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Abstract: Cambiophagous insects, fires and windthrow cause significant forest disturbances, gen-
erating ecological changes and economical losses. The bark beetle (Ips typographus L.), inhabiting
coniferous forests and eliminating weakened trees, plays a key role in posing a threat to tree stands,
which are dominated by Norway spruce (Picea abies) and covers a large part of mountain areas, as well
as the lowlands of Northern, Central and Eastern Europe. Due to the dynamics of the phenomena
taking place, the EU recommends constant monitoring of forests in terms of large-area disturbances
and factors affecting tree stands’ susceptibility to destruction. The right tools for this are multispectral
satellite images, which regularly and free of charge provide up-to-date information on changes in the
environment. The aim of this study was to develop a method of identifying disturbances of spruce
stands, including the identification of bark beetle outbreaks. Sentinel 2 images from 2015–2018 were
used for this purpose; the reference data were high-resolution aerial images, satellite WorldView 2, as
well as field verification data. Support Vector Machines (SVM) distinguished six classes: deciduous
forests, coniferous forests, grasslands, rocks, snags (dieback of standing trees) and cuts/windthrow.
Remote sensing vegetation indices, Multivariate Alteration Detection (MAD), Multivariate Alteration
Detection/Maximum Autocorrelation Factor (MAD/MAF), iteratively re-weighted Multivariate
Alteration Detection (iMAD) and trained SVM signatures from another year, stacked band rasters
allowed us to identify: (1) no changes; (2) dieback of standing trees; (3) logging or falling down of
trees. The overall accuracy of the SVM classification oscillated between 97–99%; it was observed that
in 2015–2018, as a result of the windthrow and bark beetle outbreaks and the consequences of those
natural disturbances (e.g., sanitary cuts), approximately 62.5 km2 of coniferous stands (29%) died in
the studied area of the Tatra Mountains.

Keywords: Sentinel-2; forest mapping; remote sensing indices; Multivariate Alteration Detection
(MAD); Maximum Autocorrelation Factor (MAF); iteratively re-weighted Multivariate Alteration
Detection (iMAD); biological invasions; Ips typhographus

1. Introduction

Due to the rapid growth of biomass and low requirements of a habitat, Norway
spruce (Picea abies) has played a leading role in forestry in the European mountain areas
since the 18th century; for this reason, it was often planted in places inconsistent with
its habitat, i.e., where deciduous and mixed forests previously grew [1,2]. The flat and
horizontally developed root system of Picea abies prefers a cool and humid climate, not
tolerating soil dryness and overheating [1]. However, with the aging of the stand, Picea abies
becomes susceptible to attacks by insects (mainly spruce bark beetle Ips typhographus) and
fungi [3,4]. In addition, progressive climate changes, manifested by higher air temperatures
and reduced rainfall, allows Ips typographus to start reproducing earlier, reaching more
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generations annually [5]. In the years of 1958–2001, when the climate warmed by 0.13 ◦C
per decade, the growth of forests covered by bark beetle gradations grew on average by
5.31% per year. The most intense dieback of Picea abies trees occurred in the years with
low rainfall in spring and summer and high average annual temperature [6]. All these
factors indicate that much more frequent and severe outbreaks of cambiophagous insects
can be found in spruce forests. Nevertheless, it should be emphasized that the insects
are naturally occurring to eliminate weakening spruce trees from their stands [4], and the
outbreaks are a natural process that inhibits the expansion of spruce beyond its optimal
climatic range [3].

The spruce bark beetle (Ips typographus) is an insect of the Scolytinae subfamily in the
Curculionidae family. Adult beetles are 4–6 mm long and 2 mm wide, and are brown–black
in color. It can be found all over Europe, in Russia from Siberia to Kamchatka, as well as
in China, Korea and Japan. Its distribution is correlated with the range of its main host
plant—Norway spruce (Picea abies) and closely related species, because Norway spruce
grows only in Europe, and Ips typographus can be found in Asia on other spruce species,
e.g., P. obovata, P. orientalis, P. yezoensis [7]. A large number of bark beetles are able to
effectively stop the transport of water and nutrients in the spruce, and also introduce fungi
that would not otherwise be able to attack trees [3]. For several months (often until winter),
infested spruce trees have green needles and show no clear signs of attack [8]; in the next
season, most of the needles are lost and the tree is dead, the so-called snags [9].

A forest regeneration capacity is significant; an example can be the Bavarian Forest
National Park, where a spruce bark beetle outbreak began in 1993, and in 2005 the inventory
indicated the regeneration index oscillated around 4500 20-cm-high trees per hectare, with
89 percent of Picea abies and 7.9% of rowan (Sorbus aucuparia). This shows that montane
zones reproduce well and their continuity is not endangered, while the dynamics of the
spruce forests in the foothill zone is more complicated [10].

