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Abstract: Recently, hyperspectral image (HSI) classification has become a popular research direction
in remote sensing. The emergence of convolutional neural networks (CNNs) has greatly promoted the
development of this field and demonstrated excellent classification performance. However, due to the
particularity of HSIs, redundant information and limited samples pose huge challenges for extracting
strong discriminative features. In addition, addressing how to fully mine the internal correlation of
the data or features based on the existing model is also crucial in improving classification performance.
To overcome the above limitations, this work presents a strong feature extraction neural network with
an attention mechanism. Firstly, the original HSI is weighted by means of the hybrid spectral–spatial
attention mechanism. Then, the data are input into a spectral feature extraction branch and a spatial
feature extraction branch, composed of multiscale feature extraction modules and weak dense feature
extraction modules, to extract high-level semantic features. These two features are compressed and
fused using the global average pooling and concat approaches. Finally, the classification results are
obtained by using two fully connected layers and one Softmax layer. A performance comparison
shows the enhanced classification performance of the proposed model compared to the current state
of the art on three public datasets.

Keywords: hyperspectral image classification; deep learning; attention mechanism; multiscale
feature extraction; feature fusion; skip connection

1. Introduction

Hyperspectral remote sensing, namely, hyperspectral-resolution remote sensing, refers
to the use of many very narrow electromagnetic wave segments (usually <10 nm) to obtain
relevant data from the target area. The HSI is acquired using an imaging spectrometer that
provides detailed spectral information in a narrow range of continuous wavelengths [1].
Benefitting from the high spectral resolution, the resulting HSI shows advantages in
identifying various land-cover categories or targets [2]. It enables substances that cannot
be detected in wideband remote sensing to be detected in hyperspectral data.

In recent years, due to the high dimension and massive data of HSIs, the analysis
and processing of HSIs has become one of the hotspots in remote sensing image research.
The process has been widely used in ocean detection [3,4], mineral exploration [5,6], road
detection [7], vegetation analysis [8,9], national defense and military applications [10,11],
etc., and it is worthy of further research.

The difference between HSI and RGB images is that an HSI divides the spectral dimen-
sion in a very detailed way based on an RGB image, and then forms a three-dimensional
data cube with multiple bands stacked in sequence. HSI classification refers to analyzing
the spectral and spatial information of all categories of ground objects in the HSI, selecting
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the features, dividing the feature space into non-overlapping subspace through various
methods, and then dividing each pixel in the image into each subspace.

In recent decades, deep learning technology [12–14] has become one of the most popu-
lar research fields in artificial intelligence. It has made breakthroughs in many fields such as
image processing [15,16], speech recognition [17], natural language processing [18], and so
on. It is currently one of the most advantageous technologies applied to HSI classification
tasks. Based on the particularity of HSIs, many spectral bands and neighborhood pixels of
the target pixel all contain significant features. The effective use of the spectral and spatial
information of the data is the key to extracting robust and discriminative features. A 3D
CNN has the characteristics of parameter sharing and local perception, which fit the special
research requirements of HSIs. Therefore, most of the classification models proposed in
recent years are based on the 3D CNN approach. Lee et al. [19] proposed a contextual deep
CNN, which jointly utilizes the local spectral–spatial relationship of adjacent single pixels
to optimally explore local contextual interactions. Zhong et al. [20] designed an end-to-end
spectral–spatial residual network, which uses residual connections to reduce decreases
in accuracy caused by increases in network depth. Wang et al. [21] proposed an end-to-
end fast dense spectral–spatial convolution model, which combines different convolution
kernel scales with dense connections in order to extract features. Roy et al. [22] used a
hybrid 2D-3D CNN to construct a lightweight end-to-end network model. Ge et al. [23]
constructed a multiscale multibranch feature-fusion HSI classification model based on a
2D-3D CNN, and achieved a good classification performance. Huang et al. [24] proposed
a dual-path Siamese CNN for HSI classification. This model integrates morphological
profiles, a CNN, a Siamese network, and spectral–spatial feature extraction technology, and
achieves good classification results. Safari et al. [25] designed a neural network that com-
bines different convolution kernels to effectively learn joint spatial–spectral features on a
multiscale, which achieves better classification effects on high-resolution datasets. Praveen
et al. [26] proposed a classification model combining traditional methods with CNN, and
achieved good performance. In [27], a lightweight spectral–spatial convolution model was
proposed to replace the convolution layer. This model consists of cheap transformation
operations, which can greatly reduce the model parameters. Gao et al. [28] proposed a
sandwich CNN based on spectral feature enhancement (SFE-SCNN), which reduces the
interference of mixed pixels by enhancing spectral features.

How to mine the internal correlations of data or features has become a research hotspot
in recent years, with researchers focusing on introducing an attention mechanism to weight
data or features to improve the information utilization. The attention mechanism was
initially used to deal with computation vision tasks [29–31] and showed good performance.
For HSI classification tasks, attention mechanisms are also effective. Typically, attention
mechanisms are added at the beginning or end of the neural network models. According
to their position in the model, they can be divided into preprocessing-based attention
mechanisms and postprocessing-based attention mechanisms.

The attention mechanism based on preprocessing is generally located at the initial
stage of the model, directly processing the original HSI data and mining the structural
characteristics of the original data [32–34]. Yu et al. [35] proposed a spectral–spatial
dense CNN model with a feedback attention mechanism, using the semantic knowledge
provided by the high level of the dense model to enhance the attention map. Zhu et al. [36]
proposed an end-to-end residual spectral–spatial attention network. Based on the residual
spectral attention module and spatial attention module, the original hyperspectral data
are processed and fed into the CNN for feature extraction. Lin et al. [37] designed an
attention-aware pseudo-3D CNN model, which provides a more detailed description of
each dimension of the input by allocating attention. Guo et al. [38] proposed a feature-
grouped network based on a spectral–spatial connected attention mechanism (FG-SSCA)
to enhance the effectiveness of the data.

