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Abstract: Vegetation phenology is an integrative indicator of environmental change, and remotely–
sensed data provide a powerful way to monitor land surface vegetation responses to climatic
fluctuations across various spatiotemporal scales. In this study, we synthesize the local climate,
mainly temperature and precipitation, and large-scale atmospheric anomalies, El Niño-Southern
Oscillation (ENSO)-connected dynamics, on a vegetative surface in a subtropical mountainous island,
the northwest Pacific of Taiwan. We used two decadal photosynthetically active vegetation cover
(PV) data (2001–2020) from Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance
data to portray vegetation dynamics at monthly, seasonal, and annual scales. Results show that PV is
positively related to both temperature and precipitation at a monthly timescale across various land
cover types, and the log-linear with one-month lagged of precipitation reveals the accumulation of
seasonal rainfall having a significant effect on vegetation growth. Using TIMESAT, three annual
phenological metrics, SOS (start of growing season), EOS (end of growing season), and LOS (length
of growing season), have been derived from PV time series and been related to seasonal rainfall. The
delayed SOS was manifestly influenced by a spring drought, <40 mm during February–March. The
later SOS led to a ramification on following late EOS, shorter LOS, and reduction of annual NPP.
Nevertheless, the summer rainfall (August–October) and EOS had no significant effects on vegetation
growth owing to abundant rainfall. Therefore, the SOS associated with spring rainfall, instead of EOS,
played an advantageous role in regulating vegetation development in this subtropical island. The
PCA (principal component analysis) was applied for PV time series and explored the spatiotemporal
patterns connected to local climate and climatic fluctuations for entire Taiwan, North Taiwan, and
South Taiwan. The first two components, PC1 and PC2, explained most of data variance (94–95%)
linked to temporal dynamics of land cover (r > 0.90) which was also regulated by local climate. While
the subtle signals of PC3 and PC4 explained 0.1–0.4% of the data variance, related to regional drought
(r = 0.35–0.40) especially in central and southwest Taiwan and ENSO-associated rainfall variation
(r = −0.40–−0.37). Through synthesizing the relationships between vegetation dynamics and climate
based on multiple timescales, there will be a comprehensive picture of vegetation growth and its
cascading effects on ecosystem productivity.

Keywords: land surface phenology; MODIS; TIMESAT; rainfall variability; spring drought; El
Niño-Southern Oscillation (ENSO); principal component analysis (PCA)

1. Introduction

The dynamics of vegetation growth or phenology, (i.e., the timing and duration of
vegetation activity across a year) which plays a crucial role in regulating the water cycle,
carbon cycle, energy balance, biomass accumulation, and productivity largely depends on
key climatic factors, temperature, precipitation, and radiation [1–3]. Identifying vegetation
phenology and their responses to climatic and non-climatic factors has recently become
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a central issue in the studies of global change biology/ecology and biogeochemistry.
Many studies have shown that temperature is the dominant control of plant growth in
high latitudes and cold regions, precipitation is the dominant factor in arid and semiarid
areas, whereas radiation is key to plant growth in rainforest [4–7]. However, compared
to abundant reports from various parts of mid- and high-latitudes, our knowledge about
vegetation-climate dynamics in tropics/subtropics is mainly from the Amazon basin in
South American and the Congo rainforest in Africa [8–11]. More efforts are required to
provide a better understanding of vegetation-climate dynamics for isolated islands in
tropical and subtropical regions, where there are hotspots of biological diversity that are
more susceptible due to their unique environment and limited area [12].

In situ field observations can provide detailed information of plant growth at the
species level and efforts have been made to provide large scale field observation across
many countries, such as the National Phenology Network of USA (https://www.usanpn.
org/, accessed on 7 July 2021) [13], the International Phenological Gardens of Europe
(http://ipg.hu-berlin.de/, accessed on 7 July 2021) [14], and the Chinese Phenological
Observation Network (http://www.cpon.ac.cn/, accessed on 7 July 2021) [15]. However,
field works are time-consuming and labor-intensive, such that they are only monitored on a
small spatial scale in each site. In contrast, satellite-derived vegetation indices (VIs), such as
normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), have
been widely utilized to characterize vegetation growth in relation to climatic parameters.
The VIs can also be used to calculate key phenological metrics known as land surface
phenology (LSP), including the start of growing season (SOS), end of growing season (EOS),
and length of growing season (LOS) at regional and global scales [16–18]. The successful
detections of phenological patterns and their variation from landscape to global levels have
demonstrated that the satellite data can serve as a useful and reliable means to disentangle
how vegetation phenology responds to climate change on a broader scale [19,20]. The
advanced very high-resolution radiometer (AVHRR; 1.1 km in spatial resolution) and the
successive monitoring sensor Moderate Resolution Imaging Spectroradiometer (MODIS;
250 m–1000 m in spatial resolution) have provided datasets for more than three decades
with a high capability for regional vegetation-climate monitoring and ecosystem process
modeling [21–24]. Chang et al. [25] indicated that MODIS NDVI and EVI positively related
to both temperature and precipitation on a monthly timescale, but were not significant at the
annual timescale in subtropical Taiwan, and suggested that the finer spatial and temporal
scales could be better to reveal the climatic controls over vegetation growth. Besides, the
time-lag effect of vegetation responses to temperature and precipitation was commonly
observed for various land covers. A time lag of one to three months should be considered
when exploring the associations of vegetation growth with local climate [7,26–28].