Inventory of dynamically changing stands is a demanding, labor-intensive and costly
task due to the irregular network of forest roads. Additionally, standard grids of sampling
plots (from 200 × 200 m to 1000 × 1000 m) and the subjectivity of the observed changes
reduce monitoring quality [11,12]. This is the reason behind the enormous popularity of
remote sensing data, which plays a primary role in inventory species composition [13–15];
vegetation parameters, e.g., Leaf Area Index (LAI), Leaf Chlorophyll Content (LCC) [16];
plant water stress [17], leaf defoliation [18] or dieback of trees as a result of insect attack [19].
An example of such research is the analysis of Landsat images to assess mountain pine
beetle (Dendroctonus ponderosae) invasions on various pine species in the Rocky Mountain
area [20]. The course of the invasion was similar to that of Ips typographus in the stands
of Picea abies. The Maximum Likelihood classification of Landsat images and Tasseled
Cap transform derivatives (Brightness, Wetness, Greeness) and methods have classified
the affected pines with a producer accuracy (PA) of 88.3% and 97.3% user accuracy (UA).
The overall accuracy of this classification was 91% and the Kappa coefficient oscillated
around 0.90. Meddens et al. [21] also showed that the Sentinel-2 MSI was optimal for
assessing the effectiveness of the classification of attacked lodgepole pine (Pinus contorta)
and ponderosa pine (P. ponderosa) based on a multi-period analysis of changes, as the
classification of attacked pines (over 70% of damaged trees on the studied plot) achieved
92.9% user accuracy and 87.4% produce accuracy, overall accuracy—89.6% and Kappa
coefficient—0.86. Considering mixed pixels in which the classes have at least 50% of the
pixel share, user accuracy was 81.3%, producer accuracy: 85.3%, overall accuracy: 83.2%
and the Kappa coefficient—0.78 [21]. Similar studies were carried out in the Tatra Moun-
tains to detect spruce bark beetle outbreaks [22]; based on the images of Landsat-5 and
Landsat-7 (2006–2011), the researchers calculated the vegetation indexes: Normalized
Difference Vegetation Index (NDVI), Moisture Stress Index (MSI), Normalized Difference
Moisture Index (NDMI), Vegetation Condition Index (VCI) and Tasseled Cap (TC) indi-
cators. It was shown that at the maximum points of gradation, the classification accuracy
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reached 94% (overall accuracy, and Kappa coefficient—0.70), confirming the usefulness of
the MSI [22].

In 2018, Abdullah et al. [8], based on Sentinel-2 and Landsat-8 images, showed that
affected tree needles have less chlorophyll and water, a similar amount of nitrogen and
more dry matter than those from the undisturbed trees. Then, based on satellite images,
chlorophyll indices (e.g., Normalized Green–Red Difference Index) confirmed the changes
allowing to identify bark beetle outbreaks with 67% accuracy on Sentinel-2 images [8].

Sentinel-2 images were processed with change detection methods Multivariate Alter-
ation Detection (MAD) and Maximum Autocorrelation Factor (MAF) and with Support
Vector Machines (SVM) classification, allowing us to identify bark beetle outbreak in Bi-
ałowieża Forest (NE Poland) with an overall accuracy of 97% (Kappa coefficient: 0.93;
producer accuracy: 92.5%; and user accuracy: 92.0% for attacked trees [23]). Eight World-
View-2 spectral bands presenting mountain forests of Austrian Styria and Random Forest
classifiers identified bark beetle damages of Norway spruce in different conditions: healthy
trees, or even still green, but attacked trees (green attack) and snags. The best results
achieved snags (producer accuracy scored 99%, and user accuracy—100%), undisturbed
forest and the attacked trees oscillated around 60–70% [24].

Remote-sensing detection of freshly/green-attacked spruce trees by the bark beetle
insects is a challenge, but it allows us to react at the beginning of a new outbreak by setting
pheromone traps and sanitation, protecting the rest of the area [3,8].

The current paper focuses on methodical and application objectives; in the first case, it
is an assessment of the multitemporal Sentinel-2 images (2015–2018) for the identification
of coniferous and deciduous forests, grasslands, rocks, snags and cuts or windthrows.
For this purpose, the Support Vector Machines (SVM) algorithm was used as an optimal
classifier for stand mapping. The studies based on accuracy metrics of Sentinel-2 bands,
spectral signatures of individual land cover forms derived from different years and remote-
sensing indices; the classification accuracy was compared between changes taking place
in coniferous forests, focusing on areas with dieback of trees; cuts or windthrows; or no
changes in individual years. The condition of coniferous stands was carried out on the
basis of the analysis of the values of spectral features (raster stacking), trained spectral
signatures, remote-sensing indices, as well as correlation analyses: Multivariate Alteration
Detection (MAD), Multivariate Alteration Detection/Maximum Autocorrelation Factor
(MAD/MAF), and iteratively re-weighted Multivariate Alteration Detection (iMAD). The
application objectives are to assess the dynamics of changes taking place within coniferous
stands, including the outbreak of the spruce bark beetle in coniferous forests for the years
2015–2018 for the whole Tatra Mountains (Polish and Slovak parts). These changes were
determined by statistics and cartographic presentations. An important element of the
study is reference data based on high-resolution image data (airborne orthophotomaps
and multispectral WorldView 2 images), which allowed us to identify analyzed targets
on detailed maps, which were field verified by employees of the Tatra National Park [25].
Having such detailed reference maps for the whole area of the Polish Park, the current
study allowed us to evaluate the proposed methods. The achievements are not only maps
and statistical data about the dynamics of the environmental changes, but above all an
assessment of different methods, constituting a signpost for people planning to conduct
long-term monitoring of mountain forest areas.