The attention mechanism based on postprocessing is usually located in the middle or
end of the model, which improves the feature utilization by weighting high-dimensional
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semantic features. Ma et al. [39] constructed a double-branch multi-attention mechanism
network (DBMA). The extracted features are weighted via the spectral and spatial attention
modules for better classification performance. Compared with DBMA, DBDA [40] intro-
duced a more flexible and adaptive attention mechanism to achieve better classification
performance, while keeping the overall network architecture unchanged. In [41], a 3-D
octave convolution (3D-OC) approach combined with a spectral–spatial attention network
was proposed to extract discriminative spectral–spatial features. A 3D-OC first mines
deep spatial information from high to low frequencies, and also takes spectral information
into account. Then, two attention modules are used to highlight important spatial regions
and special spectral bands to improve feature discrimination. Xue et al. [42] designed a
second-order pooling network based on the attention mechanism, which assigns different
weights to different pixels through a correlation matrix and a learnable cosine distance
function. Zhang et al. [43] proposed a spectral–spatial–semantic network, which combines
a multi-directional attention mechanism for HSI classification. Pu et al. [44] presented a
dual-path CNN model based on an attention mechanism, which adaptively recalibrates the
nonlinear interdependence between features in conjunction with the multiscale attention
mechanism (MS-AM) to alleviate the Hughes phenomenon. Cui et al. [45] proposed a
dual–triple attention network model, which achieves the high classification accuracy of
HSIs by capturing cross-dimensional interactive information. In this model, attention
mechanisms are added during and after the feature extraction process to improve the
effectiveness of features. Zhao et al. [46] proposed a central attention network to effectively
understand the internal correlation between the central pixel and its neighborhood pixels
in a subcube sample. The spectral–spatial features generated by this method showed good
discrimination performance. Xue et al. [47] proposed a hierarchical residual network with
an attention mechanism (HResNetAM), which uses attention mechanisms in the spectral
and spatial feature extraction branches to calibrate the weights of hierarchical spectral and
spatial features.

In this paper, inspired by these advanced methods, we propose a novel compound
multiscale weak dense network to extract strong, robust and discriminative features. In
the preprocessing stage, we construct a hybrid attention mechanism to improve data
effectiveness. Our new deep model consists of two network branches to extract the spectral
and spatial features of HSI, respectively. For each branch of the network, the compound
multiscale feature extraction modules are designed to obtain abundant features at different
scales. Then, the weak dense feature extraction modules are constructed to further extract
more discriminative high-dimensional semantic features. Through concat, we fuse the
features of the two branches. Finally, the fused spectral–spatial features are fed into fully
connected layers and a Softmax layer to obtain the classification results. In addition, in
order to further enhance the performance of the model, a learnable hybrid spectral–spatial
attention mechanism is designed for data preprocessing.

The main contributions of this paper are as follows:

(1) A compound multiscale weak dense network model combining a hybrid attention
mechanism (CMWD-HA) is proposed for HSI classification. This model shows good
classification performance and high efficiency;

(2) A hybrid spectral–spatial attention mechanism is proposed in preprocessing. This
attention mechanism aims to weight HSI data simultaneously at both spectral and
spatial levels. In addition, the mechanism is learnable and consumes fewer computing
resources;

(3) Spectral and spatial multiscale feature extraction modules and weak dense spectral
and spatial feature extraction modules are designed, and spectral feature extrac-
tion branches and spatial feature extraction branches are constructed based on the
above modules. The extracted high-level semantic features can distinguish different
categories of pixels well, with good generalization ability;

(4) Dropout and dynamic learning rates are used to ensure the rapid convergence of the model.
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2. Related Work
ResNet and DenseNet

In deep learning models, the shallow network layers may not fit the data well, resulting
in weak performance. When the number of network layers increases to some extent, the
performance of the model is enhanced accordingly. However, as the number of network
layers increases, some corresponding problems appear. For example, the huge consumption
of computing resources, the overfitting problem, the gradient disappears, the gradient
explodes, and so on. The performance of the model is not always positively correlated with
the increase in the number of network layers. When the number of network layers increases
to a certain range, the network experiences degradation. That is, as the number of network
layers increases, the loss of the training set gradually decreases. When the network depth
continues to increase, the loss will increase instead. When network degradation occurs,
the training effect of a shallow network is better than that of a deep network [48]. For the
data processing inequality in information theory, that is, for a Markov process X→ Y→ Z,
there exists I(X; Y) = I(X; Z), where I represents mutual information. Therefore, in forward
propagation, the deeper the number of network layers, the less original information the
feature contains. Model performance cannot be improved by continuously increasing
network depth. At this time, if the low-level features are transferred to the high level, the
effect of the model will at least be no worse than that of the shallow network, which is the
reason that ResNet was proposed. ResNet guarantees that the network of the N + 1 layer
contains more image information than the N layer. The computation equation of ResNet is
as follows:

xl = Hl(xl−1) + xl−1, (1)

where xl represents the output of the l layer, and Hl represents a nonlinear transforma-
tion. For ResNet, the output of layer l is the output of layer l − 1 plus the nonlinear
transformation of the output of layer l − 1.

DenseNet [49] is based on a similar idea to that of ResNet, but it creates dense con-
nections between all the previous layers and the back layers. The proposal of DenseNet
fully reuses the features, that is, each layer of the network can use the feature maps of
all previous layers. Compared to ResNet, DenseNet promotes gradient backpropagation,
making the network easier to train. In addition, DenseNet can achieve better performance
than ResNet with fewer parameters and lower computing costs. The computation equation
of DenseNet is as follows:

xl = Hl([x0, x1, · · · , xl−1]), (2)

where xl represents the output of l layer, Hl is a nonlinear transformation, and [x0, x1, · · · , xl−1]
indicates concat of the output feature maps from layer 0 to l − 1.

Figure 1a shows the connection mechanism of ResNet, and Figure 1b shows DenseNet.
ResNet is the element-level addition between the input of each layer and the input of the
previous layer. In DenseNet, each layer is connected with all the previous layers through
dimensional stacking (concat). For an L-layer network, DenseNet contains L(L + 1)/2
connections, whereas ResNet contains L connections.



Remote Sens. 2021, 13, 3305 5 of 23

Figure 1. Flowcharts of ResNet and DenseNet. (a) ResNet, (b) DenseNet.

