritional deficiency symptoms in a controlled environment.
Then, we captured hyperspectral images and extracted a number of features for our analysis.
Those features are normally determined by the average value from a region of leaves in a
given spectral band as well as correlation in different bands. Thus, most of the features
we used have somehow exploited spectral and spatial dimensions. The rationale of each
feature metric, their meaning, and implementations of the values are also provided in
the following sub-sections. Section 3.1 describes the development of nutrient deficiency
symptoms and benchmark data, Section 3.2 presents the comparison study between visibly
healthy and unhealthy leaves, Section 3.3 explains the feature extractions with relevant
experimental results and Section 3.4 describes the SVM classification technique.

3.1. Development of Nutrient Deficiency Symptoms and Benchmark Data

This study was undertaken at the National Wine and Grape Industry Centre (NWGIC),
Charles Sturt University (CSU), Wagga Wagga, New South Wales (NSW) 2650, Australia.
One-year-old dormant cuttings of Vitis vinifera cv. Shiraz were rooted for five weeks and
planted in 2.5 L pots containing perlite and established in a glasshouse with 25 ◦C day
and 15 ◦C night temperatures. The vines were arranged in a randomised block design
with eight replicates and fertigated with specific nutrient solutions, where one was a full
nutrient treatment (control) based on modified half-strength Hoagland’s solution [40] and
the others were the same nutrients, except, potassium (K), magnesium (Mg) and nitrogen
(N) were eliminated in K-deficient, Mg-deficient and N-deficient solution, respectively.
The contents of calcium (Ca), potassium (K), magnesium (Mg), phosphorus (P), sulphur
(S), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo) and zinc (Zn) of dried
petiole samples collected at the 10-leaf stage from eight replicate plants were assessed by
ICP-OES at a commercial diagnostic lab (Charles Sturt University, Wagga Wagga, NSW).
Nitrogen was determined on a 50-mg dried and ground sample of the leaf blade with a
VarioMAX combustion analyser (Elementar, Hanau, Germany). The K, Mg and N content
of the tissues are presented in Table 1. All the other nutrients were in the adequate range
and averaged at 3.61% Ca, 0.33% P, 0.17% S, 18 ppm B, 11 ppm Cu, 47 ppm Fe, 85 ppm Mn,
8 ppm Mo and 42 ppm Zn. Images were collected from matured leaves (fully expanded),
young leaves separately from Shiraz and Chardonnay for N, K, Mg deficiencies.

The obtained data of both control leaves and nutrient-deficient leaves were then aver-
aged. This study is reported in terms of mean spectral ratio, normalised difference vegeta-
tion index (NDVI), mean first derivative reflectance, SD of reflectance and variation index.
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3.2. Comparison Study between Visibly Healthy and Unhealthy Leaves

This section presents the comparison study of features for the nine visibly unhealthy
leaves with respect to the benchmark leaf (Figure 1b). Figure 3a presents an unhealthy leaf
with white spots and a few brown spots. The data cubes were obtained for the whole area
and selective areas of leaves to probe the best selection method for distinguishing healthy
and unhealthy leaves. Samples of the whole and selective areas’ leaves are presented
in Figure 3b,c. The other eight visibly unhealthy samples are shown in Figure 4. The
characteristics features of healthy and unhealthy leaves were studied and compared base
on mean first derivative reflectance, mean spectral ratios and variation index.
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3.3. Proposed Feature Extractions and Analysis of Physical Features

Two classification schemes were used to assess the captured hyperspectral images.
To distinguish healthy from unhealthy leaves a binary classification system was used
with the following extracted features: mean first derivative reflectance (Section 3.3.1),
mean spectral ratios (Section 3.3.2) and variation index (Section 3.3.3). Using a multiclass
classification system, the second set of the extracted features to distinguish individual
nutritional deficiencies include: mean the first derivative (Section 3.3.4), mean spectral
ratios (Section 3.3.5), normalised difference vegetation index (Section 3.3.6), standard
deviation (Section 3.3.7) and variation index (Section 3.3.8).