2. Research Area and Targets

The Tatra Mountains are the highest part of the Carpathian range; it covers an area of
785 km2, 22.3% in Poland (with the highest peak at 2499 m a.s.l.) and 77.7% in Slovakia
(highest point, 2655 m a.s.l.). Natural vegetation shows specific patterns of altitudinal
belts: lower and higher montane, subalpine and alpine. In the case of this analysis the
research target was located in lower and higher montane zones (770–1600 m a.s.l.). In the
upper montane belt natural Picea abies forest stands are dominating, sometimes of primeval
character. The Tatra climate is also showing diversification in the vertical profile with high
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amounts of annual precipitation reaching 1850 mm at 1987 m a.s.l. This area is protected by
bilateral national parks Polish (Tatrzański Park Narodowy—TPN) and Slovak (Tatranský
národný park—TANAP). UNESCO Tatra Transboundary Biosphere Reserve was created in
1992, covering the whole Tatras and large adhering areas (Figure 1).
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Picea abies is a coniferous tree species belonging to the Pinaceae family. It can reach
a height of 50–60 m and 200–300 years of age (very rarely more). The range of Picea
abies covers a large area of Northern Europe, from sea level till 2400 m a.s.l. in the Alps,
where it grows as a krumholtz tree. It is shade- and cold-tolerant, so may persist where
deciduous trees cannot withstand frost. Due to its flat root system, Picea abies do not tolerate
droughts; therefore, they do not grow in central Poland, where precipitation is low. The
most important habitat for this tree in the Tatras is the upper montane zone stretching at
an altitude of approx. 1250–1550 m a.s.l., where it naturally forms extensive pure stands.

In the nineteenth century, most of the mixed forests in the lower montane zone of
the Tatras (below 1200 m a.s.l.) were cut down for needs of mining and metallurgy, and
herding caused another part of destruction. In the deforested areas, spruce was often
planted as a fast-growing tree, a valuable resource. Spruce, as a pioneering species, also
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spontaneously enters open areas in lower zones, where higher air and soil temperatures
prevail, which allow the bark beetle to limit the occurrence of spruce [7]; for this reason,
increasing temperatures in the mountain environment leads to the dieback of mountain
spruce forests [26].

Over the past two hundred years, the Tatra Mountains have experienced huge
windthrow many times [27]. In 2004, there was heavy windthrow on the Slovak side,
and a strong increase in the number of trees infested by the spruce bark beetle has been
observed since 2005 [17,22,28]. At the end of 2013, heavy windthrow occurred in the Polish
side, mostly in the western part of the National Park.

3. Materials and Methods

The basis of this research was the Sentinel-2 satellite images (13 spectral bands; four
ten-meter, six twenty-meter, and three sixty-meter bands were used for atmospheric cor-
rections only). Images were acquired on 3 October 2015, 30 September 2016, 2 October
2017 and 15 October 2018. The reference materials were provided by the Tatra National
Park (TPN):

• WorldView-2 satellite image with a resolution of 0.5–2 m acquired on 7 September 2015;
• airborne orthophotomap (0.25 m; 2 October 2017);
• shapefiles of damaged forest stands by bark beetles (update for 2017), sanitary cuttings

carried out in the park (updated for 2017), boundaries of protection zones, forest areas,
windthrow and a forest map of the TPN area.

The first step was the atmospheric and topographic correction of the Sentinel-2 images;
for this purpose, the Sen2Cor software (ESA) was used. Some areas were manually masked
out due to clouds and their shadows. Twenty-meter bands were resampled to ten-meter
resolution based on the nearest neighbor method (Figure 2).
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Figure 2. Research schema.

The preparation of reference polygons based on a selection of six land cover classes:
coniferous and deciduous forests, snags, sanitary cuts or overturned by windthrow, grass-
lands, and rocks (Table 1). In the first stage, the analyses were conducted on:

• a high-resolution WorldView-2 image;
• a vector layer updated for 2015: snags, sanitary cuts and windthrow and other forest

parameters of TPN (all vector data were field verified).
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Table 1. Number of reference polygons and pixels by a class for the 2015 Sentinel-2 image classification.

Class Number of Reference Polygons Number of Reference Pixels

Coniferous forests 39 9892
Deciduous forests 26 3114

Grasslands 60 9291
Rocks 40 9443
Snags 40 2347

Cuts or windthrow 32 5440

Selected polygons were used to classify Sentinel-2 images from 2015. In the second
stage of the work, reference polygons were created for the state for 2017:

• an actual airborne orthophotomap (acquired on 2 October 2017 with an accuracy of
0.25 m);

• an updated vector layer of snags, sanitary cuts and windthrow, which allowed us to
assess changes between 2015 and 2017 (Table 2).

Table 2. Number of reference polygons and pixels between 2015 and 2017 used for change detection.

Class Number of Reference Polygons Number of Reference Pixels

No changes 40 21,301
Dieback of trees 48 1260

Cuts or windthrow 52 1865

It allowed us to prepare reference polygons to analyze:

• no changes between 2015 and 2017 (an undisturbed coniferous forest in 2015 remains
undisturbed in 2017);

• dieback of trees—undisturbed coniferous forest in 2015, and dying in 2017;
• deforestation (sanitary cuts) or windthrow, undisturbed coniferous forest in 2015, and

nonexistent in 2017 (this class may also include gaps in the stand, e.g., due to old age).

The spectral patterns acquired in 2015 and 2017, allowed to conduct analyses for 2016
and 2018 as one of the research scenarios.