3. Methodology
3.1. Hybrid Attention Mechanism

The attention mechanism is a data processing method in machine learning, which has
been widely used in natural language processing [50,51] and image processing [52,53]. In
HSI processing tasks, scholars have further improved the performance of the model by
introducing attention mechanisms based on the study of a neural network model. The
attention mechanism can help the model to assign different weights to each part of the
input, extract more critical and important information, and enable the model to make more
accurate judgments without exerting too much calculation and storage pressure.

This paper proposes a hybrid attention mechanism, which is located at the beginning
of the network model. From the perspective of a hybrid and learnable approach, we
designed the hybrid attention mechanism to accomplish both spectral and spatial attention
simultaneously. The flowchart of the hybrid attention mechanism is shown in Figure 2,
taking the Indian Pines dataset as an example. After carrying out principal component
analysis (PCA) for dimension reduction, the dimensions of the original data cube change
from 15 × 15 × 200 to 15 × 15 × 30. According to the spectral branch and spatial branch in
the hybrid attention mechanism, the data are processed into 1 × 1 × 30 and 15 × 15 × 1
through AveragePooling3D. Then, the data are constrained between 0 and 1 through the
sigmoid function after a 2D convolution. Among these, the scales of 2D convolution kernels
in the spectral branch and spatial branch are 1 × 1 and 3 × 3, respectively. After sigmoid
processing, the attention matrix of the same dimension as the original data is obtained
through matrix multiplication of the data of the two branches. Finally, the original data
and the attention matrix are multiplied element by element and added to complete the
attention process.
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Figure 2. Flowchart of the hybrid attention mechanism.

3.2. Multiscale Spectral and Spatial Feature Extraction

HSI cubes exhibit the phenomena of “same spectral, different material”, and “same
material, different spectral”, meaning that single-scale features cannot reflect the character-
istics of image pixels well. Therefore, we propose a multiscale spectral feature extraction
module and a multiscale spatial feature extraction module, respectively. In this way, more
local and more global features can be considered. As shown in Figure 3a, for the multiscale
spectral feature extraction module, HSI image cubes are processed by 3D convolutional
layers with scales of 1 × 1 × 3, 1 × 1 × 5, and 1 × 1 × 7, respectively, and then fused by
concat. Finally, feature alignment is performed through a 3D CNN with a kernel scale of
7 × 7 × 7. The multiscale spatial feature extraction module is shown in Figure 3b. We
designed three branches of the neural network to extract multiscale spatial features of
the image cubes. The first branch uses a 3D CNN with the kernel scale of 7 × 7 × 7, and
the second branch uses two layers of a 3D CNN with the kernel scales of 5 × 5 × 5 and
3 × 3 × 3. The third branch uses three layers of a 3D CNN with the same kernel scale
of 3 × 3 × 3. Then, the feature maps extracted from the three branches are also fused
through concat. Finally, feature alignment is also performed by means of a 3D CNN with a
kernel scale of 1 × 1 × 1. So far, multiscale spectral features and multiscale spatial features
have been extracted, respectively. The implementation details of two multiscale feature
extraction modules are shown in Tables 1 and 2.

Figure 3. Flowchart of multiscale feature extraction modules. (a) Multiscale spectral feature extraction module; (b) multiscale
spatial feature extraction module.
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Table 1. The implementation details of the multiscale spectral feature extraction module.

Module Layer Input
Shape

Output
Shape

Kernel
Size Filters Connected

to

Multiscale
spectral
feature

extraction

Input - (15,15,30,1) - - -
Conv3d_111 (15,15,30,1) (15,15,28,16) (1,1,3) 16 Input
Conv3d_112 (15,15,30,1) (15,15,26,16) (1,1,5) 16 Input
Conv3d_113 (15,15,30,1) (15,15,24,16) (1,1,7) 16 Input

Fusion11
(15,15,28,16)
(15,15,26,16)
(15,15,24,16)

(15,15,78,16) - -
Conv3d_111
Conv3d_112
Conv3d_113

Conv3d_114 (15,15,78,16) (9,9,72,16) (7,7,7) 16 Fusion11

Table 2. The implementation details of the multiscale spatial feature extraction module.

Module Layer Input
Shape

Output
Shape

Kernel
Size Filters Connected to

Multiscale
spatial
feature

extraction

Input - (15,15,30,1) - - -
Conv3d_121 (15,15,30,1) (9,9,24,16) (7,7,7) 16 Input
Conv3d_1221 (15,15,30,1) (11,11,26,8) (5,5,5) 8 Input
Conv3d_1222 (11,11,26,8) (9,9,24,16) (3,3,3) 16 Conv3d_1221
Conv3d_1231 (15,15,30,1) (13,13,28,4) (3,3,3) 4 Input
Conv3d_1232 (13,13,28,4) (11,11,26,8) (3,3,3) 8 Conv3d_1231
Conv3d_1233 (11,11,26,8) (9,9,24,16) (3,3,3) 16 Conv3d_1232

Fusion21
(9,9,24,16)
(9,9,24,16)
(9,9,24,16)

(9,9,72,16) - -
Conv3d_121

Conv3d_1222
Conv3d_1233

Conv3d_214 (9,9,72,16) (9,9,72,16) (1,1,1) 16 Fusion21

3.3. Weak Dense Spectral and Spatial Feature Extraction

After multiscale spectral and spatial feature extraction, the features are fed into the
weak dense spectral and spatial feature extraction modules, respectively. In this part of
the process, we weaken the DenseNet structure and only retain skip connections between
adjacent network layers. The input of each network layer is the fusion of the output feature
maps of the previous two network layers. Padding processing is applied to the feature
maps in these two modules to ensure that the dimensions of the feature maps remain
unchanged. In addition, the stride of the last two convolution layers of each module is
set to (1,1,2). The weak dense structure reduces the dimensions of the feature maps while
ensuring the reuse of the feature, which improves the model’s efficiency to some extent.
The implementation details of two weak dense modules are shown in Tables 3 and 4.

Table 3. The implementation details of the spectral weak dense feature extraction module.