3.3.1. Mean First Derivative Reflectance for Binary Classification

Mean first derivative of reflectance was considered to distinguish between visibly healthy
and unhealthy leaves. It was found that between the ~380 nm and ~675 nm region, other than
changes in the magnitude of mean first derivative reflectance, no remarkable information
could be obtained for distinguishing between benchmark and the whole area or selective area
of unhealthy leaves. Therefore, the first derivative reflectance of healthy and unhealthy leaves
between ~380 nm and ~675 nm region are not presented in this manuscript.

Figure 5 presents the mean first derivative of the reflectance of healthy (benchmark
leaf), and unhealthy (whole and selective areas) leaves between ~675 nm to ~775 nm. This
figure demonstrates that the mean first derivative reflectance in the N.I.R. wavelength
range is higher for unhealthy leaves compared to the benchmark leaf across the entire
leaf surface. Narrowing of the reflectance curves for unhealthy leaves is evident for the
whole area compared to the benchmark leaf. A shorter wavelength shift of the peak is also
observed for unhealthy leaves compared to benchmark leaves. Reflectance is insensitive
to changes in chlorophyll content but sensitive to internal leaf structure, water content,
structural compounds and altered internal mesophyll structure [41,42] as in the case of the
formation of necrotic areas due to tissue decay. Therefore, the deviation of the mean first
derivative reflectance curves of unhealthy leaves compared to the benchmark leaf could be
due to these differences in internal leaf structures.
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leaves in the 650 nm to 800 nm range to compare the curve pattern of healthy and unhealthy leaves.

The magnitude of the mean first derivative reflectance for the selective leaf area is
lower than the whole leaf surface, though the characteristic curves are similar in appearance.
For the case of the selective areas, these were selected based on visible spots or defective
regions. Therefore, the characteristic features of only visibly defective areas were obtained.
In contrast, for the whole area case, the entire surface of the leaf was selected regardless of
visible defects. As a result, the features of both visible and nonvisible defective areas were
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acquired. Therefore, the selective areas case probes notable features compared to the whole
area case and the results of the whole area case are presented afterward.

For most of the unhealthy leaves, similar characteristic curves to Figure 4, such as
narrowing and a shift towards shorter wavelengths were observed. It was found that a
sharp transition from low to high reflectance usually occurs in the wavelengths between
the VIS and N.I.R. regions, and this transition usually shifts to shorter wavelengths in
diseased crops [42]. The wavelength where this transition occurs can be observed in the
first derivative reflectance curves, as presented in Figure 5. Hence, this deviation of the
first derivative reflectance curve shapes could be due to the brown spots in unhealthy
leaves. Analysis of the experimental data confirms that the mean first derivative reflectance
parameter could distinguish the healthy and most (though not all) unhealthy leaves in the
N.I.R. region but not so efficiently in the U.V. and VIS regions.

3.3.2. Mean Spectral Ratios for Binary Classification

To highlight the comparison between healthy and different unhealthy leaves in all
three regions (U.V.: ~380 nm to 400 nm, VIS: ~400+ nm to 700 nm and N.I.R.: ~700+ nm to
1000 nm), the mean reflectance spectra for all the unhealthy leaves were each divided by
the mean reflectance spectrum of the representative healthy leaf to obtain mean spectral
ratios, i.e., the benchmark leaf (Figure 5) between ~380 nm and 1000 nm. Unhealthy leaves
with many small white and few brown spots and unhealthy leaves with few brown spots
exhibit almost similar ratio curve trends from ~380 nm to 1000 nm as per Figure 6a. In this
figure, the reflectance ratio is higher for unhealthy leaves with few brown spots than that
of unhealthy leaves with many small white and few brown spots.

From Figure 6b it can be surmised that unhealthy leaves with several large brown
spots and unhealthy leaves with brownish regions have almost similar ratio curves. The
reflectance ratio of an unhealthy leaf with several large brown spots is more notable than
an unhealthy leaf with brownish regions between the wavelength range ~491 nm and
~825 nm. After 825 nm, the reflectance ratio is higher for the unhealthy leaf with brownish
regions than the unhealthy leaf with several big brown spots.

