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Abstract: Drought has significant impacts on the agricultural productivity and well-being of Pacific
Island communities. In this study, a user-centred integrated early warning system (I-EWS) for
drought was investigated for Papua New Guinea (PNG). The I-EWS combines satellite products
(Standardised Precipitation Index and Vegetation Health Index) with seasonal probabilistic fore-
casting outputs (chance of exceeding median rainfall). Internationally accepted drought thresholds
for each of these inputs are conditionally combined to trigger three drought early warning stages—
"DROUGHT WATCH”, “DROUGHT ALERT” and “DROUGHT EMERGENCY”. The developed I-
EWS for drought was used to examine the evolution of a strong El Nifio-induced drought event in
2015 as well as a weaker La Nifia-induced dry period in 2020. Examining the evolution of drought
early warnings at a provincial level, it was found that tailored warning lead times of 3-5 months
could have been possible for several impacted PNG provinces. These lead times would enable in-
creasingly proactive drought responses with the potential for prioritised allocation of funds at a
provincial level. The methodology utilised within this study uses inputs that are openly and freely
available globally which indicates promising potential for adaptation of the developed user-centred
I-EWS in other Pacific Island Countries that are vulnerable to drought.

Keywords: disaster risk reduction; early warning systems; Pacific Island Countries; Papua New
Guinea; drought; satellite precipitation products; probabilistic climate forecasts

1. Introduction

Drought is a cumulative climatic phenomenon that has far reaching social and envi-
ronmental impacts resulting from a precipitation deficit. There is no universal definition
of drought that fits all purposes; instead, drought is often classified into the broad catego-
ries of meteorological, agricultural, hydrological and socioeconomic [1]. In this study, we
examined drought holistically, with a particular focus on the combined impacts of agro-
meteorological drought which pertains to agricultural detriments resulting from meteor-
ological rainfall deficiency.

The Pacific Island Countries (PICs) are composed of 15 heterogenous, diverse coun-
tries that occupy the region spanning 15°N to 23°S within the Western Pacific Ocean. De-
spite their varied physical, historical and climatological characteristics, PICs share com-
mon vulnerabilities such as small populations, significant habitation in low-lying coastal
areas and fragile economies. This makes drought impacts particularly dire for the liveli-
hoods of drought-vulnerable communities in these countries [2,3]. The 2020 World Risk
Report found PICs such as Vanuatu, Tonga, the Solomon Islands and Papua New Guinea
(PNG) to be in the top 15 most at risk to natural hazards such as drought [4].
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In PNG, agrometeorological drought has significant impacts on subsistence agricul-
ture, as over 80% of the population is estimated to be involved in subsistence agriculture
and cash crops [5]. Tuber varieties such as sweet potato and yams are the dominant staple
food group in PNG with over 60% of the rural population dependent on sweet potato as
their main food source [6]. These characteristics make food production systems in PNG
particularly exposed to collapse in times of drought. In 2015, El Nifio-induced drought
resulted in widespread food shortages when drought-related frosts caused subsistence
crops to fail at a catastrophic scale. It was estimated that up to 2.4 million people were
affected, and many perished from famine conditions [7].

Prolonged precipitation deficit periods are common throughout the history of PICs,
with palaeoclimatological analysis of charcoal bands in fluvial sediments indicating the
existence of such periods up to 5000 years ago [8]. However, due to anthropogenic climate
change, droughts are projected to become more frequent and severe [9]. This trend will
have significant ramifications for the already drought-vulnerable populations of PNG and
other PICs [2]. In some cases, the negative economic impacts of such events could be com-
parable to the gross domestic product produced by some PICs [9]. Thus, as drought be-
comes more prevalent and extreme, drought responses need to be increasingly proactive
in treating drought as a risk rather than a crisis [10,11].

An early warning system (EWS) for drought is one such proactive mechanism that
can support local stakeholders and decision makers in taking proactive, evidence-based
decisions. EWSs are structures used to monitor, predict and manage disasters across the
world [12]. They are complex, adaptive systems composed of four fundamental compo-
nents [13,14].

1. Risk knowledge —identification of the worst impacts and threats including a con-
solidated assessment of any exposures and vulnerabilities.

2. Monitoring and warning —the infrastructure that detects climate variabilities in the
lead up to a disaster with a sound technical and scientific basis.

3. Communication and dissemination—the communication framework that ensures
early warnings are delivered efficiently to vulnerable groups.

4. Response capability —the systems and knowledge that enable communities to effec-
tively respond to early warnings.

An EWS that is user-centred and integrated within the broader disaster response net-
work of a country has the potential to save lives, limit physical damage and lessen finan-
cial losses [15]. In this context, user-centred describes a system that is a strong, intercon-
nected system that does not consider warning delivery to be linear or end-to-end, with a
substantial focus on the users of the system [16,17].

However, a user-centred EWS alone may be futile in its construction if there is no
consideration for the structural implementation of the system as one that is either central-
ised, decentralised or integrated. In this context, a centralised EWS is one that operates at
a federal or state level [18] and interacts coarsely with a national audience, whereas a de-
centralised system operates on a finer scale with a more localised audience and tends to
roll out warnings through established trust networks [18]. Centralised systems provide
invaluable information on a coarse scale to government officials and management agen-
cies. However, they are not so efficient in disseminating actionable, granular information
to small-scale farmers, regional communities and the individuals most at risk [18-21]. De-
centralised systems tend to do this well and have been found to generate extensive com-
munity involvement and trust in the system; however, the technical infrastructure for
such systems is usually poor. In this way, an integrated EWS (I-EWS) combines the
strengths of both decentralised and centralised EWSs, thus minimising the weaknesses
resulting from utilising one structural approach in isolation.