Module Layer Input
Shape

Output
Shape

Kernel
Size Filters Connected to

Spectral
weak
dense

module

Conv3d_121 (9,9,72,16) (9,9,72,16) (1,1,3) 16 Fusion_11

Fusion121 (9,9,72,16)
(9,9,72,16) (9,9,144,16) - - Conv3d_114

Conv3d_121
Conv3d_122 (9,9,144,16) (9,9,72,16) (1,1,3) 16 Fusion121

Fusion122 (9,9,72,16)
(9,9,72,16) (9,9,144,16) - - Conv3d_121

Conv3d_122
Conv3d_123 (9,9,144,16) (9,9,72,16) (1,1,3) 16 Fusion122

Fusion123 (9,9,72,16)
(9,9,72,16) (9,9,144,16) - - Conv3d_122

Conv3d_123



Remote Sens. 2021, 13, 3305 8 of 23

Table 4. The implementation details of the spatial weak dense feature extraction module.

Module Layer Input
Shape

Output
Shape

Kernel
Size Filters Connected to

Spatial
weak
dense

module

Conv3d_221 (9,9,72,16) (9,9,72,16) (3,3,3) 16 Fusion_21

Fusion221 (9,9,72,16)
(9,9,72,16) (9,9,144,16) - - Conv3d_124

Conv3d_221
Conv3d_222 (9,9,144,16) (9,9,72,16) (3,3,3) 16 Fusion221

Fusion222 (9,9,72,16)
(9,9,72,16) (9,9,144,16) - - Conv3d_221

Conv3d_222
Conv223 (9,9,144,16) (9,9,72,16) (3,3,3) 16 Fusion222

Fusion223 (9,9,72,16)
(9,9,72,16) (9,9,144,16) - - Conv3d_222

Conv3d_223

3.4. Compound Multiscale Weak Dense Network with Hybrid Attention for HSI Classification

The structure of our CMWD-HA is shown in Figure 4. This model can be divided into
two parts: the data preprocessing stage and the feature extraction and classification stage. In
the data preprocessing stage, the original HSI is processed by means of PCA for dimension
reduction, and the hybrid attention mechanism is adopted to assign corresponding weights
to the data to improve the effectiveness of the data. After PCA processing of HSI, the
data are compressed in the spectral dimension, and the influence of noise and redundant
information is greatly reduced. At this time, the hyperspectral data still have dozens
of spectral bands, and the spectral information for different categories of pixels is still
discriminative. Therefore, implementing the spectral–spatial attention mechanism on
the PCA-processed data can enhance the effectiveness of the data, thereby improving
the classification performance of the model. For the feature extraction and classification
stage, the proposed method constructs two neural network branches. The two branches
first extract the multiscale spectral and spatial features of HSI, and then use the weak
dense feature extraction modules to extract high-dimensional semantic features with
sufficient discrimination. The data, processed by PCA and the attention mechanism,
have abundant spectral and spatial information, and the important information in the
data is more prominent. At this time, based on the multiscale spectral and multiscale
spatial attention modules, very rich spectral and spatial features can be obtained. Then,
combining these with the weak dense feature extraction modules, the model can extract
higher-dimensional and more abstract semantic features. This ensures that the subsequent
fusion features exhibit strong discrimination and can accurately complete the classification
task. Finally, global average pooling is used to reduce the dimensions of features in two
branches, and then two features are fused. The classification results are obtained through
two fully connected layers and a Softmax layer.

3.5. Measures Taken to Prevent Overfitting

In the construction of deep learning models, if we blindly attempt to improve the
predictive ability of model, the complexity of the structure will often be relatively high.
Generally speaking, deep learning models contain too many parameters. It has a very good
fitting ability for the training data, but poor performance on the test set. This phenomenon
is called overfitting. In this paper, we introduce dropout and a dynamic learning rate to
overcome the overfitting phenomenon.

Dropout means that in the training process of the deep learning model, some neurons
will be temporarily dropped from the network according to a certain probability. Therefore,
the model will not rely too much on some local features, so as to improve the generalization
ability [54]. In this paper, we use a dropout with a 0.5 dropout rate for the fully connected
layers at the end of the neural network model.
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Figure 4. Overall network structure.

The learning rate is one of the key hyperparameters in the training stage of a deep
learning model. If the selected learning rate is too large, the model can accelerate learning
in the early stage and decrease the loss rapidly, whereas in the later stage, the loss will
fluctuate so that the model cannot converge. If the learning rate is too small, the loss
decreases slowly during the training stage, making it difficult to optimize the model.
Therefore, this paper adopts the dynamic learning rate mechanism in the training process.
In the early stage of training, a slightly higher learning rate is used to reduce the loss
rapidly. In the later stage of training, the model can converge better by gradually reducing
the learning rate.

4. Experiments and Results
4.1. Data Description

Three widely used HSI datasets, the Indian Pines (IP), the University of Pavia (PU),
the Salinas (SA) datasets, were employed in these experiments.

The Indian Pines (IP) dataset was collected using the airborne visible/infrared imaging
spectrometer (AVIRIS) sensor in north-western Indiana, 1992. The dataset contains 16 categories
with the size of 145 × 145 pixels and 220 spectral bands in the wavelength range of
0.4–2.5 µm. After removing 20 water absorption bands, the remaining 200 bands can be
adopted for analysis.

The University of Pavia (PU) dataset was obtained through the reflective optics system
imaging spectrometer (ROSIS) sensor at the University of Pavia, northern Italy, 2001. The
dataset contains 9 categories with the size of 610 × 340 pixels and 103 spectral bands in the
wavelength range 0.43–0.86 µm.

The Salinas (SA) dataset was acquired using the AVIRIS sensor from SA Valley, CA,
USA, 1998. The dataset contains 16 categories with the size of 512 × 217 pixels and
224 spectral bands in the wavelength range 0.4–2.5 µm.
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From the three datasets, we selected 5% of IP, 1% of PU, and 1% of SA for training,
and used the same number of samples as the training set for validation, with the rest of the
samples used as a test. Tables 5–7 list the land-cover classes and corresponding numbers of
experimental samples for the three datasets.

4.2. Experimental Setup

The hardware devices used in this experiment were an Intel Core i7-9700 CPU and a
Nvidia RTX2080TI GPU. According to the optimal experimental results, 0.0005 was selected
as the learning rate, the batch size was 32, and the training epoch was 80.