Figure 6c compares an unhealthy leaf with brown spots and holes with an unhealthy
leaf with brownish regions and holes and shows similarly shaped ratio curves. The
reflectance ratio of the former is higher than the latter in the ~400 nm and 1000 nm
wavelength range.

From Figure 6d, it can be stated that for whole leaf surface cases, the unhealthy leaf
with brown and yellowish regions and unhealthy leaf with many large brown regions have
similar ratio curves with higher ratio values for the latter between ~570 nm to 1000 nm.
Between ~400 nm and ~570 nm, the ratio value is higher for unhealthy leaves with brown
and yellowish regions than that of an unhealthy leaf with many large brown regions. On
the other hand, for the unhealthy leaf with brown regions and many small brown spots,
the ratio curve is similarly shaped to unhealthy leaves with brown and yellowish regions
and unhealthy leaf with many large brown regions between ~603 nm and 1000 nm. From
~400 nm to ~603 nm the unhealthy leaf with brown regions and many small brown spots
ratio curves are different from unhealthy leaves with brown and yellowish regions and
unhealthy leaf with many large brown regions as well as curves of other unhealthy leaves.
Figure 6 indicates that the mean reflectance ratios’ plots could be used to classify different
leaf disorders in future work.
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Figure 6. Mean spectral ratios of different unhealthy leaves (whole area) to benchmark leaf to compare the change in the
curve shape of unhealthy leaves with respect to a healthy benchmark leaf. (a) Unhealthy leaves with many small white
and few brown spots and unhealthy leaves with few brown spots exhibit almost similar ratio curve trends from 380 nm to
1000 nm (b) unhealthy leaves with several large brown spots and unhealthy leaves with brownish regions have almost
similar ratio curves between the wavelength range 491 nm and 825 nm. (c) the similar shaped ratio curves of unhealthy
leaf with brown spots and holes with an unhealthy leaf with brownish regions and holes in the ~ 400 nm and 1000 nm
wavelength range. (d) The unhealthy leaf with brown and yellowish regions and unhealthy leaf with many large brown
regions have similar ratio curves with higher ratio values for the latter between ~ 570 nm to 1000 nm.

3.3.3. Variation Index for Binary Classification

For a further study, a proposed novel parameter, variation index (vi) was defined from
the standard deviation (SD) of reflectance as Equation (1):

vi =

(
σbenchmark lea f − σi

)
× 100

σbenchmark lea f
% (1)

where vi is the variation index of the ith healthy or unhealthy leaves with respect to the
benchmark leaf. σ is the average value of SD of the benchmark leaf and σi is the average
value of SDs of the ith healthy or unhealthy leaves.

In the study, the reflectance values obtained for each pixel at each wavelength aver-
aged over the region of interest for each separate wavelength were used. To calculate the
variation index, in the N.I.R., the average value of SD was calculated from the reflectance
values by selecting the entire N.I.R. (~701 nm to 1000 nm) region for benchmark leaf, four
healthy leaves and nine unhealthy leaves individually. Hence, the obtained SD for individ-
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ual leaves was the averaged value of SD in the N.I.R. region. Then, the average values of
SDs of the benchmark and four different healthy leaves were inserted in Equation (1) to ob-
tain the value for variation index for four healthy leaves individually. The same procedure
was applied for unhealthy leaves to obtain a variation index of nine unhealthy leaves.

Figure 7 demonstrated the variation index (vi) of healthy and unhealthy leaves in the
N.I.R. region (700+ nm to ~1000 nm) where error bars were used to distinguish unhealthy
leaves from healthy leaves. As in the previous study, the benchmark leaf was considered
as the reference healthy leaf. From Equation (1) it can be stated that the variation index
indicates the percentage of the average value of SDs of reflectance of healthy and/or
unhealthy leaves differ with respect to the average value of SD of the benchmark leaf.
Figure 7 demonstrates that healthy leaves have vi indexes closer to the benchmark leaf,
whereas, unhealthy leaves have a higher vi index value at the N.I.R. region, indicating
the difference between healthy and unhealthy leaves. Variation indexes for healthy and
unhealthy leaves were also calculated using a similar procedure in the UV and VIS regions.
However, no such prominent patterns were observed for unhealthy and healthy leaves in
the UV and VIS regions (not presented in this manuscript).
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3.3.4. Mean First Derivative Reflectance for Multiclass Classification