3.1. Classification

Support Vector Machine (SVM) was used as the classifier based on the EnMap-Box
3.3 (QGIS 3.4) and R Studio software; all kernel functions (linear, polynomial, sigmoid
and Radial Basis Function) were tested, but for the final classification, RBF function was
applied. The sklearn library was applied and a tuning of SVM parameters allowed us to
select the optimal parameters: gamma coefficient 0.01 was selected from the tested values:
0.001, 0.01, 0.1, 1, 10, 100 and 1000, and penalties C 1000 (from the checked: 0.001, 0.01,
0.1, 1, 10, 100, 1000). The reference polygons were sampled 10 times for training and
validation in the 75/25 ratio. In the final version of the map, each pixel was assigned to
the most frequently occurring class in subsequent iterations, the so-called dominant. The
verification polygons were also rasterized and were used for verification and assessment
of classification accuracy. The final accuracy of the classifications was measured by overall
accuracy, Kappa coefficient, user accuracy (UA) and producer accuracy (PA), as well as the
F1-score and error matrices.

After obtaining the final map containing 6 classes (coniferous forests, deciduous
forests, grasslands, rocks, sanitary cuts and windthrow and snags) for 2015, all classes,
except undisturbed coniferous forest, created a mask removing non-coniferous forest from
further investigations, because the main idea was to follow the changes on the references
coniferous forest patterns (initial moment of the bark beetle outbreak). On this basis, all
satellite images were analyzed only on unmasked areas.
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3.2. Multi-Temporal Analyses

The Sentinel-2 image from 2 October 2017, after pre-processing and masking undis-
turbed coniferous forest area from 2015, was compared with the image from 2015. Six meth-
ods were used to determine the changes in the state of coniferous forests from 2015–2017:

• remote-sensing indices (Table 3);
• Sentinel-2 spectral signatures used from 2015 SVM classification to analyze class

changes in 2017;
• Multivariate Alteration Detection (MAD);
• Multivariate Alteration Detection/Maximum Autocorrelation Factor (MAD/MAF);
• Iteratively Re-weighted Multivariate Alteration Detection (iMAD);
• raster stacking method of combining the 2015 and 2017 periods into one 20-band

raster; 10 spectral bands acquired in 2015 and an additional 10 bands from 2017. The
following spectral bands were used: 2 (Blue), 3 (Green), 4 (Red), 5 (Red Edge 1), 6 (Red
Edge 2), 7 (Red Edge 3), 8 (NIR), 8A (narrow NIR), 11 (SWIR), 12 (SWIR); twenty-meter
bands were resampled using the nearest neighbor method to a ten-meter pixel size.

Table 3. Remote sensing indices used for forest analysis. Explanation: blue: Sentinel-2 band no. 2, green: 3, red: 4, Red Edge
(RE1): 5, Red Edge (RE2): 6, REDEDGE: 7, NIR: 8, SWIR1: 11, SWIR2: 12.

Index Formula Reference

Atmospherically Resistant Vegetation Index (ARVI) NIR−(2RED−BLUE)
NIR+(2RED−BLUE)

[29]

Blue Normalized Difference Vegetation Index (BNDVI) NIR−BLUE
NIR+BLUE

[30]

Green Normalized Difference Vegetation Index (GNDVI) NIR−GREEN
NIR+GREEN

[31]

Enhanced Vegetation Index (EVI) 2.5 ∗
( NIR−RED

NIR+6RED−7.5BLUE+1

) [32]

Enhanced Vegetation Index 2 (EVI 2) 2.4 ∗
( NIR−RED

NIR+RED+1

) [33]

Green Soil Adjusted Vegetation Index (GSAVI) 1.725 ∗
(

NIR−GREEN
NIR+GREEN+0.725

)
[34]

Normalized Difference Vegetation Index (NDVI) NIR−RED
NIR+RED

[35]

Normalized Green-Red Difference Index (NGRDI) GREEN−RED
GREEN+RED

[36]

Soil Adjusted Vegetation Index (SAVI) 1.428 ∗
( NIR−RED

NIR+RED+0.428

) [37]

Simple Ratio / Short Wave Infrared (SR/SWIR) SWIR1
SWIR2

[8]

Green Leaf Index (GLI) 2 ∗
(

GREEN−RED−BLUE
GREEN+RED+BLUE

)
[38]

Chlorophyll Vegetation Index (CVI) NIR∗RED
GREEN∗GREEN

[39]

Leaf Chlorophyll Index (LCI) NIR−REDEDGE
NIR+RED

[40]

Modified Chlorophyll Absorption in Reflectance Index (MCARI) (RE1 − RED − 0.2∗(RE1 − GREEN)) ∗
(

RE1
RED

)
[41]

Modified Chlorophyll Absorption in Reflectance Index 2 (MCARI 2) 1.2 ∗ (2.5 ∗ (NIR − RED)− 1.3 ∗ (NIR − GREEN)) [42,43]

Normalized Difference Red-Edge 2 (NDRE 2) NIR−RE2
NIR+RE2

[8]

Transformed Chlorophyll Absorption Radio Index (TCARI) 3 ∗ (RE1 − RED − 0.2∗(RE1 − GREEN) RE1
RED ) [42]

Plant Pigment Ratio (PPR) GREEN−BLUE
GREEN+BLUE

[44]

Disease Water Stress Index (DSWI) NIR+GREEN
SWIR1−RED

[45]

Moisture Stress Index (MSI) SWIR1
NIR

[46]

Moisture Stress Index 2 (MSI 2) SWIR2
NIR

[47]

Normalized Difference Infrared Index (NDII) NIR−SWIR1
NIR+SWIR1

[48]
Normalized Difference Infrared Index 2 (NDII 2)

Normalized Burn Ratio (NBR)
NIR−SWIR2
NIR+SWIR2 [49]

Based on the mask of polygons (defined as healthy coniferous forests in 2015), 23 remote
sensing indices were calculated (Table 3). The indices describe photosynthetically active
energy accumulation, water content, biomass and general quantity and vigor of green
plants [8].