The seasonal phenological metrics, i.e., SOS, EOS, and LOS, calculated from time-
series satellite images have been continuously and extensively utilized to detect the veg-
etation responses of specific phases to climatic change or disturbances over the last two
decades [29–31]. For example, the SOS and/or EOS of forests in Europe and eastern USA
is dominated by temperature [31,32]. The spatiotemporal patterns of SOS and EOS in the
Tibetan Plateau are determined by the combined effects of temperature, altitude, snow
cover, and photoperiod [15]. Previous evaluations show that longer extension of LOS
significantly relates to advanced SOS [33–35]. However, several studies have exhibited the
contrast results that the SOS shows a slower advanced rate or delayed after 2000 due to
drought and deficiency of soil moisture [36,37], and climate extremes [38]. Further analysis
is necessary to ascertain this trend at a regional scale because the interannual variability
of LSP is changing with the warming climate. It is fundamental to track the dynamics of
vegetation growth over time with longer records of remotely sensed and climate data.

Compared to most research conducted on the relationships between vegetation growth
and local climatic factors [25,39,40], few studies have examined the dynamics of regional
vegetation growth to large-scale climatic variations, such as the El Niño-Southern Oscilla-
tion (ENSO) which might influence vegetation dynamics through its combined effects on

https://www.usanpn.org/
https://www.usanpn.org/
http://ipg.hu-berlin.de/
http://www.cpon.ac.cn/


Remote Sens. 2021, 13, 3298 3 of 22

temperature, rainfall, drought, cloud cover, and subsequent solar radiation [41]. The ENSO
warm (El Niño) years are usually related to decreased precipitation and freshwater dis-
charges over many continents; in contrast, the ENSO cold (La Niña) years can contribute to
wetter conditions [42]. Global studies indicated that El Niño years could lead to a reduction
of greenness, productivity, and mortality in northeastern South America, Southeast Asia,
Australia, and southern Africa, but increased land surface greenness in northern America,
central Asia, and eastern Africa, and vice versa for La Niña years [43,44]. To decipher the
effects of climatic fluctuation on vegetation dynamics, the multivariate statistical approach
principal component analysis (PCA) is commonly applied to analyze space-time variance
of vegetative land surface and characterize its major and hidden patterns from a given large
image dataset [45–48]. Several studies conducted on continental and global scales have
manifested that the first principal component (PC1) accounts for the largest variance of the
major element in the time series of VI associated with steady land cover types, while the
subsequent PC images with lower variations could delineate interannual variability of VI
related to anthropogenic intervention and climate anomalies including rainfall interannual
variability and ENSO cycles [49–51]. However, very few studies provide a comprehensive
understanding of vegetation dynamics responses to key climate and non-climate factors at
multiple time scales, i.e., monthly, seasonal, and annual.

Taiwan, a humid subtropical mountainous island with high annual precipitation
(MAP) approximate 2500 mm year−1, has experienced an amplifying seasonal rainfall
and droughts (i.e., drier winter-spring and wetter summer), and regional discrepancies
between wetter northern Taiwan and drier southern Taiwan over the past century [52,53].
Studies have demonstrated that the El Niño events during the preceding winter (November–
February) will bring abundant rainfall for the following spring and summer seasons in
Taiwan, and vice versa for La Niña events [54,55]. The changing local climate and climate
varieties will cause significant impacts on vegetation activity, carbon sequestration, and
productivity in the region sensitive to climate dynamics [56,57]. Therefore, in this study, we
will utilize MODIS, local climate, and large-scale climate anomaly datasets for two decades
(2001–2020) to synthesize the vegetation response to short-term (monthly), seasonal, and
interannual climatic variations in Taiwan. The objectives of this study are to (1) understand
the relationships between vegetation activity and temperature and precipitation across
various land cover types on a monthly time scale, (2) explore the effects of seasonal rainfall,
spring rainfall and summer rainfall, on phenological patterns (SOS, EOS, and LOS) and
their impacts on productivity, and (3) examine interannual variations of vegetation activity
in relation to anthropogenic and climatic factors.

2. Materials and Methods
2.1. Study Area

Taiwan, a subtropical mountainous island with 36,000 km2 in area, is located between
the largest continent (Eurasia) and the largest ocean (Pacific) (Figure 1a). Elevation increases
from sea level to approximately 4000 m in a horizontal distance <75 km. The Tropic of
Cancer runs across central Taiwan and divides it into subtropical and tropical monsoon
climatic zones. High temperature (21 ◦C of annual mean temperature [MAT]), precipitation
(2450 mm of mean annual precipitation [MAP]) and humidity, and frequent typhoons in
summer-autumn characterizes the general climate pattern of Taiwan. The MAT decreases
with elevation, while MAP generally increases with elevation and up to 4500 mm year−1 at
high altitude and northeastern Taiwan and decreases to less than 1500 mm year−1 in the
southwestern coastal plain (Figure 1b) [25]. There are more than 75% of MAP falling during
summer (May–October), whereas winter-spring is relatively dry especially in southwestern
Taiwan as it is on the leeside of the Central Mountain Range during prevailing northeast
monsoons (Figure 1b).