From Figure 8, it can be stated that the ~700 nm derivative peaks are dominant in leaves
with nutrient deficiencies, and these results are supported by published findings [43,44].
Narrowing of the first derivative reflectance peak can also be observed for the nutrient-
deficient leaves compared to control leaves. The midpoint of this broadened peak is at
~ 708 nm for control leaves. This broadening and narrowing of first derivative peaks for
control and nutrient-deficient leaves respectively could be due to the amount of chlorophyll
content in the leaves. In this region, the first derivative peak magnitude is ~15%, ~ 9% and
7% higher for N-, K- and Mg-deficient leaves respectively in comparison to control leaves.
From Figure 8, it can also be observed that in this wavelength range the first derivative
peak of nutrient-deficient leaves has shifted to the shorter wavelength (redshift) compared
to the control leaves. It was reported that this shift occurs if vegetation is exposed to low
nutrients or environmental stress [43]. No notable curve pattern (broadening or narrowing)
of the mean first derivative reflectance was found in the ~380 nm to ~675 nm range to
distinguish control and nutrient-deficient leaves.

The mean first derivative reflectance shift can further be studied by using the HS
derivative ratio in the boundary between the region of the strong absorption of red light by
chlorophyll (~680 nm) and the region of high multiple scattering of radiation (~750 nm) [43].
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From the first derivative ratio plot of Figure 9, it can be observed that this first derivative
ratio is positive for control leaves and negative for nutrient-deficient leaves. Furthermore, the
ratio values are ~62%, ~47% and ~37% for N, K and Mg in the negative direction, respectively.
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3.3.5. Mean Spectral Ratio for Multiclass Classification

The mean spectral ratio was applied to distinguish features of specific nutrient-
deficient leaves with that of control leaves by calculating the reflectance ratios of these
different leaf types between 380 nm and 1000 nm. The ratio between the reflectance of
nutrient-deficient leaves and that of control leaves is plotted in Figure 10. It can be observed
that the shapes of the curves for K- and Mg-deficient leaves are similar, but the magnitude
of the spectral ratio of Mg-deficient leaves is lower than that of K-deficient leaves. The
curve shape of N-deficient leaves is quite different from those of K -and Mg-deficient leaves.
There are peaks between ~650 nm and ~750 nm for N-, Mg- and K-deficient leaves. In
this wavelength region peaks at ~693 nm, ~680 nm and ~663 nm were evident for N-, Mg-
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and K-deficient leaves, respectively. It is also apparent that the magnitude of these peaks
at the wavelengths mentioned above is ~3.3, ~2.5 and ~3 times higher for N-, Mg- and
K-deficient leaves compared to the control leaves. From the literature it is apparent that
many mineral deficiencies cause modifications in the reflectance of leaves compared to the
control specimens [45].
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3.3.6. Normalised Difference Vegetation Index for Multiclass Classification

A well-known parameter, the normalised difference vegetation index (NDVI), was
applied [41,46] to distinguish features of control and nutrient-deficient leaves. This index
describes vegetation by measuring the difference in reflection between near-infrared (which
vegetation strongly reflects) and red light (which vegetation absorbs). NDVI always ranges
from −1 to +1 where positive values indicate vegetated areas and negative values signify
non-vegetated surface features such as water, barren, clouds, and snow. A higher positive
value of NDVI refers to healthy and dense vegetation [41]. A number between −1 and 0
suggests an inanimate or dead object, such as roads, buildings, or dead plants. An NDVI
plant health rating between 0 and 0.33 indicates unhealthy or stressed plant material, 0.33
to 0.66 is moderately healthy, and 0.66 to 1 is very healthy [46]. It is defined as

NDVI =
N.I.R. − RED
N.I.R. + RED

(2)

The NDVI is calculated for individual images by the following Equation (2), where
RED and N.I.R. stand for the spectral reflectance measurements acquired in the RED and
near-infrared regions, respectively.