All these indices were saved as separate raster images, which were combined into
a single file through the layer stacking function. This resulted in a reference dataset for
healthy coniferous forests. It allowed us to distinguish differences in the values for tree
cuttings and dying trees. All calculations were made in the R package using the raster
library [50–52]. In the next step, the significance of remote sensing indices in the classifier
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learning process was checked; for this purpose, the Recursive Feature Elimination (RFE)
method was used, based on the subtraction of successive indicators from the full dataset
and data ranking (from the most to the least informative).

Multivariate Alteration Detection (MAD) allowed the analysis of multispectral data
of the same area from 2015–2017 [53,54]. Due to the propagation of differences between
individual spectral bands in different periods, a transformation of the input bands was
applied, giving more weight to those bands, which had more significant changes; in addi-
tion, a canonical correlation was used (identifying linear coefficients for each band of both
images); it made it possible to create canonical weights of successive degrees, being orthog-
onal to the first degree up to the k-degree canonical weights. The analyses were performed
in Orfeo ToolBox, generating a new image consisting of 10 bands (corresponding to the
number of input Sentinel-2 bands from the 2015 and 2017 images, sixty-meter atmospheric
bands were removed). In the next step, the Maximum Autocorrelation Factor (MAF) [55]
method was used to rank the MAD bands from the most to the least autocorrelated. It con-
sists of finding a linear transformation (as in the case of PCA and MAD) of the input bands
to a band space in which the correlation of pixels with its surroundings is the greatest one.

Simultaneously with the MAD/MAF methods, the Iteratively Re-weighted Multivari-
ate Alteration Detection was tested (iMAD) [56]. The IMad.py script written in Python
provided by Dr. Mort Canty on GitHub was used for this. In the iMAD algorithm, the
MAD transformation was performed in the first step. Then, more weights were given to
those pixels that did not change significantly and less to those that showed a change. Then,
the MAD was recalculated, but considering the weights given to the pixels, i.e., those pixels
that showed a large change in the first step, were taken into account less for the correlation
computation than those that had a small change. As a result, from two Sentintel-2 images
for 2015 and 2017, one raster file with 10 spectral bands was obtained, but ranked from the
highest probability of changes between images to the smallest.

In the R Studio, the layer was combined using the stack function from the raster library
coniferous forests (raster stacking) from Sentinel-2 image from 2015 and 2017. In this way,
a raster file with 20 bands was classified.

3.3. Map of Bark Beetle Outbreaks and Assessment of Classification Quality

As a result of the 10-fold randomized sampling of training and validation polygons,
10 maps of changes in the coniferous forests were obtained for all methods, then for each
pixel from all maps, the modes were calculated, and on this basis, the maps of changes were
prepared. This analysis was performed in the R program based on the e1071 library [57] and
the one versus one method. These maps were generalized, i.e., eliminating less than 30 pixels
for the whole Tatras. In the following step, a confusion matrix was created, presenting the
number of pixels from the given reference classes and classified into individual classes
on the diagonal of the matrix (reference classes were presented in columns, and the rows
were classified according to the algorithm). An error matrix was calculated for each of the
applied methods (remote sensing indices, Sentinel-2 spectral signatures, MAD, MAD/MAF,
iMAD and raster stacking of the 20-bands file. In R Studio, a coniferous forest layer from
a Sentinel-2 image from 2015 and 2017 was combined using the stack function from the
raster library. Sentinel-2 satellite images from 3 October 2015 and 2 October 2017 after
pre-processing and using healthy coniferous forest masks from 2015 and 2017 were merged
into a 20-band raster file which was subjected to classification. Additionally, to evaluate
the usefulness of the methods, the following metrics were calculated: overall accuracy of
the classification (overall accuracy, OA, Aov), Kappa coefficient (κ), user accuracy (UA)
and producer accuracy (PA) for each classification class and F-score.

4. Results

The result of the SVM RBF classification of Sentinel 2 images is the land-cover map for
2015 (3 October 2015; Figure 3). It allowed us to obtain a spatial distribution of coniferous
forests, deciduous forests, grasslands, rocks, snags and sanitary cuts or windthrow. The



Remote Sens. 2021, 13, 3314 9 of 20

coniferous forests layer served as a reference mask for the analyzes from the following
years (2016–2018) and the assessment of the pace and extent of bark beetle outbreaks in the
Tatra Mountains. The producer and user accuracies for individual classes is high (within
the range of 90−100%; Table 4). The error matrix presents that the places in the forest
where cuts or windthrow occurred were also classified as snags or grasslands. High user
accuracy for coniferous forests—99.4%—means that the created coniferous forest mask
contains a high-accuracy reference layer for change detection.
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Table 4. Error matrix for the Tatra land cover classification based on the Sentinel-2 image (3 October 2015); overall accuracy 97%,
Kappa coefficient 0.96. Explanation: UA—user accuracy; PA—producer accuracy.