Thus, an I-EWS is best conceptualised as a system that is supported and sustained by
a national meteorological service but is controlled and managed on a local scale: likely
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through a diverse extension network that comprises both climate experts and local stake-
holders [17]. An iterative system such as this would also be open to adjustment through
dynamic feedback loops that minimise bureaucracy at all possible stages and prioritise
community feedback [16].

The methodologies used to construct a complex system such as this would need to
be equally complex and adaptive. The construction would involve combining elements of
both quantitative (i.e., defining system decision rules and thresholds, and rigorous error
testing) and qualitative research methods (i.e., understanding the psycho-social nuances
of the community the EWS would service) [12,18]. Whilst this study focuses on the quan-
titative aspects of EWS development in PNG, we have spent considerable time liaising
with PNG stakeholders and the National Weather Service and intend to further engage
users in our work.

Developing a user-centred I-EWS for drought is an integral part of activities under
the Climate Risk and Early Warning Systems (CREWS) international initiative [22]. In this
study, by applying the methodology of Bhardwaj et al. (2021) [23] developed for Aus-
tralia’s Northern Murray-Darling Basin, we build the capacity for a user-centred I-EWS
for drought in PNG.

To ensure an I-EWS for drought is effective at detecting periods of drought, there
needs to be significant consideration for the system’s inputs. There are over 150 drought
indices that can be used to track the onset, evolution and cessation of drought [24]. The
application of a certain type of index is dependent on the data availability, demographic
needs and climatic conditions of a drought-vulnerable region [24]. In small island devel-
oping states and least developed countries, rain gauges and other in situ instruments for
meteorological observations are often limited in spatial density and long-term infrastruc-
tural maintenance. For PNG, this means that, despite a total land area of around 462,840
km?, there are only seven operational rain gauge stations [22]. For comparison, the Aus-
tralian region of south-east Queensland alone has over 315 rain gauges for a 28,371 km?
region [25]. Beyond spatial and infrastructural limitations, rain gauges are also prone to
precipitation loss errors from wind, evaporation, wetting or splashing effects [26].

Satellite remote sensing datasets offer a cost-effective solution to such spatial and
infrastructural limits as they provide data that have global high-resolution spatial cover-
age and are produced by credible national space and weather agencies. Consequently,
there have been several studies across PNG and the Asia-Pacific region more broadly that
have sought to analyse the accuracy of satellite remote sensing datasets [27-30]. Such re-
mote sensing studies have sought to determine the meteorological and agricultural indi-
ces best suited to detecting drought, with several further using artificial neural networks
to generate deterministic and statistical forecasts of such indices [31-33]. Whilst such sta-
tistical methods have shown promising accuracy, they are still critiqued for their use of
deterministic prediction models that do not incorporate degrees of randomness as a me-
teorological or climatological probabilistic forecast or hydrological model would [34].

A promising input for the inclusion of probabilistic forecasting into a drought I-EWS
would be the sub-seasonal to seasonal forecasts generated by national meteorological
agencies [35]. Such forecasts are already operational and are routinely updated to contin-
uously improve forecasting skill. Some studies have explored the potential of seasonal
forecasting for drought prediction, but few studies have explored the coupling of such
probabilistic outputs with observational satellite remote sensing products [35,36]. This
gap in the literature of combined observational and predictive products informs the selec-
tion of inputs used in this study and further allows warnings to be staged by concern and
action level. Simplistically, drought concern should be highest when dry conditions are
both observed and forecasted compared to if wet conditions are observed but dry condi-
tions are forecasted.
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2. Materials and Methods
2.1. Study Area

Papua New Guinea is a large island country with around 9 million inhabitants and
an estimated 851 different spoken languages [37]. PNG has vast highlands, tropical forests
and over 600 small islets and atolls which makes it home to an estimated seven percent of
the world’s biodiversity [38]. At the sub-national scale, PNG is divided into 22 provinces
which are depicted in the topographical map (Figure 1). This map was created in QGIS
using topography data from ETOPO2v2 [39].
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Figure 1. Topographical map of the study area with the 22 provinces of PNG displayed using a
numbered key.

The PNG Highlands are a notable feature—reaching a maximum elevation of 4509
metres above sea level and providing diverse ecosystems and agricultural potential [40].
It is estimated that 75% of PNG’s annual sweet potato production is grown in the High-
lands, making it an agriculturally important region for the country [6,41]. Despite this,
there are limited meteorological observations for the Highlands [42]—likely due to the
region’s remoteness. The Highlands also have complex impacts on the country’s climatol-
ogy. The climate of most of PNG is essentially tropical with some monsoonal influence
from the West Pacific Monsoon [43,44]. However, the Highlands experience meteorologi-
cal phenomena that differentiate them from the low-lying parts of the country [43]. This
results in little to no seasonality over parts of the Highlands, compared to the somewhat
distinctive rainfall seasonality of the low-lying regions [44,45].

2.2. Drought I-EWS Inputs

The inputs selected for the monitoring component include the Standardised Precipi-
tation Index (SPI) and the Vegetation Health Index (VHI). The chance of exceeding median
rainfall (CEMR), as generated by a probabilistic forecasting model, is an input for the fore-
casting component of the I-EWS. These inputs were selected due to their promising per-
formance in several drought detection studies in the Asia-Pacific region [46—48] and, most
importantly, for their noteworthy performance in a drought detection study over PNG
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conducted by Chua et al. (2020) [30].

2.3. Input Thresholds

The SPI and VHI inputs are commonly used to analyse drought evolution, escalation
and dissipation and thus have internationally accepted thresholds that can be used to in-
dicate periods of precipitation and vegetation state anomalies [49,50]. In this study, we
accompanied these with the CEMR to include a predictive component. Each input, its rel-
evant equations, timescales, primary references and thresholds used for drought detection
are presented in Table 1.

Table 1. Drought I-EWS inputs—relevant equations, timescales and drought thresholds.