The island-wide principal land use and vegetation types gradually change along
an elevation gradient from urban-buildup and farmland on plains (<800 m a.s.l.), an
evergreen broadleaved forest at low- and mid-elevation (200–2000 m a.s.l.), and mixed
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and conifer forests at mid- and high-elevation (>1100 m). Forests and agricultural land
cover approximately 60% and 27% of the land area in Taiwan, the remaining 13% includes
urban, villages, roads, streams, waterbody, beaches, and so on (Figure 1c) [25,58]. The
logging of natural forests has been abandoned in Taiwan since 1991, and there is no
anthropogenic interference, so the background of the diverse bioclimatic gradient is an
ideal place for evaluating vegetation dynamics connecting to local climate and large-scale
climatic fluctuations in the subtropical region.

Figure 1. The geographical local map of the study region (Taiwan). (a) the distribution of climate stations, mean annual
precipitation (MAP, contours), the average of vegetation cover fraction calculated from MODIS surface reflectance data
(MOD09A1) in background [59], and the monthly climate chart which is the average value calculated from all climate
stations during 2001–2020 (b), and land cover types in Taiwan (c).

2.2. Data Aquirement and Processing
2.2.1. Photosynthetic Active Vegetation (PV)

Two tiles (H28V06 and H29V06) of MODIS 8-day 500 m spatial resolution surface
reflectance product (MOD09A1) on the Terra platform for the study period during 2001–
2020 were retrieved from the NASA Land Processes Distributed Active Archive Center (LP
DAAC; https://lpdaac.usgs.gov/tools/data-pool/, accessed on 5 June 2021). The spectral
mixture analysis (SMA) has been commonly conducted [58,60] to decompose image pixels
into three main surface components, i.e., PV (photosynthetic active vegetation), NPV
(non-photosynthetic active vegetation), and SRO (soil and rock outcrop). This automated
probability-based method was used to obtain the proportions of sub-pixel cover fractions
of each endmember (PV, NPV, and SRO) [60]. A set of spectral libraries which was needed
for the spectral unmixing (nPV = 580, nNPV = 267, and nSRO = 256). Endmembers for
NPV and SRO were directly sampled using a field spectroradiometer (FiedSpec 3, ASD
Inc., Boulder, CO, USA). Due to the high density of the vegetation canopy in Taiwan,
PV endmember was collected from 25 spaceborne hyperspectral Hyperion images using
manual delineation to select vegetation spectra. Then, the measurements were convoluted
to match the MODIS spectral profiles [59]. A total of 240 monthly PV images were derived
from 920 images (3–4 images per month) between 2001 and 2020 based on the maximum
value composite (MVC) method [61]. We utilized PV instead of commonly used NDVI or
EVI because PV is very sensitive to vegetation cover and to monthly mean air temperature
and monthly precipitation than NDVI or EVI [62]. Besides, the PV was calculated based on
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spectral mixture analysis to extract the sub-pixel information to reduce spectral mixture
problems [60].

Annual MODIS NPP (MOD17A3HGFv006) 500 m products for 20 years were also ac-
quired from LP DAAC and were compared to the following seasonal rainfall and three phe-
nological metrics. The MODIS NPP products have been successfully applied in assessing
regional food supply, agricultural growing season, and ecosystem plant production [63,64].

2.2.2. Land Cover Data

The land cover classification data was acquired from the National Land Surveying
and Mapping Center in Taiwan (Figure 1c; https://maps.nlsc.gov.tw/, accessed on 13
January 2021), which was essential for PV-climate analysis and was provided as input
for phenological analysis. The digital map was created based on aerial photographs and
satellite data, then continuously validated with field survey after 2008 [65]. We selected
sampling sites including at least 0.1% of the area of each land use/vegetation type, in
which the criteria of a selected site should be 2–5 times of the area of an image pixel to
avoid problems by registration error as suggested by Muchoney et al. [66]. There were
830 points selected in total to extract monthly PV, temperature, and precipitation. For
phenological metrics analysis, land cover types were supplied as background parameters
setting in curve fitting for image time series in TIMESAT.

2.2.3. Climate Data and ENSO

Monthly temperature (n = 136) and precipitation (n = 390; Figure 1b) data during
2001–2020 were acquired from the Data Bank of Atmospheric and Hydrologic Research of
Taiwan (https://dbar.pccu.edu.tw/, accessed on 12 May 2021). The monthly temperature
layers were estimated by elevation, latitude, and longitude using a multiple linear regres-
sion as mentioned [67]. The monthly precipitation (MP) layers were generated applying
the ordinary Kriging interpolation with a spherical model in ArcGIS v.10.6 (ESRI, Inc.,
Redlands, CA, USA) [58]. The output resolution of monthly temperature and precipitation
data was 500 m × 500 m, consistent with the MODIS images. In order to find out the best
relationships between seasonal rainfall and phenological metrics, various combinations
of monthly precipitation (December, January, February, March, and April), summation
of two-month precipitation (December–January, January–February, February–March, and
March–April), and summation of three-month precipitation (December–February, January–
March, and February–April) during winter-spring periods were used to related to SOS, EOS,
LOS, and NPP. The monthly precipitation (July, August, September, October, and Novem-
ber), two-month precipitation (July–August, August–September, September–October, and
October–November), and three-month precipitation (July–September, August–October,
September–November) during summer-autumn periods were used to related to EOS, LOS,
and NPP. See Section 2.5. Statistical Analysis for determination of the final model.