In this NDVI study, an average reflectance value was calculated for the entire RED
(~625 nm–~699 nm) range for each control leaf. These averaged values of RED were further
averaged to produce a final value for all the control leaves in the RED range to obtain RED
reflectance. Similar procedures were followed for the N.I.R. (~701 nm to 1000 nm) region.
Applying the same method, the RED and N.I.R. reflectance for K-, Mg-, and N-deficient
were calculated.

From NDVI values of Figure 11, it can be observed that they are higher for control
leaves than those of nutrient-deficient leaves. These values indicate that control leaves are
healthier than leaves with N, K and Mg deficiencies. It is also aparent that the NDVI values
for leaves with N, K and Mg deficiencies are not notably different from each other.
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Figure 11. A plot of NDVI for control and different nutrient-deficient leaves to distinguish control
and different nutrient-deficient leaves.

3.3.7. Standard Deviation for Multiclass Classification

The standard deviations (SD) of reflectance were also studied to distinguish features of
control and nutrient-deficient leaves (Figure 12). The SDs were calculated for UV (~380 nm
to ~400 nm), VIS (+400 nm to ~700 nm) and N.I.R. (+700 nm to 1000 nm) with the average
separation of ~2.5 nm between adjacent wavelengths. Figure 12 corroborates that the SD of
control leaves in the UV range has the lowest value compared to those of nutrient-deficient
leaves. This value is highest for N-deficient leaves with respect to control, K and Mg-
deficient leaves. However, the difference of this SD value between K- and Mg-deficient
leaves is ~100.
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Figure 12. A plot of SD of control and different nutrient-deficient leaves in UV, VIS and N.I.R. regions,
representing the difference between control and nutrient-deficient leaves in different wavelength regions.

In the VIS region (Figure 12), control leaves have the lowest SD value compared to
different nutrient-deficient leaves. Here N-deficient leaves have the highest value among
these leaves. The difference between SD of K and Mg is 600 in the VIS region. This
difference value is higher in the VIS region compared to UV.
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In contrast to the UV and VIS regions, in the N.I.R. region the SD value is higher for
control leaves than those of nutrient-deficient leaves (Figure 12). In this region, this value was
also found to be the lowest for Mg-deficient leaves compared to the K and N counterparts.
Here the SD values of N, Mg and K are close to each other. The difference of SD values
between N and Mg, N and K, and K and Mg were found to be 100, 300 and 400, respectively.

3.3.8. Variation Index for Multiclass Classification

The variation index vi (Equation (1)) was also applied to distinguish leaves of different
nutrient deficiencies individually. This index indicates how much the SDs of the reflectance
from nutrient-deficient leaves deviate from the control leaves. In this case, σbenchmark
represents the SD of control leaves, and σi represents the SDs of individual nutrient-
deficient leaves. Figure 13 presents the variation index of nutrient-deficient leaves with
respect to control leaves. The negative value of the variation index (Figure 13) indicates that
the values of SDs of nutrient-deficient leaves were higher in the UV (~ 380 nm to 400 nm)
and VIS (~400+ nm to 700 nm) regions than that of the control leaf. On the other hand, the
positive value of the variation index for nutrient-deficient leaves in the N.I.R. (700+ nm to
~1000 nm) region indicates that the SDs were lower than that of the control leaf.
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Figure 13. Variation index (vi) of leaves in the U.V., VIS and N.I.R. regions for distinguishing control
and different nutrient-deficient leaves.

From Figure 13, it can be surmised that vi values are ~60%, ~21% and ~16% higher for
leaves with N, Mg and K deficiencies respectively in the negative direction in the UV region.
This phenomenon indicates that the SD of leaves with a nutrient deficiency is higher than
that of the control leaves. In the case of the VIS region (Figure 13), it can be observed that vi
values deviate ~31%, ~8% and ~15% for leaves with N, Mg and K deficiencies respectively
in the negative direction, indicating that vi of nutrient deficient leaves is higher than that
of the control leaves. Furthermore, it can be obtained in Figure 13 that in N.I.R. region vi
values deviate ~38%, ~44% and ~27% for leaves with N, Mg and K deficiencies respectively
in the positive direction, indicating that here vi of leaves with a nutrient deficiency is lower
than that of control leaves. Table 2 presents different essential features and corresponding
values for enabling classification to distinguish healthy and nutrient-deficient leaves.