Input Relevant Equations Timescale Drought Available Native
P 1 Threshold Time Range Resolution
— Pm
. SPI =
Standardised Pre- 3-month SPI-3<-1 0.1°

cipitation Index

indicates mild to 2000 to now

where p—precipitation over a certain time period, gtandardisation (~10 km)
[49] pm—mean rainfall over the same period, and o extreme drought
—standard deviation over the same period.
The VHI is a weighted combination of the Vegeta-
tion Condition Index (VCI) and the Temperature
Condition Index (TCI). VCI and TCI are derived
from the Normalised Difference Vegetation Index
(NDVI) and Brightness (radiative) Temperature
(BT), respectively.
. VHI-3 <40
Vegetation Health NDVI — NDVI... 3-month Lo . 0.1°
Tndex [50] vecl = 100 - min accumulation indicates mild to 2013 to now (10 km)
NDVInax = NDVInin extreme drought
BT,qx — BT
TCl = 100 57—
BTinax = BTmin
VHI = a-VCI+ (1 —a) - TCI
where o is the weighted coefficient that combines
VCI and TCI; most of the literature assigns o = 0.5.
CEMR-1 < 40%
ECMWF’s CEMR is generated from a complex dy-  1-month indicates low
Chance of Exceed- L o
. . . namic climate prediction model that uses a range forecast chance of exceed- 0640
ing Median Rain- . . . o . . . 2015 to now
of initial conditions and evolves them for 50 en- conditions ing median (~18 km)
fall [51,52] . .
semble members. projected  rainfall for the next
month

These selected inputs were temporally limited in their availability which restricted
the beginning of the study period to January 2015.

For this study, SPI and VHI data were obtained through the World Meteorological
Organisation’s (WMO's) Space-based Weather and Climate Extreme Monitoring
(SWCEM) products [53]. Further SPI data were obtained from the Multi-Source Weighted-
Ensemble Precipitation (MSWEP) dataset [54]. WMO SWCEM provides access to satellite
precipitation estimates and derived products from the USA National Oceanic and Atmos-
pheric Administration’s (NOAA’s) Climate Prediction Center (CPC) and the Japan Aero-
space Exploration Agency (JAXA). We used 3-month SPI and VHI, which are both calcu-
lated on a moving 3-month window, for example, March SPI-3 and VHI-3 use January-
March rainfall and NDVI and BT data, respectively.

Evaluating the accuracy of WMO SWCEM satellite precipitation estimates, Chua et
al. (2020) [30] identified JAXA's satellite precipitation product, the Global Satellite Map-
ping of Precipitation technique (GSMaP) [55,56], as the best performing over PNG com-
pared to CMORPH satellite precipitation products produced by the NOAA/CPC. Chua et
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al. (2020) [30] further identified that VHI was able to reliably capture the spatial and tem-
poral aspects of a severe drought period in PNG.

Based on the findings of Chua et al. (2020) [30], the GSMaP-derived SPI was selected
as the input into the monitoring component of the I-lEWS for drought. However, in this
study, we also examined the MSWEP-derived SPI given recent reports of its notable per-
formance in the Pacific [54]. It is out of the scope of this study to evaluate and validate the
performance of this dataset in comparison to GSMaP data, but nonetheless, we compared
GSMaP and MSWEP SPI timeseries to analyse dataset implications and accuracy for
drought detection using the developed I-EWS.

The predictive input for the drought I-EWS was seasonal to sub-seasonal (525) fore-
casts from the European Centre for Medium-Range Weather Forecasts (ECMWF) [51]. The
ECMWE is one of the world’s leading global weather and climate forecast-producing cen-
tres, with high-accuracy forecasts issued frequently.

The inputs selected for this study —the SPI, VHI and CEMR—were downloaded as
raw gridded NetCDF datasets. The SPI, VHI and CEMR for each 0.10° grid cell over PNG
were then extracted and averaged both nationally and across PNG’s 22 provinces. This
allowed us to deem the input variability between a national and a provincial scale and
thus indicate whether this system should be downscaled to a provincial level.

2.4. Decision Rules

The selected inputs were then combined to form thresholds of drought warning that
fall under escalating categories of “DROUGHT WATCH”, “DROUGHT ALERT” and
“DROUGHT EMERGENCY”. The decision rules for each warning category are presented
in Figure 2 and accompanied with a qualitative description.

SPI-3, VHI3 and CEMR of each grid cell

eco

oo . =
"DROUGHT SPI-3 <-1 AND rainfall deficiencies AND
EMERGENCY" VHI-3 <40 AND decreased vegetation health AND
DECISION RULES .
CEMR-1 <40 drier seasonal forecast.

DROUGHT “DROUGHT (SPI-3 <-1 OR (rainfall deficiencies OR
" I-3 <4 i 1l
EMERGENCY DECIgIle’:{LULES VHI-3 < 40) AND decreased vegetation health) AND
CEMR-1 < 40 drier seasonal forecast.

YE‘S/\TO

DROUGHT OROUGHT SPI-3 <-1 OR rainfall deficiencies OR
ALERT WATCH" VHI-3 <40 OR decreased vegetation health OR
PECISIONSULES CEMR-1 <40 drier seasonal forecast.
YEs_~ N\ MO
DROUGHT . :
WATCH NON-DROUGHT

Figure 2. Drought I-EWS decision rule process.

To generate the drought alert level, the SPI, VHI and CEMR inputs are masked over
the ocean and interpolated to a 0.10° resolution. Then, the SPI, VHI and CEMR values for
each 0.10° grid cell within PNG are passed through the decision rules. A raw gridded file,
a plotted file and a provincial status file are outputted. The gridded file contains raw
NetCDF data which are then plotted using the Matplotlib plotting library. This plotted
file indicates the drought warning level of each grid cell in PNG in visual form. The pro-
vincial status file is a comma-separated value (.csv) file that detects the overall drought
warning level for each province in PNG. The overall status is determined by an algorithm
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that counts the occurrence of each WATCH, ALERT and EMERGENCY grid cell in a prov-
ince and selects the modal warning level to be the overall provincial status. In the case
where more than one mode is detected, the highest urgency mode is selected. A diagram
indicating this described workflow that produces warnings from these decision rules is
provided in Figure 3.