To portray the precipitation variability during 2001–2020 in Taiwan, we calculated the
standardized precipitation index (SPI) based on MP with a three-month time scale (SPI3)
to detect the drought conditions in the region as proposed by Chen et al. [52]. Based on the
long-term data over the last century, Chen et al. [52] found that SPI3 could best characterize
different drought severities, durations, and separated regional divergences of incidence
of meteorological drought, i.e., decreased in northern Taiwan and increased in southern
Taiwan. The SPI was defined as the transformation of MP time series into a standardized
normal distribution (z-distribution):

SPI = Z =
MPi − MP

MPσ
(1)

where MPi, MP, and MPσ are the precipitation for month i, mean and standard deviation
of MP, respectively, over the study period [68,69]. Positive and negative values of SPI stand
for wet and dry conditions, respectively, which is suitable for identifying most types of
drought events at various regions [68,69].

https://maps.nlsc.gov.tw/
https://dbar.pccu.edu.tw/
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The Southern Oscillation Index (SOI) is widely used to evaluate ENSO which considers
the measurements of atmospheric pressure at sea level between Darwin in Northern
Australia and Papeete in Tahiti. The negative (<−1.0) and positive (>1.0) SOI signals
indicate warm (El Niño) and cold (La Niña) events, respectively [70]. Previous studies
showed that the dynamics of SOI are associated with seasonal precipitation amount and
anomalies across tropics and subtropics [71–73]. The monthly SOI for the study period
2001–2020 was obtained from ESNO information of NOAA Physical Sciences Laboratory
(https://psl.noaa.gov/enso/, accessed on 19 June 2021) to examine its relationship with
potential PCA loadings derived from PV image time series.

2.3. Phenological Metrics Calculation

Three primary phenological metrics, SOS, EOS, and LOS, were obtained from a 20-year
MODIS PV time series using TIMESAT v3.3 (https://web.nateko.lu.se/timesat/timesat.
asp?cat=0, accessed on 7 April 2020) developed by Jönsson and Eklundh [74] because it is
commonly used for computing land surface phenology [75,76]. A smoothing approach is
necessary to retain temporal details by excluding unusual high or low vegetation indexes.
There are many smoothing methods available such as best index slope extraction (BISE) [77],
Fourier transform [78], logistic function [79], piecewise logistic functions [80], Savitzky–
Golay filter [81], etc. TIMESAT tool package provides several mathematical fitting functions
for working out temporal dynamics of vegetation growth (Figure 2).

1 
 

 

Figure 2. The phenological metrics obtained from a smoothed curve (dark think line) of a time
series of photosynthetically active vegetation (PV, gray line) using the TIMESAT tool. Three major
metrics are derived from the time series of images: A—SOS (start of growing season), B—EOS (end of
growing season), and C—LOS (length of growing season). d—base value, e—time of middle season,
f—maximum value, g—amplitude, h—small integrated value, h+i—large integrated value (showing
the cumulative effect of vegetation growth during the season), and j and k are 80% of level of left and
right side curve respectively.

The Savitzky–Golay (SG) filter was determined because it can best preserve the
temporal vegetation dynamics and minimize the atmospheric contamination and has
been successfully applied in studies of different regions [58,81–83], which has also been
integrated into the processing of the MODIS phenology product [84]. The SG filter can be
expressed as below:

Y =
∑i=m

i=−m ci × Yj+1

N
(2)

where Yj+1 is the original PV, Y is the outcome PV value, ci is the coefficient for the ith PV
of the smoothing window, N is the number of convoluting integers which is equal to the

https://psl.noaa.gov/enso/
https://web.nateko.lu.se/timesat/timesat.asp?cat=0
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smoothing window size (2m + 1), j stands for the running index of the ordinate data in the
original data table, and m exhibits the half-width of the smooth window [81,82]. Using PV
time series and supplementary land-cover settings (see [85] for detail), we can calculate
the land surface phenological metrics, SOS (A, presented as the Julian date [JD]), EOS (B,
presented as the Julian date [JD]), and LOS (C, presented as the days) (Figure 2), for each
year. The relationships among the annual SOS, EOS, LOS, spring rainfall, summer rainfall,
and annual MODIS NPP were examined.

2.4. Principal Component Analysis of Time-Series Images

In order to investigate the leading fundamental modes of variances from the 20-year
PV time series of images, principal component analysis (PCA) was implemented to elim-
inate redundant information so that only the most dominant spatiotemporal patterns
are retained in which cumulative variance can account for >95% of the variability of the
original dataset [86,87]. This multivariate statistical technique transforms a group of cor-
related PV images into a set of uncorrelated variables, called principal components (PCs)
consisting of spatial patterns of eigenvectors derived from original time-series images, and
temporal loadings the coefficients of linear combinations that presents the correlations of
original variables in PCs [88]. The eigenvectors indicated the weight of each one of the
240 images which were used to obtain factor loadings [49]. The correlation matrix was
adopted (standardized PCA) to give the same weight for each image in the processing and
to detect better and new spatial and temporal patterns [89]. Eigenvalues, used to detect the
percentage of variation for each PC, were generated when the PCA process is completed
with ENVI 5.5 (Research Systems, Boulder, CO, USA). The temporal loadings of each PC
can be calculated as follow:

Rk,i = Vk,i
√

λi (3)

where Rk,i is a loading value of each component i with each input date k, Vk,i is eigenvector
for component i with each input data k, and λi is eigenvalue for each component [90].

To properly explain the spatiotemporal patterns of PCA, we compared each PC image
and its temporal loadings included the time-lag effect to look for feasible spatiotemporal
associations such as the phenology of land cover, SPI3, SOI, or minor unrecognizable
noise. Only significant relationships (|r| > 0.3, p < 0.05) between component loadings
and variables are kept finally. Due to the increasing incidence of meteorological drought
in southern Taiwan and decreasing incidence of drought in northern Taiwan [52], the PV
images of subtropical North Taiwan (N Taiwan) and tropical South Taiwan (S Taiwan),
separated by the Tropic of Cancer, were also conducted by PCA to find out the regional
differences of vegetative surface responses to related variables.