3.4. SVM Classifier and Performance Evaluation Matrix

An SVM is a supervised machine learning model that uses classification algorithms for
two-group classification (i.e., binary) problems. After giving an SVM model a set of labelled
training samples for each category, they can categorise new samples. In the first experiment,
there were two class classes (i.e., control and unhealthy leaves). For the second experiment,
there were four classes (i.e., N, K, Mg disorders and control). Therefore, we customised the
SVM in such a way that it can classify binary/multiple classes. The radial basis function
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kernel (RBF) is usually the first kernel function to be considered. RBF function is used to
transformation mapping of samples to a higher-dimensional feature space; therefore, it
provides the possibility to solve the nonlinear problem of the samples.

Table 2. Summary of features for comparison study between control and individual nutrient-deficient leaves.

Feature Control N Mg K Remark

NDVI
High Lowest Moderate Moderate Can be an excellent feature to distinguish control from

nutrient-deficient leaves. However, individual nutrient
deficiencies may not be uniquely identified.0.75 0.35 0.45 0.42

Variation index (vi) in
UV region

- High Lower Lowest Could be used as a feature to distinguish N deficiency
from K and Mg deficiencies. However, K and Mg

deficiencies may not be uniquely identified.59 21 15

Variation index (vi) in
N.I.R. region

- Moderate High Low Could be used as a feature to distinguish K deficiency
from N and Mg deficiencies. However, N and Mg

deficiencies may not be uniquely identified.37 44 27

Ratio (Control
/Nutrient Deficiency)

-
Highest at
~617 nm

Low
at ~617 nm

Moderate at
~617 nm Could be used as a feature to identify individual

nutrient deficiencies.
3.7015 2.16636 2.743

SD in
UV region

Lowest High Moderate Moderate Could be used as a feature to identify control leaves.
May also be used for detection of N-deficiency.~1500 ~2300 ~1800 ~1700

SD in VIS region
Lowest Highest Low Moderate Could be used as a feature to identify control and an

individual nutrient deficiency.~1000 ~4100 ~2000 ~2600

SD in N.I.R. region
Highest Lower Low High

Could be used as a feature to detect control leaves.
~2200 ~1300 ~1200 ~1600

The first derivative
ratio between 680 nm

and 750 nm

Positive
direction

Negative
direction

Negative
direction

Negative
direction Could be used as a feature to identify control and an

individual nutrient deficiency.
~30% ~62% ~37% ~47%

Moreover, the RBF kernel function is only one parameter, while the polynomial kernel
function and Sigmoid parameters have more than the RBF kernel function, and this will
become more complex in model selection. Therefore, this paper chose the RBF kernel
function. Furthermore, we used a cross-validation approach to avoid the bias of the
training and testing samples. First, the dataset was shuffled randomly and split it into three
groups equally. Then, a group was assigned as testing data and the remaining two groups
as training data. Subsequently, the SVM model was fit to the training set and evaluated on
the testing set. The evaluation score was retained and the model was discarded. Similar
experiments were conducted for each unique group. Then, the performances of the model
were summarized.

Each extracted feature, as described in Section 3 and Table 2 (only values), such as
the mean first derivative reflectance (wavelength rang 675 nm–775 nm), variation index
(700 m–1000 nm) and so on, were considered for training the SVM. Before training the
SVM, however, feature scaling was used to bring all values into the [0,1] range to generalise
and restrict the range of values. Cross-validation is a common solution when the available
datasets are limited [47]. Therefore, to distinguish between a healthy and unhealthy leaf,
we considered two healthy leaves and six unhealthy leaves (two leaves from each group)
for training the SVM and the remaining four were used for testing. This procedure was
repeated three times to implement cross-validation and the performances were noted. A
similar procedure was implemented to identify each nutrient deficiency and control leaf
for four classes (i.e., Control, K, Mg and N).
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To evaluate the overall performances of the proposed technique, we tested evaluation
metrics (e.g., precision, recall and F measure). The precision, recall and F measure can be
defined by the Equations (3)–(5) [34,48,49]