3-month Standardised
Precipitation Index

1-month Chance of
Exceeding Median Rainfall

3-month Vegetation
Health Index

missing SPI data added at coastlines via method

of moments + interpolation of raw data

|

|

Gridded files (.nc)

Provincial Status (.csv)

Plotted files (.png)

T Province Modal Status
fiog) I Bougainville _
N oL
R 5 _ Central
% B g Chimbu_Simbu Watch
R .. East_New_Britain
: m;:. ” East_Sepik Emergency

= O Eastern_Highlands Watch

Figure 3. Workflow diagram of the drought I-EWS in this study.

Drought grids, maps and status summaries were generated for the temporal period
of overlap between all datasets. Periods of heightened drought risk were then analysed in
detail for the possible lead time of the drought warning provided.

Throughout this study, the authors worked closely with the PNG National Weather
Service and prospective drought I-EWS stakeholders. Two CREWS-PNG stakeholder
workshops were held in November 2020 and May 2021 to introduce the results of this
research and its implications. This also created a forum to open a dialogue and gather
feedback from stakeholders and users.

3. Results

To first visualise the evolution of I-EWS inputs, timeseries of all three inputs were
generated over the study period (January 2015-April 2021). These timeseries are depicted
in Figures 4-6. The black dotted line indicates the drought threshold for the respective
input.
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—2.0 1 —— MSWEP SPI-3 (40 year record)
=25 4 === SPI threshold
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Figure 4. Three-month Standardised Precipitation Index averaged over PNG from 2015 to 2020 for the two datasets ana-
lysed in this study —GSMaP and MSWEP.
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Figure 5. Three-month Vegetation Health Index averaged over PNG from 2015 to 2020.
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Figure 6. Chance of exceeding median rainfall probability averaged over PNG from 2015 to 2020.
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There are evident synergies between Figures 4-6 —with a strong dry signal detected
throughout 2015. The mean, median and standard deviation of the nationally averaged
SPI, VHI and CEMR datasets for the study period (January 2015-April 2021) are provided
in Table 2.

Table 2. Mean, median and standard deviation for nationally averaged SPI-3, VHI-3 and CEMR-1
for the month ahead.

National Standard

Input National Mean National Median . .
Deviation
GSMaP -0.01 0.18 0.72
SPI-3
MSWEP 0.31 0.47 0.62
VHI-3 44.75 45.68 3.21
CEMR-1 53.80 57.72 19.85

The means, medians and standard deviations provide insight into the spread of the
data, and all inputs have means and medians above their respective thresholds (SPI=-1,
VHI =40 and CEMR = 40). This indicates that the inputs spend most of their time in “non-
drought” conditions which is what would be realistically expected. However, GSMaP SPI
and MSWEP SPI differ in their central tendencies—with GSMaP experiencing a slightly
negatively biased mean compared to MSWEP’s positively biased mean. This is likely be-
cause GSMaP SPI uses a 20-year record beginning in 2000 compared to MSWEP’s 40-year
record. In this shorter 20-year record, PNG experienced significantly negative SPI values
in 2015-2016 when the country experienced a severe El Nifio [7]. Since SPI values are
standardised over a particular period, the occurrence of extremely negative SPI events
over a relatively shorter record has the potential to lead to a more negative central ten-
dency. The median is less severely affected by outliers which is likely why the GSMaP
median is less negative over the same period (it is, in fact, positive). MSWEP’s SPI, on the
other hand, is observed to experience a more positive mean and median which indicates
the possibility of a positive bias in the dataset. Future research may choose to finetune SPI
thresholds according to a decile or percentile analysis given that our findings indicate that
PNG’s SPI “baseline” is non-zero. However, for the purposes of this study, we use the
globally accepted —1 threshold and choose to use the MSWEP-derived SPI in preference
to the GSMaP-derived SPI purely due to its longer precipitation record.

3.1. Analyses at Provincial Level

Timeseries analysis on a provincial scale was conducted to examine how the provin-
cial data spread may vary from the national data spread. Significant variability between
provincially and nationally averaged timeseries of SPI, VHI and CEMR is evident (see
Figures 7-9, respectively). Further details on the mean, median and standard deviation of
input data for each province can be found in Appendix A Tables A1-A3, respectively.
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The significant variation in the means, medians and standard deviations provides
insight into the complex nature of PNG'’s climate and highlights the importance of observ-
ing drought on a provincial scale as opposed to a national scale. Thus, for this reason, the
I-EWS scoped in this research downscales warning outputs to a provincial level. Given
that disaster management in PNG is similarly relayed to Provincial Disaster Committees
[38], this decision will be practical for the effective management and mobilisation of re-
sources. Downscaling beyond the provincial level (such as to districts or local-level gov-
ernment areas) would incur significant computational costs, and the resolution of the un-
derlying data is unlikely to be able to reflect the precision depicted by these scales. Given
these considerations, we maintain a provincially scaled I-EWS analysis.

3.2. Drought Evolution

By applying the decision rules described in Section 2.4, spatio-temporal analysis of
drought early warning for PNG over the study period was conducted, and the resultant
maps and summaries were generated. An example of a drought warning map (September
2015 and May 2016 experimental product) is provided in Figure 10. A stacked area chart
that depicts the proportion of grid cells in each drought warning category for all of PNG
is provided in Figure 11. A detailed summary of the drought warning levels for each PNG
province throughout the study period is presented in Figure 12.

Non-Drought Drought Watch Drought Alert Drought Emergency

Figure 10. Drought warning maps for (a) September 2015 and (b) May 2016 (experimental product).