2.5. Statistical Analysis

The simple linear regression and non-linear regression models, such as logarithm,
exponential growth, and power-law equation, are used to explore the relationships between
monthly PV and monthly temperature and precipitation, in which the moving averages
of preceding one- and two-months and concurrent monthly climate are utilized to detect
the lag effect between temperature/precipitation and PV [26,27], i.e., concurrent monthly
(lag0), moving average of concurrent and preceding one monthly (lag1), and moving
average of concurrent and preceding two months (lag2) temperature or precipitation. The
multiple stepwise regression analysis was further applied to examine which variables
could best explain the variability of PV. The variance of inflation factor (VIF) < 10 was used
to avoid multi-collinearity among variables in the final models. The finally best fit linear,
non-linear, and stepwise regression model was determined by the highest determination
coefficient (R2) with a statistical significance at p-value < 0.05. Regression models are
also applied to investigate the relationships among spring rainfall, summer rainfall, three
annual phenological metrics (SOS, EOS, LOS), and NPP, and the relationships between
temperature/precipitation and potential PCA loadings.
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3. Results
3.1. Monthly PV-Climate Relationships

The average PV of 20 years across Taiwan increased from <0.10 at the west coastal
region to >0.80 at the mid- and high-elevation forested regions (Figure 1b). The tempo-
ral PV showed similar patterns across all land cover types, rising in spring, reaching a
maximum during June–August, then gradually decreasing to a minimum during January–
March (Figure 3a). The PV of different land cover types varied considerably, lowest in
urban (0.16–0.40), followed by paddy field (0.23–0.80), grassland (0.38–0.86), rainfed farm-
land (0.45–0.88), conifer forests (0.52–0.83), mixed forests (0.53–0.95), and highest in the
broadleaved forest (0.58–0.98) (Figure 3a).

Figure 3. The temporal dynamics of monthly PV during 2001–2020 (a), the relationships between monthly mean temperature
and monthly PV (no time lag; lag0) (b), and the relationships between monthly precipitation and monthly PV (lagged one
month; lag1) (c) for individual vegetation/land use types (n = 240 months).

The monthly PV had a significant positive relationship with concurrent monthly
temperature without time-lag for individual vegetation/land cover types (Figure 3b). The
coefficient of determination (R2) of linear regressions was 0.17 for grassland, 0.35 for conifer
forests, 0.47 for mixed forests, 0.66 for broadleaved forests, 0.75 for rainfed farmland, 0.51
for paddy field, and 0.58 for urban (Figure 3b). By contrast, the monthly PV had a significant
log-linear relationship with one-month lagged of precipitation (lag1) for all vegetation/land
cover types, in which the higher PV was associated with greater rainfall within the range
of 0–100 mm of precipitation, above 100 mm of precipitation the relationship leveled off
(Figure 3c). The R2 of the log-linear regressions was 0.43 for grassland, 0.46 for conifer
forests, 0.51 for mixed forests, 0.46 for broadleaved forests, 0.65 for rainfed farmland, 0.34
for paddy field, and 0.51 for urban (Figure 3c). The stepwise regression models with the
highest R2 for estimating monthly PV ranged from 0.46 (grassland) to 0.71 (broadleaved
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forest) in which both concurrent temperature and precipitation with a one-month time lag
(Plag1) were significant variables, except for paddy field having concurrent temperature
the only significant variable (Table 1). The concurrent monthly temperature could explain
most variability of monthly PV (40–68%), while the precipitation with a one-month time
lag (Plag1) played a minor role in explaining variability (2–19%) of monthly PV (Table 1).

Table 1. The stepwise regression models established by monthly PV, concurrent monthly temperature
(T), and moving average of concurrent and preceding one-monthly precipitation (Plag1).

Land Cover Types Stepwise Regressions (Percentage of Explained Variance) R2

Grassland PV = 0.46 + 0.58 * T + 0.25 * Plag1
(T: 41.2%; Plag1: 5.6%) 0.46

Conifer forest PV = 0.55 + 0.47 * T + 0.39 * Plag1
(T: 39.6%; Plag1: 12.8%) 0.53

Mixed forest PV = 0.45 + 0.50 * T + 0.47 * Plag1
(T: 46.9%; Plag1: 18.9%) 0.66

Broadleaved forest PV = 0.43 + 0.69 * T + 0.25 * Plag1
(T: 66.5%; Plag1: 4.4%) 0.71

Paddy field PV = 0.002 + 0.71 * T
(T: 51.0%) 0.51

Rainfed farmland PV = 0.33 + 0.64 * T + 0.26 * Plag1
(T: 67.6%; Plag1: 3.2%) 0.71

Urban PV = 0.33 + 0.64 * T + 0.26 * Plag1
(T: 57.8%; Plag1: 2.4%) 0.60

All stepwise regressions models are statistic significant at p-value < 0.01.

3.2. Influences of Seasonal Rainfall on Land Surface Phenology

The spatial patterns of SOS in Taiwan varied from <JD 80 to 160, with earlier SOS
usually in the west plain and later SOS in the mid- to high-altitude areas (1500–2000 m)
(Figure 4). The EOS varied from as early as JD 250 (early August) in the western plain where
majorly occupied by farmland to as late as JD 350 (mid-December) at forested regions in
mid-altitudes of southwestern and southeastern Taiwan (Figure 4). The LOS, determined
by the difference between EOS and SOS, increased from <150 days in the west plain,
160–180 days at high-altitudes to >200 days at low- and mid-altitudes in southwestern
Taiwan (Figure 4).