Reference Data
UA (%)

Snags Coniferous Forest Deciduous Forest Grasslands Rocks Cuts or Windthrow

Snags 5410 1 1 29 80 474 90.2
Coniferous forests 2 24,958 52 1 97 2 99.4
Deciduous forests 0 113 6872 181 0 37 95.4

Grasslands 12 0 191 20,080 18 490 96.6
Rocks 23 0 0 2 22,054 46 99.7

Cuts or windthrow 211 2 1 597 131 11,798 92.6
PA (%) 95.6 99.5 96.6 96.1 98.5 91.8

Analyzing the dominant land cover forms for 2015, which becomes the reference year
of observations in the analyzed period (2015−2018), it is worth noting that the undisturbed
coniferous forest covers 42.27% of the area, and the snags—9.21% (Table 5).

Table 5. Share of individual forms of land cover of the Tatra Mountains (both national Parks: TPN,
TANAP), source: Sentinel-2 3 October 2015.

Class Area (km2) Percentage (%)

Snags 48.65 9.21
Coniferous forests (c forest) 223.39 42.27

Deciduous forests 66.54 12.59
Grasslands 120.93 22.88

Rocks 1.89 0.36
Cuts or windthrow 67.08 12.69

Analyzing changes that took place in coniferous forests between 2015 and 2017, it
should be noted that all used methods allowed us to obtain very high and comparable
results (Table 6); Figure 4 presents differences of algorithm outcomes, where large-scale
changes can be easily visible, which allowed us to show the influence of algorithms on
the identification of the analyzed phenomena. Nevertheless, the visual interpretation of
the results confirms that the outcomes based on the raster stacking were characterized
by a large number of individual pixels (salt and pepper effect), while this unfavorable
phenomenon was not observed in the case of remote-sensing indices; hence, this method
was used to present the obtained results.

Table 6. Comparison of the accuracy of different methods of detecting changes between 2015 and 2017.

Method OA (%) Kappa
Coefficient

Snags
F1-Score (%)

Coniferous Forests
F1-Score (%)

Cuts or Windthrow
F1-Score (%)

Raster stacking 99.1 0.97 96.9 99.8 95.2
Remote sensing indices 99.0 0.97 96.4 99.9 93.8

iMAD 99.0 0.97 96.3 99.9 93.6
MAD 98.5 0.96 95.2 99.4 93.8

MAD/MAF 98.5 0.96 95.1 99.4 93.7
Spectral features obtained

from Sentinel-2 2015 and SVM
classified on Sentinel-2 2017

93.8 0.77 70.4 99.8 58.8
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green line marks the area of strict protection of the Tatra National Park. The geographical range of the image is presented on
Figure 1; background: orthophotomap from 2017.
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The most informative remote-sensing indices were selected by the Recursive Feature
Elimination method. The informational character of individual indices depended on the
analyzed object (Figure 5), while the use of several indices allowed us to differentiate ana-
lyzed classes with an accuracy level over 90% (SAVI, which almost unambiguously allows
us to distinguish undisturbed forests from cutting and dieback of trees (F1-score is 99.60%)).
SAVI is based on red and infrared spectral bands (with 10 m spatial resolution). Adding
additionally MCARI2, which was the second most informative in the ranking, which also
contains information about the green band, significantly improved the identification of
snags (F1-score was 93.19%) from the cuts and windthrow area class (F1 = 87.49%). The
analyses showed the usefulness of the set of 15 remote sensing indices: SAVI, MCARI 2,
NDII 2 (NBR), LCI, PPR, GSAVI, BNDVI, NDII, MSI, NGRDI, SR/SWIR, NDRE 2, NDVI,
EVI and CVI (Figure 5), adding the information contained in the following indices: MCARI,
TCARI, EVI 2, GNDVI, GLI, MSI 2, ARVI and DSWI did not improve the obtained results.
These indicators allowed us to distinguish the state of the coniferous forest with a very
high accuracy (Table 6), as well as to precisely identify the damage in 2017 (Figure 6, Table 6).
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In 2018, the total forest degradation compared to 2015 exceeded around 30% for both
Parks (Figures 7 and 8), while the share of cuts/windthrow areas in TANAP is higher by
two–three percentage points (Table 7).

Table 7. Snags and cuts/windthrow class statistics of the Polish (TPN) and Slovak (TANAP) Tatra
National Parks. Data presented in hectares. Acquired on the SVM classification based on the
15 remote sensing indices.