Percent Area (%)

Non-Drought Drought Watch Drought Alert Drought Emergency

Figure 11. Drought warning stacked area chart over the study period.
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Figure 12. Drought warning stacked area chart over the study period.

Several general trends can be observed from this summary figure—most promi-
nently, the severe dry period of late 2015 and early 2016. This dry period was induced by
a particularly strong El Nifio that led to extreme drought and famine in PNG. It is widely
acknowledged that this drought intensified in September of 2015, with drought relief be-
ing released after this point [7,30]. The I-EWS clearly detects this intensification and shows
that an early warning could have been possible for several months before the dire inten-
sification of drought conditions. This is a novelty of our method —despite our CEMR pre-
dictive component only providing a 1-month forecast lead time, it is evident that by com-
bining this forecasting input with observational satellite monitoring inputs, a drought
warning can be made at an even longer lead time than with each input alone.

It is in this “window of action” that proactive drought action could have been taken.
For example, drought-resistant crops could have been sowed deeper into the ground;
communities could have had more time to travel to “wantok” (clan)-based friends and
family outside the highlands where frost was not as destructive; agencies could have had
more time to prepare famine response actions; and governments could have prepared and
prioritised funds for provinces with an increased drought warning. Instead, in late 2015,
drought-related reduced cloud cover led to widespread frosts in the highlands that de-
stroyed subsistence crops and affected an estimated 2.4 million people, with recovery
found to be reactive and dependent on foreign aid [7]. The evolution of this severe drought
event is further visualised in Figure 13.
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Figure 13. Drought I-EWS evolution of the 2015-2016 El Nino-induced drought in PNG. Dark grey bar indicates months
when the El Nifio was active as declared by the Bureau of Meteorology [57].

Historical analysis shows that El Nifio and La Nifia events impact Western Pacific
rainfall in varying degrees [44]. In analysing rainfall data over PNG, Smith et al. (2013)
[44] found the southern PNG mainland to exhibit a linear wetting and drying pattern from
La Nifia and EI Nifio, respectively; on the other hand, it was noted that PNG’s north-east-
ern islands and some Highland regions exhibit non-linear negative rainfall anomalies in
both positive and negative El Nifio Southern Oscillation (ENSO) events. There is even
significant fluctuation in rainfall variation depending on the time of year an ENSO event
occurs as well as the type of El Nifio that develops—a Cold Tongue El Nifio has been
found to have a lesser drying effect in the north-east than a mixed or Warm Pool El Nifio
[58].

MSWEP rainfall data from 1980 to 2021 were examined —with years stratified accord-
ing to La Nifia and El Nifio years according to the Bureau of Meteorology’s declaration of
such years [57]. We plot rainfall deciles in all La Nifia and El Nifio years compared to
climatology for the base period 1980-2020 in Figure 14a,b, respectively. This analysis
method was also conducted over Australia and was found to be consistent with the Bu-
reau of Meteorology’s analysis of ENSO-impacted rainfall for Australia [59,60], confirm-
ing it’s validity over PNG. The results indicate a negative rainfall anomaly over the main-
land in El Nifio years and a positive rainfall anomaly south of the PNG Highlands associ-
ated with La Nifia—with the strongest anomaly signal over Western Province. In line with
the findings of Smith et al. (2013) [44], the analysis indicates a tendency towards dry con-
ditions over the New Guinea islands in both ENSO warm and cold events, with La Nifa
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conditions having a stronger drying effect.

\‘5

Base period: 1980 to 2020

Base period: 1980 to 2020
La Nifia years: 1988, 1989, 1995, 1998, 1999, 2000, 2007, 2010, 2011, 2020 El Nifo years: 1982, 1987, 1991, 1992, 1994, 1997, 2002, 2006, 2015

I I

3 4 5 6 7 8 9 10
MSWEP Rainfall Deciles

Figure 14. MSWEDP rainfall deciles in (a) La Nifia and (b) El Nifio events compared to a base period of 1980-2020.

Despite this conceptually simple ENSO-related variation in rainfall, it is important to
note that year-to-year rainfall variability in PNG is also impacted by other Pacific and
Indian Ocean climate drivers, e.g., Indian Ocean Dipole (IOD). These influences can inter-
act with ENSO impacts to weaken or exacerbate the reported tendency in the inter-annual
rainfall variability. In Figure 15, we compute the MSWEP rainfall deciles in the (a) Nega-
tive and (b) Positive IOD years as declared by the Bureau of Meteorology [61]. This IOD
analysis was conducted over austral winter and spring months as at other times of the
year, annual rainfall in the region is dominated by monsoonal impacts and thus does not
accurately reflect IOD impacts alone. We further investigate how the interaction of both
Indian Ocean and Pacific Ocean climate drivers exacerbates each other’s impacts in com-
bined (c) Negative IOD and La Nifia years and (d) Positive IOD and El Nifo years [62].
Years where ENSO and IOD are inactive are deemed climatologically “neutral” in this
analysis, and a plot of decile values in such years is provided in Appendix A Figure Al.

Of note is the exacerbated positive and negative rainfall extremes in concurrent Pa-
cific and Indian Ocean events. In Negative and Positive IOD years, positive and negative
rainfall biases are observed, albeit at a reduced intensity compared to the biases observed
in the La Nifia and El Nifio years. However, in the combined IOD and ENSO events, rain-
fall impacts are extreme, with the New Guinea islands exhibiting a stronger negative rain-
fall bias than in the La Nifia or Negative IOD years alone.
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Figure 15. MSWERP rainfall deciles in (a) Negative IOD, (b) Positive IOD, (c) Negative IOD and La Nifia and (d) Positive
IOD and EI Nifio events compared to a base period of 1980-2020.