The long-term mean (± SD) of annual MODIS NPP was 1.30 (±0.31) Kg C m−2 year−1,
ranging from 1.27 (±0.32) Kg C m−2 year−1 in 2020 to 1.40 (±0.31) Kg C m−2 year−1 in 2009
(Figure 4). Along the elevational gradient, the NPP ascended from <0.6 Kg C m−2 year−1

in the coastal plain to >1.6 Kg C m−2 year−1 at 500–1500 m a.s.l., and then descended to
approximate 1.0 kg C m−2 year−1 at >2500 m a.s.l., (Figure 4). The spatial patterns of SOS,
EOS, and LOS showed clear inter-annual variations, but there was not a significant trend
of mean SOS, EOS, LOS, and NPP of the entire study region over the two decades.

For the average values of forested region of island-wide scale, the increased spring
rainfall was associated with an advanced SOS (r = −0.55, p < 0.05), a longer LOS (r = 0.63,
p < 0.01), and a higher NPP (r = 0.74, p < 0.01; Figures 4 and 5a–c). However, there was not a
significant correlation found between spring rainfall and EOS. The earlier SOS significantly
related to an earlier EOS (r = 0.74, p < 0.01), a longer LOS (r = –0.56, p < 0.05), and a
higher NPP (r = –0.74, p < 0.01; Figure 5d–f). A longer LOS significantly related to a higher
NPP (r = 0.62, p < 0.01; Figure 5g), but a later annual EOS would decrease annual NPP
(r = –0.45, p < 0.05; Figure 6e). The rainfall quantity during summer had no significant
correlations to mean EOS, LOS, and NPP (Figure 6a–c), neither correlation between EOS
and LOS (Figure 6d). The spatial patterns of SOS and EOS and their relationships to
spring rainfall and summer rainfall were further inspected during 2001–2020 (Figure 4).
The regions of later SOS (late May, >JD 150) were consistent with the regions (42–85% of
agreement) that received spring rainfall <40 mm, mostly in the west and southwest Taiwan
where were susceptible to drought conditions. Nevertheless, there was not a clear picture
between interannual variations of EOS and summer rainfall owing to the plentiful amount
of precipitation during summer growing seasons (>500 mm; Figure 6).
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Figure 4. From top to bottom: the spatial distribution of spring rainfall (February–March, mm), annual mean photosyntheti-
cally active vegetation (PV), SOS (start of growing season, Julian date, JD), EOS (end of growing season, Julian date, JD),
LOS (length of growing season, days), and annual net primary productivity (NPP; kg C m−2 year−1) between 2001 and 2020.

Figure 5. The relationships between spring rainfall (February–March) and the mean SOS (a), mean
LOS (b), and the mean NPP (c). Relationships between the mean SOS and the mean LOS (d), mean
NPP (e) and mean EOS (f), and the relationship between mean LOS and mean NPP (g). The green
broken lines stand for 95% confident intervals; all regression models are statistically significant
(p < 0.05 for (a,d), and p < 0.01 for (b,c,e–g)).



Remote Sens. 2021, 13, 3298 11 of 22

Figure 6. The relationships between summer rainfall (August–October) and the mean EOS (a), mean
LOS (b), and the mean NPP (c). Relationships between the mean EOS and the mean LOS (d), and
mean NPP (e). The orange broken lines stand for 95% confident intervals, and the regression model
is statistically significant with a p-value < 0.05.

3.3. Long-Term Variations of Vegetation Dynamics Related to Land Cover and Climatic
Fluctuations

Based on the time series PV images during 2001–2020 of Taiwan, North Taiwan (N
Taiwan), and South Taiwan (S Taiwan), there were four principal components selected
which interpreted most variations (95.8–96.0%) of the original dataset were obtained,
PC1 (93.9–94.8%), PC2 (1.0–1.2%), PC3 (0.4–0.2%), and PC4 (0.1–0.3%), respectively. The
patterns after PC4 could not be identified with related variables excluded. The first two
major components, PC1 and PC2, were associated with dominant land cover types on an
island-wide scale. The PC1 image (eigenvector) reflected the vegetation coverage over time
increased from flat plains to mountain regions (Figure 7a), which is comparable to land
use maps (Figure 1c). The temporal loadings of PC1 showed positive values and stable
seasonal cycles, minimum in spring (January–February) and maximum in summer (July–
August), and the loadings strongly related to monthly PV of entire Taiwan, N Taiwan, and S
Taiwan (r = 0.94–0.98, p < 0.01; Figure 7b) and monthly PV of forested regions (r = 0.91–0.96,
p < 0.01). The PC2 image (eigenvector) presented positive values in plain areas and negative
values in mountainous areas (Figure 8a), and its positive loadings time series reached a
maximum in the summer with a drop in the preceding month, and the negative loadings
spread from November to May (Figure 8b). The PC2 loadings significantly related to
farmland monthly mean PV of entire Taiwan, N Taiwan, and S Taiwan (r = 0.78–0.91,
p < 0.01; Figure 8b). In addition, both PC1 and PC2 temporal loadings exhibited a significant
linear relationship to concurrent monthly temperature (R2 = 0.28–0.75, p < 0.01), and a log-
linear relationship to one-month lagged of precipitation (R2 = 0.23–0.61, p < 0.01; Figures 7c
and 8c), which were consistent to the PV-climate analysis across vegetation types at monthly
scale (Figure 3).
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Figure 7. The spatial eigenvectors of the first component (PC1) (a), temporal loadings and monthly mean PV obtained from
the 2001–2020 monthly PV data (b), and the relationships between temporal loadings and temperature and precipitation (c)
for entire Taiwan, North Taiwan (N Taiwan), and South Taiwan (S Taiwan).