Three quantitative indicators, overall accuracy (OA), average accuracy (AA), and the
Kappa coefficient (Kappa), were used to measure the accuracy of each method. OA refers
to the ratio of correctly classified pixels to the total pixels. AA refers to the average of
the classification accuracy of all categories. Kappa refers to the consistency between the
classification results and ground truth. The larger the value of the three indicators, the
better the classification result of the model. All the experiments in this paper were repeated
10 times (the network parameters in each experiment were randomly initialized), and the
average values of the 10 experiments were determined as the final experimental results.
Next, we briefly introduce the compared methods.

(1) SVM: This method takes the spectral information of pixels as features and classifies
them by means of an SVM.

(2) CDCNN: This method selects a 5 × 5 × L spatial size of the image cubes as the input
and combines a 2D CNN and ResNet to construct a network architecture. L indicates
the number of the spectral bands of the image cubes. The details of the method are
provided in [19].

(3) SSRN: This method selects a 7 × 7 × L spatial size of the image cubes as the input,
and combines a 3D CNN and ResNet to construct a network architecture. The details
of the method are provided in [20].

(4) FDSSC: This method selects a 9 × 9 × L spatial size of the image cubes as the input,
and combines a 3D CNN and DenseNet to construct a network architecture. The
details of the method are provided in [21].

(5) HybridSN: This method selects a 25 × 25 × L spatial size of the image cubes as the
input, and builds a network model based on a 2D CNN and 3D CNN. The details of
the method are provided in [22].

(6) DBMA: This method selects a 7 × 7 × L spatial size of the image cubes as the
input, and builds a network model based on a 3D CNN, DenseNet, and an attention
mechanism. The details of the method are provided in [39].

(7) DBDA: This method selects a 9× 9× L spatial size of the image cubes as the input, and
builds a network model based on a 3D CNN, DenseNet, and an attention mechanism.
The details of the method are provided in [40].

4.3. Quantitative Evaluation of Classification Results

This part of the process involves a quantitative comparison between the proposed
method and the related methods from four aspects: the accuracy of each category, OA,
AA, and Kappa. The experimental results are shown in Tables 8–10, with the best accuracy
shown in bold for three indicators. As shown in Tables 8–10, among all the methods
compared, the proposed method achieved the highest classification accuracy in almost all
cases in the three datasets.
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Table 5. Land-cover classes and corresponding numbers of samples in the IP dataset.

No. Class Train Val Test Total

1 Alfalfa 2 2 42 46
2 Corn-notill 71 71 1286 1428
3 Corn-mintill 42 42 746 830
4 Corn 12 12 213 237
5 Grass-pasture 24 24 435 483
6 Grass-trees 36 36 658 730
7 Grass-pasture-mowed 1 1 26 28
8 Hay-windrowed 24 24 430 478
9 Oats 1 1 18 20

10 Soybean-notill 49 49 874 972
11 Soybean-mintil 123 123 2209 2455
12 Soybean-clean 30 30 533 593
13 Wheat 10 10 185 205
14 Woods 63 63 1139 1265
15 Buildings-Grass-Trees-Drives 19 19 348 386
16 Stone-Steel-Towers 5 5 83 93

Total 512 512 9225 10,249

Table 6. Land-cover classes and corresponding numbers of samples in the PU dataset.

No. Class Train Val Test Total

1 Asphalt 66 66 6499 6631
2 Meadows 186 186 18,277 18,649
3 Gravel 21 21 2057 2099
4 Trees 31 31 3002 3064
5 Painted metal sheets 13 13 1319 1345
6 Bare Soil 50 50 4929 5029
7 Bitumen 13 13 1304 1330
8 Self-Blocking Bricks 37 37 3608 3682
9 Shadows 9 9 929 947

Total 426 426 41,924 42,776

Table 7. Land-cover classes and corresponding numbers of samples in the SA dataset.

No. Class Train Val Test Total

1 Brocoli-green-weeds-1 20 20 1969 2009
2 Brocoli-green-weeds-2 37 37 3652 3726
3 Fallow 20 20 1936 1976
4 Fallow-rough-plow 14 14 1366 1394
5 Fallow-smooth 27 27 2624 2678
6 Stubble 40 40 3879 3959
7 Celery 36 36 3507 3579
8 Grapes-untrained 113 113 11,045 11,271
9 Soil-vinyard-develop 62 62 6079 6203

10 Corn-senesced-green-weeds 33 33 3212 3278
11 Lettuce-romaine-4wk 11 11 1046 1068
12 Lettuce-romaine-5wk 19 19 1889 1927
13 Lettuce-romaine-6wk 9 9 898 916
14 Lettuce-romaine-7wk 11 11 1048 1070
15 Vinyard-untrained 73 73 7122 7268
16 Vinyard-vertical-trellis 18 18 1771 1807

Total 543 543 53,043 54,129
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Table 8. The classification accuracy of different methods for the IP dataset.

Class SVM CDCNN SSRN FDSSC HybridSN DBMA DBDA Proposed

1 10.87 0 86.67 96.51 85.29 75.93 100 97.78
2 66.74 71.98 96.99 87.84 96.69 95.89 98.46 98.26
3 45.90 53.34 99.11 95.96 83.45 93.22 95.89 95.72
4 8.02 73.21 97.00 96.26 94.48 100 99.51 99.55
5 69.15 87.56 99.01 99.28 81.02 95.48 96.73 97.02
6 90.68 94.52 98.33 98.65 89.18 99.22 94.36 99.41
7 17.86 25.00 86.96 84.29 100 69.57 80.00 100
8 50.63 84.36 96.01 98.33 100 100 100 98.48
9 30.00 93.33 66.67 80.77 85.00 76.92 100 100
10 62.35 62.67 82.55 89.94 92.61 93.64 93.68 95.69
11 83.30 78.13 90.89 97.79 94.44 91.56 99.03 96.73
12 23.78 50.36 92.02 97.49 92.93 92.84 97.03 97.51
13 79.51 84.33 100 100 95.45 100 100 98.99
14 90.28 91.83 94.87 96.39 99.83 95.05 96.60 98.85
15 12.18 91.46 95.24 93.98 91.82 95.45 95.89 99.13
16 7.53 92.31 98.82 97.08 89.19 97.67 98.81 93.75

OA 68.94 76.36 93.56 94.81 93.20 94.46 97.19 97.54
AA 46.80 70.90 92.57 94.41 91.96 92.03 96.62 97.93

Kappa 59.63 72.97 92.65 94.10 92.24 93.67 96.80 97.19

Table 9. The classification accuracy of different methods for the PU dataset.