Another important observation is that 2015 was a combined El Nifio and Positive
IOD year. It is evident that both these climate drivers in tandem led to devastating nega-
tive rainfall anomalies with the induced drying trend observed in Figure 13, with the
southern mainland showing a strong dry signal. The combined 2015-2016 El Nifio and
Positive IOD event was notably strong and thus impacted the whole nation, but stronger
dry impacts can be observed over southern PNG—particularly as El Nifio weakened in
January of 2016 where southern PNG provinces are the last to remain in ALERT and
EMERGENCY conditions (Figure 13). A WATCH similarly begins to develop over large
parts of the southern mainland —with the New Guinea islands in the north-east being the
last to enter drought conditions.

Aside from the stark dry period observed in late 2015, one other dry event is detected
by the I-EWS that is the weaker dry period of late 2020 and early 2021. This period coin-
cides with a La Nifia event. As depicted in Figure 14, historically, dry conditions in north-
eastern PNG are associated with both El Nifio and La Nina impacts. The evolution of the
dry conditions associated with the 2020-2021 La Nifa is presented in Figure 16.
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Figure 16. Drought I-EWS evolution of the 2020 La Nifia-induced dry period in PNG. Dark grey bar
indicates months when the La Nifia was active as declared by the Bureau of Meteorology [57].

The weak dry event is evidently detected over the country, with the first provinces
to enter DROUGHT WATCH being New Ireland, East and West New Britain, Bougain-
ville and Manus in the north-east of the nation. These New Guinea islands are also the last
to recover from this dry period, with significant March rainfall weakening their drought
status but not reducing it to non-drought conditions. This drought event was relatively
weak with no impacts reported in the literature to date. In this examined case, the warning
lead time is around two months as dry conditions intensified in February 2021 and No-
vember and December 2020 were the first months that DROUGHT WATCHES became
widespread. However, in a case such as this, the warning lead time is not as important as
the system’s ability to maintain a heightened yet weak status. Overall, the presented case
studies demonstrate that the developed I-EWS has potential for detecting both weak and
strong dry events.

4. Discussion
4.1. System Limited by Spatial Resolution of Inputs

For the purposes of this study, the drought I-EWS was interpolated to the finest res-
olution of the inputs’ native resolutions. This was 0.1° (~10 km) for the SPI and VHI. This
resolution is finer than the native resolution of CEMR which has a native resolution of
0640 (~18 km). This means that the resolution of the I-EWS is restricted by the resolution
of the inputs. This is particularly problematic for small provinces such as the National
Capital District, which has only one interpolated 0.1° grid cell within its domain. This
results in the National Capital District having a heightened drought warning status com-
pared to the other larger provinces (Figure 12). Any variability in that one grid cell will
thus bias the variability of the whole province. This is starkly contrasted to all the prov-
inces in PNG which have an average of 29 grid cells within their domain, with a maximum
of 138 grid cells in Western Province. Having more samples per province provides a more
accurate and robust representation of the data, reducing the effects of outliers in the do-
main. To address this, it is recommended for space-based data providers (NOAA/CPC,
JAXA, etc.) to aspire towards issuing finer native resolutions for the SPI and VHI where
possible. For PNG, this only affects one province, but for smaller island states in the West
Pacific, this spatial resolution would greatly impact the overall I-EWS performance.
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4.2. Dataset Temporal Availability

For this study, we chose to use the MSWEP-derived SPI in preference to the GSMaP
SPI due to its longer temporal range of data availability and promising performance in
the West Pacific [54]. However, we recognise that each precipitation dataset has its defi-
ciencies resulting from how it blends gauge data, the accuracy of algorithmic inputs and
its performance over orography and in the tropics [63]. Since the SPI is a normalised pre-
cipitation index, we assume 0 to be equivalent to “normal” conditions. However, this is
not always the case over the tropics. Deo (2011) [64] performed a Mann-Kendall test to
identify significant SPI trends in Fiji and found that most stations indicated negative val-
ues, depicting dry conditions in both the Northern and the Western Divisions. The study
further concluded that the temporally limited range of satellite datasets can limit drought
diagnosis and detection through the SPI alone. In attempt to address this, we included
other drought indices such as the VHI which are independent of the SPI and, when com-
bined with escalating negative SPI values, can provide a somewhat holistic observation of
evolving dry conditions. Future studies may further address SPI drought detection limi-
tations by not assuming SPI = 0 to be the baseline of “normal” conditions and may instead
use statistical machine learning approaches to determine an appropriate non-zero SPI
threshold for “normal” and “dry” conditions. Additionally, there may also be scope for a
decile-based SPI threshold, where, instead of using SPI = -1 as a drought threshold (cor-
responding to the lowest 15% of precipitation records), an SPI threshold of SPI = -1.28
may be preferred (corresponding to the lowest 10% of precipitation records) [49]. Both
decile and machine learning methods would require significant further research over Pa-
pua New Guinea.

4.3. Minimising Rapid State Transitions

Maintaining users’ trust in the system is key in ensuring the system’s warnings are
actionable. To avoid wavering trust, it is important to minimise rapid drought state esca-
lations and de-escalations—especially when such state transitions jump or skip warning
levels (i.e., “WATCH” to “EMERGENCY” or “ALERT” to “NON-DROUGHT”). Minimis-
ing such transitions can be addressed in two fundamental ways: through automation or
through climate expert discretion. Automation minimisations may be achieved by intro-
ducing effective entry and exit points for each state (e.g., the watch entry rule is as de-
scribed in Table 2, but to exit a watch status, consecutive days without rain must be above
a certain number of days). Alternatively, or perhaps even in tandem, expert discretion
from the prospective national weather service issuing warnings would also be critical in
minimising rapid state transitions. Currently, the drought status for a given province is
determined on a modal basis where the majority status of grid cells in a province deter-
mines the overall province status and, in the case of equivalent modes, the system chooses
the highest alert level. However, this relatively arbitrary decision between two equally
high modal states could be conducted by a climatologist in the PNG National Weather
Service. To illustrate what this may look like, Figure 12 has been modified, and the results
with grey squares to indicate months where equally high modal states were detected are
presented in Figure 17. In cases such as these, experts could use their knowledge and on-
ground reports to create smooth drought state transitions. For example, consider East
New Britain (row 4) in July of 2015. In Figure 12, East New Britain jumps from a
“WATCH” in June to an “ALERT” in July and then back to a “WATCH” in August as
there is an equal number of grid cells in both “WATCH” and “ALERT” in July. A clima-
tologist having background information about equally high modal statuses, as presented
in Figure 17, may consult East New Britain’s Provincial Disaster Committee for on-ground
drought reports and choose to maintain East New Britain’s “WATCH” status in July to
minimise status wavering.
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Figure 17. Same as Figure 12 but for months with equally high modal statuses indicated in grey.