Figure 8. The spatial eigenvectors of the second component (PC2) (a), temporal loadings and farmland monthly mean PV
obtained from the 2001–2020 monthly PV data (b), and the relationships between temporal loadings and temperature and
precipitation (c) for entire Taiwan, North Taiwan (N Taiwan), and South Taiwan (S Taiwan).
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The third component (PC3) displayed positive eigenvector value in southwest Taiwan
and lower altitudes, whereas the negative values major appeared in northeast Taiwan and
higher elevations (Figure 9a), and its temporal loadings with dramatic variations were
correlated to SPI3 for entire Taiwan (r = 0.40, p < 0.01), N Taiwan (r = 0.35, p < 0.01), and
S Taiwan (r = 0.45, p < 0.01; Figure 9b). The fourth component (PC4) showed divergent
patterns of positive and negative values in eastern and western Taiwan (Figure 10a), and
the high positive loadings generally appeared during the highly negative SOI and negative
loadings presented during higher positive SOI. There were significant negative correlations
between loadings and SOI in entire Taiwan (r = –0.37, p < 0.05) and S Taiwan (r = –0.40,
p < 0.05), but not in N Taiwan (r = 0.04, p = 0.69; Figure 10b).

Figure 9. The spatial eigenvectors of the third component (PC3) for entire Taiwan, North Taiwan
(N Taiwan), and South Taiwan (S Taiwan) (a), and their temporal loadings and SPI3 (standardized
precipitation index with a three-month time scale) (b).
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Figure 10. The spatial eigenvectors of the fourth component (PC4) for entire Taiwan, North Taiwan (N
Taiwan), and South Taiwan (S Taiwan) (a), and their temporal loadings and SOI (Southern Oscillation
Index) (b).

4. Discussion
4.1. The Relationship between Vegetation Dynamics and Local Climate

The coefficients of determinations between PV and temperature (R2 = 0.35–75) are
higher than the results between monthly PV and precipitation (R2 = 0.46–65) suggesting
that the temperature plays a dominant control on vegetation growth with higher predictive
power than precipitation based upon monthly time scale (Figure 3b,c). The R2s increase
from forests to farmland and urban also reflect precipitation pattern decreasing from high
altitudes to flat plain regions in which the vegetation in the lowland will be more sensitive
to precipitation quantity (Figure 1b). Meanwhile, forests with well-developed roots than
vegetation in farmland can utilize the soil moisture in-depth [91]. The linear relationships
between monthly PV and concurrent temperature without time lag effects indicate that
vegetation can develop promptly to the seasonal cycle of temperature, maximum in summer
and minimum in winter. Studies showed that the favorable temperatures for vegetation
growth are 6–30 ◦C in tropical and subtropical regions [92,93]. In Taiwan, even in winter,
the monthly temperature in forested regions is rarely below 5 ◦C so that will not really limit
plant growth (Figure 3b). However, the average of preceding one-month and concurrent
month rainfall regulate the vegetation growth across various vegetation and land cover
types (Figure 3c), demonstrating that the accumulation of precipitation amount especially
for the winter–spring dry period plays a critical role to promoting vegetation activity
during the transition time [94–96].

Previous studies have suggested that temperature is a major control on vegetation
growth in temperate and boreal forests [5,6,11], while precipitation will significantly govern
vegetation dynamics in arid and semi-arid regions [7,97,98]. The study conducted across



Remote Sens. 2021, 13, 3298 15 of 22

various forest types in tropical and subtropical India revealed that the monthly mean NDVI
related to concurrent monthly mean temperature, while the NDVI positive significantly
correlated with the logarithm of preceding cumulative rainfall for 3–4 months [99]. Our
findings exhibit that on a monthly scale, the linear relationships between temperature and
PV without a time-lag effect across land cover types show the synchronous cycles of PV
and temperature. However, the non-linear relationships between PV and precipitation with
a one-month lag imply that the rainfall variations during the dry season have a substantial
effect on the beginning of the growing season.

4.2. Spring and Summer Rainfall on Phenological Metrics

For the seasonal scale, the results show that the spring rainfall (February–March), but
not summer rainfall (August–October), has a ramification on subsequent SOS, EOS, LOS,
and NPP of Taiwan (Figure 5). The spatial patterns of later SOS (>JD 150) are associated
with regions that received spring rainfall <40 mm, only 20% of the long-term average of the
entire region, primarily distributed along central and southwestern Taiwan where it is most
susceptible to drought effects [51]. Many studies in temperate forests and cold regions
indicated that the land surface SOS is controlled by temperature, and plays a critical role
in regulating ecosystem productivity [15,31,35,97]. In contrast, a recent study revealed
that the relative contribution of EOS to LOS was higher than observed before [100]. In our
results, the earlier SOS will bring about a longer growing season and increase productivity
(Figure 5), but the negative correlation between EOS and NPP suggests that the delayed
EOS is not favorable for vegetation production (Figure 6). Therefore, the impacts of
rainfall accumulation during springtime and earlier SOS might lead to a cascade effect on
vegetation activities, dynamics, and productivity of the annual cycle in subtropical Taiwan.
Bigler et al. [101] found that water deficiency that occurred earlier in the growing period
caused stronger effects on fir mortality than that happened late in the growing season or
cessation (September to December). Over the past decade, the tropical ecosystems such as
Congolese and Amazonia forests have experienced a large-scale reduction of vegetation
greenness due to reduction in rainfall [10,102], in contrast, there was a widespread greening
trend of vegetation in South Asia since 2002 owing to wetter conditions in the dry season or
in the dry region [17]. The variations in vegetation dynamics indicated that the variations
of carbon uptake and energy balance in tropics and subtropics are associated with rainfall
anomalies.