Class SVM CDCNN SSRN FDSSC HybridSN DBMA DBDA Proposed

1 84.65 90.21 98.90 99.44 95.76 96.50 96.07 98.29
2 92.57 94.66 98.23 99.45 98.73 98.72 98.86 99.34
3 74.94 64.95 98.93 99.52 85.03 100 100 96.34
4 70.53 97.24 99.64 97.61 97.83 97.85 98.74 96.70
5 90.19 98.36 99.70 99.70 99.70 99.25 100 98.66
6 66.41 93.11 98.62 98.50 99.82 99.15 99.88 99.98
7 78.87 96.88 94.25 100 89.09 96.97 99.25 98.87
8 83.84 88.98 84.91 80.08 88.47 83.23 74.81 87.68
9 98.94 99.17 99.78 99.89 98.62 100 99.67 97.45

OA 84.71 91.88 97.12 97.19 96.38 96.85 95.87 97.76
AA 82.33 91.51 96.99 97.13 94.78 96.85 96.36 97.03

Kappa 79.45 89.15 96.17 96.27 95.19 95.81 94.51 97.03

Due to the particularities of HSIs, both spectral and spatial features are necessary
factors in obtaining better classification results. The SVM depends only on spectral infor-
mation for classification, resulting in the weakest classification performance. A CDCNN
constructs a deeper network structure. However, the network contains a 2D CNN alone
and ignores the relevant information between the spectral bands, so the classification
accuracy is relatively low. The classification results of the above two methods on the three
datasets were lower than 77%, 92%, and 87%, respectively.

The hybrid use of the spectral and spatial features of the HSI is the most direct way
to enhance the classification performance of the model. A 3D CNN, with its 3D kernel
structure, can simultaneously extract the joint spectral–spatial features of HSIs, which is a
popular approach in current research. The structures of SSRN, FDSSC, and HybridSN are
all based on the 3D CNN. Compared with the SVM and CDCNN, which use spectral or
spatial features alone, the classification accuracy of the combination of spectral and spatial
features shows improvements of at least 16.8%, 4.5%, and 6.5% in three datasets.
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Table 10. The classification accuracy of different methods for the SA dataset.

Class SVM CDCNN SSRN FDSSC HybridSN DBMA DBDA Proposed

1 99.10 64.11 99.95 100 98.42 100 100 100
2 97.61 99.92 99.97 100 99.97 99.92 100 100
3 98.18 95.48 99.83 98.38 100 100 99.34 100
4 97.20 94.00 96.37 94.45 95.50 97.47 93.70 99.64
5 96.64 93.40 93.48 99.92 88.23 81.79 99.71 97.93
6 98.41 99.01 100 99.97 100 100 100 100
7 99.16 99.07 100 99.91 99.69 100 99.91 100
8 73.29 96.75 78.06 98.40 98.77 89.38 99.06 98.69
9 98.21 99.84 99.77 100 99.84 99.61 99.06 99.98
10 79.77 82.52 97.96 92.41 99.63 96.43 99.37 99.88
11 92.79 92.64 100 100 100 99.24 99.90 100
12 97.30 99.63 99.89 100 100 99.95 100 100
13 97.27 97.56 96.87 100 99.55 100 99.89 100
14 69.81 98.85 99.41 98.48 98.78 95.74 98.86 94.28
15 67.47 41.64 98.82 97.31 96.38 98.06 77.38 99.74
16 94.19 98.87 100 99.09 100 99.88 100 100

OA 86.89 76.84 93.43 98.52 98.33 95.86 95.53 99.45
AA 91.03 90.83 97.52 98.65 98.42 97.34 97.89 99.38

Kappa 85.37 74.63 92.65 98.36 98.15 95.38 95.04 99.38

When the structure and parameters of the model are determined, its performance is
fixed. In recent years, many scholars have proposed attention mechanisms based on the
weight distribution within the features to further improve the classification performance
of the network model. The network models of DBMA and DBDA are relatively similar,
using different spectral and spatial attention mechanisms for postprocessing, respectively.
In IP, the performance of DBMA is slightly better than that of SSRN and HybridSN,
which is comparable to FDSSC. Compared with SSRN, FDSSC, and HybridSN, DBMA
shows improvements of 3.63%, 2.38%, and 3.99% on the three datasets, respectively. The
classification accuracy of DBDA on IP is 2.73% higher than that of DBMA, and their
performance is similar on PU and SA. In PU and SA, the classification accuracy of DBMA
and DBDA using the attention mechanisms is lower than that of SSRN, FDSSC, and
HybridSN. The reason is that only 1% of the data in PU and SA are used for training; thus,
the extracted features are insufficient to distinguish between different categories of pixels.
In this case, the attention mechanisms used in the postprocessing stage cannot improve the
classification performance.

Our proposed CMWD-HA constructs the spectral feature extraction branch and the
spatial feature extraction branch, respectively, through the multiscale feature extraction
modules and the weak dense feature extraction modules. By fusing the output of two
network branches, the fused features can distinguish well between different categories of
pixels. In addition, we use the hybrid attention mechanism for preprocessing to further
improve the performance of the model on three datasets. Compared with the best methods
in the three datasets, the classification accuracy of CMWD-HA is improved by 0.35%, 0.57%,
and 0.93%, respectively.

4.4. Qualitative Evaluation of Classification Results

The qualitative classification map can directly reflect the classification results of differ-
ent methods. Figures 5–7 show the classification maps of each compared method.
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Figure 5. Classification maps for IP dataset using 5% training samples. (a) False-color image; (b) ground truth; (c) SVM (OA:
68.94%); (d) CDCNN (OA: 76.36%); (e) SSRN (OA: 93.56%); (f) FDSSC (OA: 94.81%); (g) HybridSN (OA: 93.20%); (h) DBMA
(OA: 94.46%); (i) DBDA (OA: 97.19%); (j) proposed method (OA: 97.54%).