Such user-centred expert discretion will be key in maintaining system trust, but we
caution that it may need to be accompanied with careful standard operating procedures
[16,65].

4.4. False Alarms and Success Rates

To further quantify the efficiency of such an I-EWS for drought, there needs to be
significant validation of the initial results and insights. Future research in progressing this
I-EWS intends to analyse the hit and miss rates of drought early warning—this requires
the use of an independent variable for validation. Several remote sensing drought index
studies used the SPI or VHI itself to verify the results of their drought findings; however,
that would be inappropriate for this study as both indices are direct inputs into the system
[66,67]. Ji et al. (2018) [68] faced a similar issue in their study and used crop yield as an
“independent variable” against which to analyse drought detection. They acknowledged
that even though crop yield is affected by several other extraneous variables, it was still
the best option available for their research given it was removed from the direct inputs of
their analysis. A similar proxy may be used for PNG depending on data availability —
given that most agriculture in PNG is subsistence in nature, staple crop yield may be more
appropriate. This could be interesting for PNG given that drought poses significant
threats to the nation’s food security and is often the tipping point in the lead up to a food
shortage crisis [69]. Such future verification should attempt to use robust mathematical
verification processes such as hit and false alarm rate analysis and is the focus of our up-
coming validation study [66,70].

4.5. Soil Moisture

The I-EWS for drought scoped in this study evaluates more than just meteorological
drought through its consideration of both precipitation and vegetation conditions. How-
ever, the agrometeorological nature of this I-EWS could be further strengthened with the
explicit inclusion of soil moisture (SM). For this study, SM inclusion was limited by a lack
of robust SM satellite measurements or water balance models for PNG [71]. In their
drought detection study over PNG, Chua et al. (2020) [30] further identified that SM sat-
ellite detection is likely to be difficult over PNG given its vast dense tropical rainforests
and their interference with SM satellite retrieval mechanisms. Not having explicit SM in-
clusion may be a current limitation of this research; however, a study by Halwatura et al.
(2017) [48] found that the SPI itself may be effective at detecting soil moisture deficiencies
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over Australia. These results cannot directly be applied to PNG; however, we considered
them in our decision to incorporate the 90-day SPI in preference to the 30-day SPI as it is
widely acknowledged that the latter is not able to capture seasonal agrometeorological
deficits as the longer-period SPI is able to [72].

4.6. Translating Warnings to Impacts

Throughout the I-EWS development process, stakeholder discussions highlighted
the need for translation of warnings into actionable impacts. This is an area of growing
complexity in disaster risk reduction efforts and is widely acknowledged to be crucial
towards long-term EWS success [12]. Historically, the communication and dissemination
of early warnings are identified within the literature as a general weakness of EWS design
and implementation globally [65]. This is particularly problematic in PICs where EWSs
may require a robust scientific and technical background that may not be communicated
impactfully and in ways that align and complement existing traditional knowledge. The
literature identifies numerous examples when such limitations in both early warning and
seasonal climate forecast communication have led to significant misunderstandings
within local communities. A study by Andersson et al. (2019) [19] investigated the barriers
of seasonal forecast information uptake in South Africa’s Limpopo Province. The study
highlighted the impacts of information misunderstandings whereby one participant mis-
took a 40% probability of rain with an expectation of 40 mm of rainfall. This indicated the
importance of probabilistic information being issued with some impactful or educational
context to illustrate what may eventuate for users when a 40% probability of rain is issued.
In the case of EWSs, such conclusions are directly relevant to the usability and the action-
ability of warnings. If users cannot place warnings in the context of their livelihoods, then
the EWS is ultimately futile in its efficacy. Concurrent research has sought to identify the
determinants of actionability for EWSs in PICs and found several key factors conducive
to successful early warning communication. These findings are listed in Table 3.

Table 3. Determinants of actionable early warning communication in Pacific Island Countries as identified by a literature

review.

Determinants of Actionable Early Warning Communication

Trust

Gender-Specific Inclusions Traditional Knowledge Inclusions

Trust in warnings directly affects ac-

tionability [73].

Cognitive, emotional and organisa-
tional trust have differing impacts on

risk perception [74].

* Gender-based divisions are prevalent
in Pacific Island societies [77].
= Women have been identified to be

* Traditional knowledge is commonly
used by Pacific Island communities to
prepare and respond to disaster [81-
83].

= In the face of climate change where

unique and trusted disseminators of
response and recovery in times of dis-
aster [78].

Medium of warning communication
affects trust placed in warnings” ac-
tionability [73].

Mediums used for warning commu-
nication need to be diverse and must
minimise population “blind spots”,
i.e., those without mobile phones or
radios [75].

Language of warning affects accessi-
bility and actionability [76]

In PNG, women undertake 80% of
subsistence agriculture, making their
inclusion vital from a food security
perspective [79].

Aipira et al. (2017) highlighted sev-
eral priorities for successful inclusion
[80].