Class TPN (ha) TANAP (ha) Sum (ha)

Undisturbed coniferous forest 6014.46 13,546.43 19,560.89
Snags 726.47 822.00 1548.47

Cuts or windthrow 236.18 951.64 1187.82
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Figure 8. Map of coniferous forest degradation in the period of 2015–2018: (a) country border;
(b) border of the Polish TPN; (c) border of the Slovak TANAP; (1) undisturbed coniferous forests;

(2) damages observed in 2015; (3) damages caused in 2016; (4) damages caused in 2017; (5) damages
caused in 2018. A map from OpenStreetMap was used in the background and Sentinel-2 RGB 432
composition, 15 October 2018.
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5. Discussion

The achieved results allow us to assess the usefulness of Sentinel-2 satellite images and
SVM-supervised classification for spruce bark beetle outbreak with high accuracies; in our
case the worst results oscillated around 94% (overall accuracy). Different classifications of
dying trees as a result of cambiophagous insects were analyzed in many parts of the world
(Table 8), e.g., China [58,59], Europe [13,24,60,61], North America [21]; the authors based
on different spatial and spectral resolution acquiring satellite or airborne images. The most
similar analysis to this work, both in terms of geography and theused sensor (Sentinel-
2) and methodology (SVM + MAD), is the work of G. Mikusiński and his team [23],
who analyzed spruce bark beetle outbreaks and clearing cuts in the Białowieża Forest
(NE Poland). A single-image Sentinel-2 classification for 2015 and a classification for
2018 change detection were performed; an overall accuracy oscillated at 97% (in our
work—97.19%), and for the class of snags, the producer accuracy achieved 91.71%, and
user accuracy—90.72% (we received 95.6% and 90.2%, respectively, which is a similar result
to Mikusiński’s work [23]. In the multitemporal analysis (2015–2018), Mikusiński’s team
achieved 97% (overall accuracy) and 92.2% (F1-score) for snags and 95.1% for the slice
class [23]. In this paper, it is, respectively, 99.1% of overall accuracy, 95.7% (F1-score) for
snags and 93.6% of F1-score for cuts/windthrow. The higher overall accuracy of this work
resulted from correctly classified healthy forest, while the lower F1 score for cuts/clearing
class, this is due to the fact that the Białowieża Forest is located in the lowland, where
heavy equipment (e.g., harvester) can be used, which allows us to have homogenous large
cuts/clearing areas. Moreover, the use of heavy equipment could have degraded the soil
more, which could also have contributed to larger spectral differences between classes.

Table 8. Classification of the gradation of cambiophagous insect’s assessment of results. Explanation: OA—Overall
Accuracy; PA —Producer Accuracy; UA—User Accuracy.

Reference Sensor Research Target Classification
Method OA (%) Snags

PA (%)
Snags

UA (%)

[23] Sentinel-2 Ips tyhographus, snags SVM 97 91.71 90.72
[21] Landsat TM, ETM+ Dendroctonus ponderosae, snags ML 91 88.3 93.7

[24] WorldView-2 Ips tyhographus, green phase of
the bark beetle attack and snags RF 76.2 100 100

[22] Landsat TM, ETM+ Ips typographus, snags. MSI, VCI,
NDMI–threshold 94

[59] Landsat TM, ETM+, OLI Tomicus yunnanensis and
Tomicus minor MSI 86.38

[62] WorldView-2 Ips tyhographus, snags,
mountain pine. SVM 86.6 86.75 100

[58] Sentinel-2
Dendroctonus valens:

three classes: 0%,
0–15%, 15–50% of dead trees

SVM 59.5 - -

[58] Sentinel-2
Dendroctonus valens:

two classes: 0%,
15–50%

SVM 81 - -

[58] GaoFen-2 as above, additionally: alive,
attacked and dead tree SVM 77.7 - -

the current study Sentinel-2 Ips tyhographus, snags, cuts
and windthrow SVM 97.2 95.6 90.2

The team of A. Meddens [21] analyzed four classes: healthy forest, dead pines (over
70% in a 30-meter pixel), non-forest vegetation and masked areas (clouds, cloud shadows,
topographic shadows) using the Maximum Likelihood, achieving 91% overall accuracy and
88.3% producer accuracy for snags and 93.7% user accuracy. The results are comparable to
our work or slightly better; it may be a result of a lack of clear cuts, which were sometimes
mixed up with the snags in our case.

M. Immitzer and C. Atzberger [24] applied the Random Forest and the WorldView-2
satellite images to classify individual trees during the outbreak of the spruce bark beetle in
Austria. The authors focused on undisturbed forest areas, attacked green trees and dead
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trees. For the dead tree class, they achieved 100% for producer and user accuracies. This
shows that the higher spatial resolution allows distinguishing snags and healthy trees. P.
Rębiś [62] analyzed the bark beetle outbreaks in the Tatra Mountains; he used WorldView-2
images and Support Vector Machines to distinguish undisturbed forest, dwarf mountain
pine (Pinus mugo), bark beetle nests and non-forest vegetation. The results oscillated
at around 86.94% overall accuracy, 86.75% producer accuracy for snags and 100% user
accuracy. The lower overall accuracy than in this study is due to the mixing of spectrally
similar classes of dwarf mountain pine and healthy coniferous forests. This means that
there were both green and dead trees in this class, which caused the mixing of the bark
beetle nest classes with the healthy forest.

Z. Zhan’s team [58] analyzed a possibility of detecting dead Chinese pines among
undisturbed forests in various shares of the species: 0% (undisturbed forest), 0–15% and
15–50%. For this purpose, authors used images of Sentinel-2 and Gaofen-2 (1–4 m pixel
size); based on the CART (Classification and Regression Tree, which is a method of decision
trees for the classification or regression of data), Random Forest and SVM methods, the
authors obtained 59.5% overall accuracy for the three classes on Sentinel-2, but eliminating
the class of 0–15%, overall accuracy increased to 81%. This shows moderate effectiveness in
investigating snags in mixed pixels. The use of high-resolution Gaofen-2 images resulted
in a 77.7% accuracy in distinguishing the three states of the attacked trees.