Figure 6. Classification maps for PU dataset using 1% training samples. (a) False-color image; (b) ground truth; (c) SVM
(OA: 84.71%); (d) CDCNN (OA: 91.88%); (e) SSRN (OA: 97.12%); (f) FDSSC (OA: 97.19%); (g) HybridSN (OA: 96.38%);
(h) DBMA (OA: 96.85%); (i) DBDA (OA: 95.87%); (j) proposed method (OA: 97.76%).



Remote Sens. 2021, 13, 3305 15 of 23

Figure 7. Classification maps for SA dataset using 1% training samples. (a) False-color image; (b) ground truth; (c) SVM
(OA: 86.89%); (d) CDCNN (OA: 76.84%); (e) SSRN (OA: 93.43%); (f) FDSSC (OA: 98.52%); (g) HybridSN (OA: 98.33%);
(h) DBMA (OA: 95.86%); (i) DBDA (OA: 95.53%); (j) proposed method (OA: 99.45%).

The classification performance of an SVM using only spectral features and CDCNN
using only spatial features were found to be the worst. The salt-and-pepper noise was
severe, which can be seen in Figure 5c,d, Figure 6c,d and Figure 7c,d. By contrast, the
hybrid spectral–spatial features extracted via SSRN, FDSSC, and HybridSN showed better
classification performance and less noise in the classification maps. After adding attention
mechanisms, the noise of DBMA and DBDA in the IP dataset was very small, whereas
the noise in PU and SA was more than that of SSRN, FDSSC, and HybridSN. The hybrid
features extracted via the proposed method showed strong robustness and discrimination.
In the three datasets, the proposed method achieved the best classification accuracy and
relatively clean classification maps.
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4.5. Comparison of Different Methods When Different Training Samples Are Considered

To further compare the proposed method with the related methods, the performance
of different methods with different numbers of training data was compared. In the three
datasets, 1%, 3%, 5%, 10%, and 15% of data were adopted for training. The experimental
results are shown in Figure 8.

Figure 8. OA of six methods with different numbers of training samples on (a) IP; (b) PU; (c) SA.

When 1% of the data were used for training, only the classification accuracy of FDSSC
on IP was slightly higher than that of the proposed method. In other cases, the proposed
method achieved the best classification performance. With the increase in the training
data, the classification performance of the proposed method was better than that of all the
compared methods. In summary, the hybrid features extracted by the proposed method
have strong discrimination and robustness, and can distinguish well between different
categories of pixels.

4.6. Comparison of OA for Different Spatial Sizes

When the spatial size of the selected data cubes is small, it will lead to a lack of spatial
information. The extracted features are not sufficient to distinguish different categories
of pixels, resulting in lower classification accuracy. If the spatial size is too large, the
data cubes will contain more neighborhood pixels, which are likely to contain many other
categories of pixels. In other words, the introduction of too much interference data will also
lead to low classification accuracy. Therefore, it is very important to select the appropriate
spatial size. In this section, we test data cubes of different spatial size from 11 × 11 to
21 × 21, including a total of six cases. The results are shown in Figure 9.

Figure 9. Performance of the proposed method with different input spatial size.
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In the tests of the three datasets, the OA of the model increased first and then decreased
with the gradual increase in the spatial size. Among these, the fluctuations of PU and
SA were small, and the classification performance of IP decreased significantly when the
spatial size of IP increased from 19 to 21. This shows that the IP dataset was most affected
by the neighborhood pixels. According to the overall optimal classification accuracy, we
determined that the spatial size of the data cubes was 15 × 15. Please note that the above
analysis is only limited to the proposed method.

4.7. Comparison of OA for Different Learning Rates

As an important hyperparameter in deep learning, the learning rate determines
whether and when the objective function converges to the local minimum value. If the
learning rate is too large, the loss function may directly exceed the global optimum point. If
it is too small, the change rate of the loss function is very slow, which will greatly increase
the convergence complexity of the network and easily fall into the local minimum or saddle
point. Therefore, the appropriate learning rate makes the objective function converge to the
local minimum value at an appropriate time. In this section of our analysis, the learning
rate was set to 0.0001, 0.0005, 0.001, and 0.005 for the experiment, respectively, and the
results are shown in Figure 10.

Figure 10. Performance of the proposed method with different learning rates.

As can be seen in Figure 10, when the learning rate increased from 0.0001 to 0.0005,
the classification accuracy for IP, PU, and SA increased, respectively. As the learning rate
continued to increase, the classification performance showed a continuous downward
trend. In addition, during the experiment, when the learning rate was set to 0.0005, the
model was able to converge within 80 epochs. When the learning rate was set to 0.0001,
the model needed to be trained for more epochs. When the initial learning rate was set to
0.001 and 0.005, the model did not converge to the optimal value. Therefore, 0.0005 was
selected as the optimal learning rate of the model.

4.8. Analysis of the Attention Mechanism’s Effectiveness

In the proposed method, the original HSI is weighted through the hybrid attention
mechanism after the PCA dimension reduction. This module is learnable and can complete
both spectral and spatial attention processes simultaneously. In this section, we compare
the classification performance of the model with and without the attention mechanism.

As shown in Figure 11, the classification accuracy of the model in three datasets
increases to a certain extent after the hybrid attention mechanism is adopted. The exper-
imental results indicate that the proposed hybrid attention mechanism is effective and
can further improve the classification performance based on the existing model. In ad-
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dition, this attention mechanism only uses two small convolution kernels for learning
and completes the attention weighting process through two-matrix multiplication and
one-matrix addition. Therefore, the proposed attention mechanism consumes very few
computational resources.

Figure 11. Effectiveness of the attention mechanism.

4.9. The Effectiveness of the Multiscale Method

The two network branches of the proposed model first extract the multiscale spectral
and spatial features of the HSI, respectively. Ablation experiments were performed to
compare the classification performance of the method with no multiscale feature extraction
module, with one multiscale feature extraction module, and with both spectral and spatial
multiscale feature extraction modules. The classification performance is shown in Figure 12,
where A represents the multiscale spectral feature extraction module, and B represents the
multiscale spatial feature extraction module.

Figure 12. Effectiveness of multiscale mechanisms.