It is prefaced that any such inclusion
in future research should not further
burden existing gender divisions
[78,80].

disasters will be more frequent, this
knowledge needs to be further inte-
grated with scientific knowledge.
Such inclusions ensure that disaster
responses focus on cultural continuity
and not acculturating aid [84].

There are few studies that explicitly
investigate the scientific and tradi-
tional knowledge integration process.
The work of Mercer et al. (2010) is
formative in this field [84].
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Our research team continues to place emphasis on such complementary qualitative
I-EWS research, and we encourage future research to similarly investigate translating
quantified warnings into qualitative impacts that communities can trust and understand.

5. Conclusions

This study presented a proof of concept of an agrometeorological drought I-EWS for
PNG that pairs satellite remote sensing data with outputs from probabilistic forecasting
models. The SPI, VHI and CEMR were combined as monitoring and forecasting compo-
nents of an EWS. Thresholds and decision rules were defined from these inputs to trigger
early warnings for three distinct stages—”DROUGHT WATCH”, “DROUGHT ALERT”
and “DROUGHT EMERGENCY”. Furthermore, downscaling drought early warning to a
provincial level provides warning granularity that would otherwise be missed at the na-
tional level. The evolution of the I-EWS through 2015 to 2021 was examined, and it was
found that significant early warning for drought is possible 3-5 months in advance. The
lead time detected by this I-EWS indicates the significance of a window of action and
highlights how proactive action could be operationalised and enabled in a systematic way.
We conclude that the developed I-EWS demonstrated an ability to detect both strong and
weak drought events, and this study illustrates the promising potential for its operational
implementation over PNG. However, such a system would need further iteration, verifi-
cation and community engagement prior to operationalisation. The system’s conceptually
simple design and its openly sourced satellite and forecasting inputs provide a valuable
proof of concept for use in other drought-vulnerable countries in the Asia-Pacific region.
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Appendix A

Table Al. Mean, median and standard deviation for provincially averaged SPI-3.

. Provincial Mean Provincial Median Provincial SPI-3
Province

SPI-3 SPI-3 Standard Deviation
(national —from Table 3) 0.32 0.48 0.62
Bougainville 0.20 0.23 0.77
Central 0.19 0.32 0.84
Chimbu/Simbu 0.21 0.28 0.83
East New Britain 0.55 0.73 0.67
East Sepik 0.45 0.52 0.59
Eastern Highlands 0.45 0.53 0.75
Enga 0.35 041 0.62

Gulf 0.11 0.25 1.01
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Hela
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Madang
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Southern Highlands
West New Britain
West Sepik
Western
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0.14
0.33
0.50
0.25
0.33
0.64
0.25
0.62
0.39
0.01
0.45
0.45
0.09
0.37

0.36
041
0.49
0.28
0.50
0.73
0.20
0.72
0.40
0.13
0.55
0.63
0.30
0.41

0.95
0.63
0.64
0.93
0.78
0.73
0.92
0.67
0.79
1.03
0.74
0.67
0.89
0.67

Table A2. Mean, median and standard deviation for provincially averaged VHI-3.

Provincial Mean Provincial Median Provincial VHI-3

Province VHI-3 VHI-3 Standard Deviation
(national —from Table 3) 44.63 45.55 3.21
Bougainville 42.18 42.06 2.34
Central 44.25 45.15 2.45
Chimbu/Simbu 44.79 45.42 2.70
East New Britain 42.52 42.56 1.90
East Sepik 44.54 45.22 5.10
Eastern Highlands 44.14 43.91 2.78
Enga 41.61 41.85 2.64
Gulf 43.52 43.32 3.77
Hela 42.44 42.92 1.98
Jiwaka 43.80 44.68 3.19
Madang 44.93 45.66 3.96
Manus 45.06 45.32 2.84
Milne Bay 45.55 45.70 2.75
Morobe 44.47 45.30 2.97
National Capital District 49.92 49.64 8.89
New Ireland 43.86 43.80 1.94
Northern Oro 46.59 46.94 3.64
Southern Highlands 42.90 43.27 2.18
West New Britain 43.44 43.75 1.87
West Sepik 44.44 44.90 3.27
Western 47.05 46.75 5.80
Western Highlands 45.05 45.31 3.55

Table A3. Mean, median and standard deviation for provincially averaged CEMR.

Province

Provincial Mean Provincial Median Provincial CEMR

CEMR CEMR Standard Deviation
(national —from Table 3) 53.79 57.92 19.90
Bougainville 60.07 63.07 22.18
Central 50.22 52.90 22.82
Chimbu/Simbu 50.74 57.48 23.75
East New Britain 62.37 66.18 23.21
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East Sepik 59.18 57.57 22.18
Eastern Highlands 53.62 59.92 24.15
Enga 53.50 56.39 20.67
Gulf 48.61 50.56 25.34
Hela 52.71 58.35 24.59
Jiwaka 51.66 54.86 23.46
Madang 57.35 58.28 23.63
Manus 45.93 47.86 30.67
Milne Bay 49.62 54.82 26.58
Morobe 59.17 65.10 24.13
National Capital District 46.19 47.11 23.79
New Ireland 58.04 64.33 26.64
Northern Oro 55.19 61.08 25.17
Southern Highlands 48.32 52.50 26.58
West New Britain 57.35 63.16 24.37
West Sepik 57.01 59.51 23.30
Western 49.10 53.90 28.38
Western Highlands 50.27 52.60 24.25

Mean annual rainfall deciles in ‘neutral' years

Q
%
q
o

1 2 3 B 5 6

MSWEP Rainfall Deciles

Base period: 1980 to 2020

Neutral years: 1980, 1984, 1985, 1986, 1990, 1993, 2001, 2003, 2004, 2005, 2008, 2009, 2013, 2017, 2018

Figure A1l. MSWEP rainfall deciles in “neutral” years (ENSO and IOD inactive years).
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