Precision =
Tp

Tp + Fp
(3)

Recall =
Tp

Tp + Fn
(4)

F measure = 2 × Precision × Recall
Precision + Recall

(5)

where Tp (i.e., true positive), Fp (i.e., false positive) and Fn (i.e., false negative) are the
values of the actual class (i.e., tissue testing result) as indicated by a specific symptom (or
control) and the value of the predicted class is also indicated by the same symptom (or
control), the value of the actual class is not indicated by any symptom and the value of
the predicted class is indicated by a symptom, the value of actual class not indicated by a
specific symptom and the value of the predicted class is not indicated by any symptom.
However, either precision or recall alone cannot provide a good indication of a perfect
measurement [34]. To be an effective and robust method, it must achieve both high
precision and recall. The F measure is defined as combining precision and recall, and is
represented by Equation (5).

Matrix Laboratory (MATLAB) 2019b and SpectrononPro (i.e., python language) soft-
ware were used to perform the experiment. Training the model is very computationally
intensive. Therefore, all the experiments are carried out on a dedicated desktop machine
DELL OPTIPLEX 9020 (with Intel (R) Xeon (R) E-2124 CPU@ 3.30 GHz (4CPUs), 3.30 GHz
32 GB RAM and 500 GB HDD) running 64-bit Windows 10 operating system.

4. Experimental Results
4.1. Comparison Study between Visibly Healthy and Unhealthy Leaves

Leaf samples were divided into two groups to distinguish between healthy and
unhealthy leaves. The first group contained leaves that were visibly unhealthy, and features
of these leaves were compared with those of visibly healthy leaves (i.e., benchmark leaf).
The variation of curve shapes was highly distinguishable for whole leaf area assessment
but less for selective leaf area assessment. Furthermore, the ratio analysis confirmed that
for the whole leaf case, comparably more notable curves were apparent. The variation
index feature could also identify defective leaves effectively.

4.2. Comparison between Control and Individual Nutrient-Deficient Leaves

The second group of grapevine leaves was incorporated in our analysis to extend
our understanding of specific nutrient deficiencies in leaves. These leaves had N, K or
Mg deficiencies individually. The features of these leaves were studied relative to those of
control leaves and were also compared with each other.

The ratio of the reflectance of nutrient-deficient to control leaves can be used to
differentiate N-deficient leaves from K- and Mg-deficient leaves. Furthermore, results
suggest that NDVI values could differentiate control and nutrient-deficient leaves, though
N, K and Mg deficiencies could not be identified uniquely.

The features of nutrient-deficient leaves between ~650 nm to ~775 nm of first derivative
peaks compared to the control leaves could be useful to distinguish between control and
nutrient-deficient leaves. Attributes such as a dominant peak at ~700 nm, narrowing of
mean first derivative reflectance peaks and first derivative peaks shifted to the shorter
wavelength (redshift) are noteworthy.

Mean first derivative reflectance ratio plots between 680 nm and 750 nm could be
employed to distinguish control, and nutrient-deficient leaves as this ratio is positive for
control leaves and negative for nutrient-deficient leaves. Furthermore, the magnitude of
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this ratio of different nutrient-deficient leaves could be utilised to identify leaves with N, K
and Mg deficiencies.

The study of SD in the UV, VIS and N.I.R. wavelength regions state that this feature
could be used to distinguish control and individual nutrient-deficient leaves as different
SD values were obtained for N, K and Mg deficiencies.

Additionally, N and K deficiencies could be identified from the variation index analysis
in the N.I.R. wavelengths, respectively.