A similar level of multitemporal Sentinel-2 images and SVM RBF classification accura-
cies was observed for areas of Catalonia and the European Lowlands (near Warsaw, Poland),
where coniferous forests were classified as the best (the median of the F1 score oscillated
around 95%), deciduous (82–97%) and mixed forests (82–92%) [63]. Moreover, the values
of the vegetation indices of stands in good condition were similar to those obtained for
alpine grasslands [64], which were classified on a similar level of overall accuracy, reaching
84% for 22 vegetation communities based on airborne APEX hyperspectral images [65].

The second part of our study was focused on change detection between the reference
year (2015) and the following years (2016–2018). Our results indicated very high accuracy
between observed changes and reference patterns (oscillating between 93–99% of overall
accuracy). Similar analyses were performed by the mentioned team of G. Mikusiński with
the MAD/MAF algorithm [23]. Similar work was led by M. Havašová [22] on the bark
beetle outbreak in the Tatra Mountains. Using the Landsat-5 and Landsat-7 satellite images
and remote sensing indices, the threshold for the decline in indices between years, which
would mean the occurrence of snags, was determined. For the years in which the gradation
was the strongest, i.e., 2007 and 2011, 94% of the total accuracy was achieved, while
this method fails in the remaining years. The aforementioned work by A. Meddens [21]
investigated the deviation of remote sensing indices over the years. The highest overall
accuracy was obtained for Tasseled Cap indices—91%. Landsat-5 and Landsat-7 images
were analyzed, which presented a significant improvement in the overall accuracy of the
multitemporal analyses based on the Sentinel-2 images due to higher spatial resolution
(99.1% achieved).

Similar results on the same Landsat sensors were achieved by the team of L. Yu [59] in
their study of Pinus yunnanensis pine and its defoliation by the lesser pineapple and the
Tomicus yunannensis pineapple. Using the MSI remote-sensing index and grading based on
the thresholding of the inter-year difference, they achieved 86.38% overall accuracy.

6. Conclusions

Among protective measures applied in both Tatra National Parks, the cutting and
removal of infected spruces is quite common. Unfortunately, it is not easy to find infected
trees from the ground survey, so it is usually performed when trees are dead, long after
a new generation of beetles leave the tree trunk. This is totally ineffective. If it would
be possible to distinguish infected trees in the early stage based on remote-sensing meth-
ods, protective measures could have been implemented sooner, and be more effective.
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So far, satellite images have not been implemented into protective measures in Tatra
National Parks.

Sentinel-2 images, due to their spectral, radiometric and spatial resolutions, are
a helpful source of information for the monitoring of large areas, including national parks,
in assessing the course of the outbreak of cambiophagous insects. Most analyses are based
on the spectral properties of research targets reflected in high resolution bands (10–20 m),
which allows the identification of single or clumps of trees. Based on field polygons, it is
possible to identify the first stages of bark beetle attacks (green attacks). Presented in the
paper, accuracies (overall user and producer and F1-score) above 90% were obtained for
snags and cuts/clearing patterns. Sentinel-2 satellite data is available every five days, so it
is possible to monitor even mountain forests, which are clouded, but a high revisit time
allows the masking of unexpected phenomena.

The conducted analyses identified optimal parameters of the SVM classifier (RBF,
C = 1000, gamma = −0.01) for conifers, mixed forests, deadwood, clearings/windbreak
and non-forest vegetation. Sentinel-2 images and the proposed methods allowed us to
obtain very good results (overall accuracy 97%, and Kappa coefficient 0.96), which confirms
the legitimacy of the proposed solutions; at the same time, the error matrix draws attention
to misleading objects during classification, especially cuttings or fallen trees that at times
had a spectral reflection very similar to insect-attacked trees.

It was noted that the most informative indices are SAVI, MCARI2, NDII 2 (NBR), LCI,
GSAVI, BNDVI, NDII, MSI, NGRDI, SR/SWIR, NDVI, EVI and CVI; a further increase in
the number of indices does not increase the accuracy of classified forests, cuttings and bark
beetle outbreaks.

All analyzed transformations (MAD, iMAD, MAD/MAF) offer very high levels of
accuracies, but the best results were obtained for iMAD (0.5–1% higher the others, but
still lower than the raster stacking method). Subsequent change detection algorithms
(MAD, iMAD, MAD/MAF, remote-sensing indices and raster stacking) did not bring
significant changes in the results. The differences in the overall accuracy as well as the
producer and user accuracies of each class were up by two percentage points, because
all these algorithms are algebraic operations on spectral bands that are transformed by
non-parametric algorithms, e.g., Support Vector Machines. A real qualitative change could
already be brought by an improvement in the spectral or spatial resolution, as shown by
the discussion of the results or the non-pixel but object-oriented approach, in which not
only information from a given pixel is analyzed, but also the context in which it is located.

An interesting issue not addressed in this study was also the attempt to classify newly
attacked spruce trees (green attacks). The high classification results in this work, as well as
the promising results of H. Abdullah’s team [8], may indicate this direction of work on the
course of the gradation as the most forward-looking.

The analysis showed that between 2015 and 2018, in the entire analyzed area of the
Tatra Mountains, 30% of coniferous forests were damaged, of which approximately 5%
were cuts and windthrow areas and 25% snags, probably mainly due to the bark beetle.
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