As shown in Figure 12, the classification performance of the model was improved to a
certain extent after the multiscale spectral feature extraction module or multiscale spatial
feature extraction module was adopted. When both modules were used, the classification
performance of the model was significantly improved. Therefore, with the introduction
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of multiscale feature extraction modules, the network can obtain different receptive fields
in both spectral and spatial aspects, capture information at different scales, and extract
abundant features. The extracted features distinguish between different categories of pixels
well and achieve a great improvement in performance in the classification task.

4.10. The Comparison of DenseNet and Weak DenseNet

The weak dense spectral and spatial feature extraction modules used in the proposed
method are simplified from the DenseNet model. Only the skip connections between the
input and output of each layer based on the DenseNet model are reserved. In this section,
we added another dataset, SalinasA (SAA), to train with 1% of the data for more effective
comparison. The description of the dataset is as follows:

The SalinasA (SAA) was obtained through the AVIRIS sensor in the Salinas Valley in
California, USA. The dataset contains six categories with the size of 83 × 86 pixels. This
scene can be corrected by removing 20 water absorption bands (108–112, 154–167, and 224)
from 224 spectral bands.

We tested the classification performance of the model by using a weak dense structure
and dense structure on the four datasets; the experiment results are shown in Figure 13.

Figure 13. The comparison of weak DenseNet module and DenseNet module.

As shown in Figure 13, when the overall network model remained unchanged, the
classification performance of the model using the weak dense structure was 0.05% lower
than that using a dense structure on IP. For PU and SA, the classification accuracy of the
model with a weak dense structure was increased by 1.23% and 0.23%. In order to make
the experimental results more convincing, we also tested the SAA dataset. In the proposed
method, the use of the weak dense structure showed a 0.43% performance improvement
compared to the dense structure in the SAA dataset. Therefore, compared with the dense
structure, the weak dense structure can reduce the amount of feature maps with almost no
reduction in classification accuracy.

4.11. The Comparison of Averagepooling and Flatten at the End of the Model

In the proposed method, the high-dimensional spectral and spatial features are first
extracted by two network branches. Then, the features are compressed into one dimension
by AveragePooling3D. Finally, the features are fed into fully connected layers and a Softmax
layer for the classification of the results. There are a number of related methods that directly
flatten the high-dimensional features to one dimension and obtain classification results
through fully connected layers and a Softmax layer [22,39,40]. Here, we conducted an
experimental comparison of the above two approaches; the results are shown in Figure 14.
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Figure 14. Comparison of AveragePooling and flatten.

As can be seen in Figure 14, compared with the AveragePooling3D approach, the
classification performance using the flatten method decreased significantly in the three
datasets, by 5.01%, 2.59%, and 0.86%, respectively. On the one hand, AveragePooling3D
refines the features of each part and retains the most important information. On the other
hand, this method can effectively reduce the number of parameters and largely suppress
overfitting. Therefore, the proposed method using AveragePooling3D is superior to the
flatten method.

4.12. Investigation on Running Time

The training and test time are significant indicators to measure the performance of the
model. An excellent classification model depends not only on high classification accuracy
but also on a high level of timeliness. Therefore, we compared the training and test times
of the model. The comparison results are shown in Tables 11–13:

Table 11. The training time and test time in seconds (s) for different methods on the IP dataset.

CDCNN SSRN FDSSC HybridSN DBMA DBDA Proposed

Train (s) 55.62 198.03 347.15 144.42 277.34 195.92 84.95
Test (s) 3.29 5.65 5.42 2.86 9.59 5.98 4.01

Table 12. The training time and test time in seconds (s) for different methods on the PU dataset.

CDCNN SSRN FDSSC HybridSN DBMA DBDA Proposed

Train (s) 39.29 102.26 209.81 33.39 104.93 122.71 85.12
Test (s) 14.44 18.84 28.63 3.41 36.99 33.13 19.01

Table 13. The training time and test time in seconds (s) for different methods on the SA dataset.

CDCNN SSRN FDSSC HybridSN DBMA DBDA Proposed

Train (s) 29.38 233.84 565.45 51.18 260.34 297.41 87.69
Test (s) 18.26 33.16 61.56 4.77 55.85 69.81 24.88

As shown in Tables 11–13, compared with SSRN, FDSSC, DBMA, and DBDA, the
proposed method has advantages in the training and test time. In addition to the multiscale
spatial feature extraction module, the proposed model mostly adopts a CNN with a small
kernel scale, especially the 1 × 1 × n convolution kernel in the spectral feature extraction
branch. The proposed model has fewer parameters, a fast convergence speed, and high
operational efficiency. It is worth noting that the network structure of CDCNN and
HybridSN is simple, and the number of parameters is small. The training and test times of
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the two methods are shorter than those for the proposed method, but their classification
accuracy is relatively low.

5. Conclusions

In this paper, a spectral and spatial feature extraction method combined with an
attention mechanism is proposed for HSI classification. Firstly, PCA is used to reduce
the dimensions of the original HSI, and the hybrid spectral–spatial attention mechanism
is adopted to weight the data. This process not only reduces the amount of data and
redundant information but also enhances the effectiveness of the data. Then, two network
branches composed of multiscale feature extraction modules and weak dense feature
extraction modules are used in parallel to extract high-dimensional semantic features of the
image. Finally, the AveragePooling3D is adapted to compress the two parts of features, and
the classification results are obtained through fully connected layers and a Softmax layer.
The hybrid spectral–spatial attention mechanism effectively improves the classification
performance of the model, with a learning ability and a very small computational overhead.
The compound multiscale weak dense network model has a fast convergence speed, a
high efficiency of feature extraction, strong robustness and discrimination of features, and
good generalization ability. The experimental results on the three datasets showed that the
proposed method is superior to the compared methods in terms of classification accuracy
and timeliness.

The shortcoming of the proposed method is that there are too many training parame-
ters in the fully connected layers of the model, which reduces the efficiency of the training
and the test stage to a certain extent. In addition, the attention mechanism can improve
the classification performance, but the effect is not significant enough. Therefore, our next
research goal is still to focus on a network model based on the attention mechanism, to
explore a more efficient attention mechanism based on preprocessing or postprocessing,
and to improve the classification performance more obviously.
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