4.3. Experimental Result by Using SVM Algorithm

The performance of the SVM algorithm by using the proposed feature extraction
technique is shown in Table 3. This table shows that the precision, recall and F measure is
100% for both the binary and multiclass classification results for the control leaves. For the
unhealthy leaves, the F measure performance is 98.14% on average, whereas the overall
performance is 98.57% on average. On the other hand, the F measure performance of the
multiclass algorithm is 100% for the control and 90.92% nutrient disorder leaves on average.
The average F measure is 93.19% which represents the overall performance of the proposed
technique. If we can increase the training and testing samples, the performances of the
proposed technique may increase.

Table 3. Performance analasis using the SVM algorithm.

Control Unhealthy
Avg. F

Measure (%)
(Binary)

Control Nitrogen Magnesium Potassium
Avg. F

Measure (%)
(Multiclass)

Precision 100 100 100 100 100 83.33

Recall 100 91.67 98.57 100 83.33 83.33 100 93.19

F Measure
(%) 100 97.14 100 90.92 90.92 90.92

Furthermore, a confusion matrix (Figure 14, (a) binary and (b) multiclass) was used
to visualise the performances of the proposed technique. A confusion matrix summary
is presented of the number of samples correctly and incorrectly identified and separated
into each class with a number, where the diagonal and off-diagonal elements represent
correctly and incorrectly identified samples respectively. It should be mentioned here that
we are presenting only one group of experimental results and the average result of three
iterations is shown in Table 3.
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5. Conclusions and Future Work

This paper presents an experimental comparative study of healthy and unhealthy
grapevine leaves and individual nutrient-deficient leaves utilising an HS camera in the UV,
VIS and N.I.R. wavelength ranges (~380 nm to 1000 nm). It suggests that this technology
could be efficiently employed to obtain reliable results in this domain. Features such as
reflectance ratio, mean first derivative reflectance, variation index, mean spectral ratio,
normalised difference vegetation index (NDVI) and standard deviation (SD) were applied
in this study.

From the analysis it was found the mean first derivative reflectance curve shape
between ~675 nm and ~775 nm and the variation index in the N.I.R. region can differentiate
healthy from unhealthy leaves. In contrast, mean spectral ratios can be used as a tool to
classify the individual nutritional disorders.

Features such as NDVI, mean first derivative reflectance from ~675 to ~775 nm, and
SD in the N.I.R. region can also be applied as features to distinguish between control
and nutrient-deficient leaves. The ratio reflectance between control and nutrient-deficient
leaves can be used to identify an individual nutrient deficiency. Moreover, the variation
index in the N.I.R. region can be a feature to distinguish K deficiency from N and Mg
deficiencies. Control and an individual nutrient deficiency can be identified with the aid
of SD in the VIS region and first derivative reflectance ratio (680 nm: 750 nm). To identify
N-deficiency, SD in the UV region can be applied. If required, a vineyard-specific database
of control leaves may be created following confirmation with chemical tissue analysis.
However, ideally, this step will not be required if regional and cultivar-specific databases
are assembled and made freely accessible.

In the future we envisage analysing all or most of the micro and macronutrients that
grapevines require including but not limited to:

Micro-nutrients: copper (Cu), iron (Fe), manganese (Mn), boron (B), chlorine (Cl);
Macro-nutrients: calcium (Ca), oxygen (O), sulphur (S), phosphorus (P), carbon (C).
The results presented here are based on leaves obtained from glasshouse plants grown

under controlled conditions. Further field-based trials using vines grown under diverse
environmental stresses are required to extend these findings to practical scenarios. This
will allow the implementation of new viticultural management strategies that are not only
based on chemical tissue analyses but also HSI so that the appropriate fertilisers and soil
amendments can be applied in a timely fashion. A hand-held, tractor mounted or airborne
tool with the capability of a highly accurate diagnosis, even prior to visual symptom
appearance, will be ideal for timely treatment. This can be achieved on a single vine basis
through HSI so that localized treatments can be applied. This precision will reduce the
overall quantity of agrichemicals required and thus will lead to more sustainable vineyard
management and environmental protection. Repeated plant tissue assessments over the
course of the season will also mean that corrective action can be taken rapidly so that yield
and quality losses are curtailed or even prevented. With advances in the processing and
analyzing of hyperspectral imagery, this technique can eventually be extended to practical
applications that are flexible and cost-effective.
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