In a global scale analysis over the last three decades (1981–2015), Famiglietti et al. [103]
indicated that regions impacted by wet extremes are nearly as regions impacted by drought,
in which the wet-impacted regions were not uniform in patterns controlled by multiple
mechanisms. Knapp et al. [104] showed that aboveground net primary production was
more responsive to soil moisture variability and increases in rainfall variability can rapidly
change carbon cycling and vegetation composition, in lieu of changes in total precipitation.
Under an era of a warming climate, the frequency and intensity of extreme hydro-climate
events will increase and the variability of global carbon cycling and NPP will also be likely
amplified [33,105–108]. In this study, the summer rainfall showed no statistically significant
correlation to EOS and NPP, but the nearly significant relationship between summer rainfall
and LOS (r = 0.42, p = 0.064) suggested that the effect will appear using a longer dataset or
the climatic extremes such as tropical cyclone, sporadic rainfall storms in mountains, and
other factors occurred within summer growing season should be considered in the future
to disentangle the intertwined interactions on the vegetative surface.

4.3. Spatiotemporal Patterns of Vegetation Growth Associated with Land Surface Phenology and
Climatic Fluctuations

The spatiotemporal patterns of the first two leading components of entire Taiwan, N
Taiwan, and S Taiwan, as expected, were closely correlated to vegetation growth of land
use, forests, and farmlands, respectively, and the temporal loadings were significantly
related to local temperature and precipitation (Figures 7 and 8). Unless the land surface has
been dramatically altered over time, the constant land cover types interpreted the largest
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variability of vegetative greenness [47,109]. The higher eigenvectors in mountains of PC1
and stable seasonal cycles were associated with the vegetation growth for the entire island
where was principally covered by forested regions in mid- and high-altitudes. In contrast,
the higher eigenvector in plain regions of PC2 and the temporal loadings with an obvious
drop during summer indicated that the regular interferences by anthropogenic forces such
as irrigation or harvesting (Figure 8). Therefore, the combination of two images would be
helpful for mapping the main land cover types, forest, and farmland (Figures 1c, 7 and 8).

The PC3 image was linked to regional drought conditions, where the annual pre-
cipitation declined from high altitudes and northeast Taiwan (negative eigenvectors) to
lower altitude and southwest Taiwan (positive eigenvector) (Figure 9a). Over the 20-year
period, there were similar positive-summer and negative-winter loadings which could
characterize the seasonal climate in Taiwan, and the drought index SPI3 showed that during
the period of 2002–2004 the negative loadings lasted for 27 months and was identified
as the severest drought period over the past century, annual rainfall reached only 60%
of long-term average [52] and might cause more significant impacts on S Taiwan than
in N Taiwan (Figure 9b). Though climate warming might provide an upward trend in
NPP, large-scale drought events would decrease NPP in that region and negate the benefit
from increasing temperature such as in the tropical Amazon [110,111]. The records of
climate over the last century manifested that the precipitation quantity tended to increase
in northern Taiwan and to reduce in southern Taiwan, the fluctuations between wet and
dry season has been intensified, and the projection of amplification will continue [112]. The
exaggeration of drought conditions under warming scenarios is going to change hydrocli-
mate, biogeochemical, and energy cycles, and the consequent disturbance on terrestrial
ecosystems [113–115].

The PC4 revealed divergent eigenvector patterns of positive-eastern and negative-
western that might be associated with rainfall anomalies and caused significant effects on
S Taiwan than on N Taiwan (Figure 10b). The preceding warm events (El Niño) in the
cold season over the Niño-3 region usually led to following wetter spring and wetter plum
rainfall with frequent extreme events before summer in Taiwan, and vice versa [55,58].
Several studies using remotely sensed data showed that spatiotemporal patterns of the
vegetative surface were connected with ENSO indicators which were linked to tempera-
ture in mid-latitude [43,116], rainfall variability, and flood in tropical Indonesia and the
Amazon [49,50,117,118]. Our results showed that the patterns of the first three PCs were
primarily controlled by local climatic factors, whereas the weak but substantial climatic
signals associated with ENSO only can be captured by the low variance of vegetation using
minor PC loadings (Figures 7–10). Over the past three decades, the more intensive El Niño
events in the central Pacific have become more common than the past four centuries, and
the precipitation anomalies are also projected to shift eastward with the ongoing warming
climate [119,120]. Recent studies reveal that ENSO phases have become a weaker factor
over global-scale vegetation productivity than ever thought, but it is still a principal control
of interannual variability of greenness over South America, northeastern Asia, eastern
Australia, and southern and eastern Africa [121,122]. Therefore, it is urgent to disentangle
the associations between vegetation dynamics and climatic fluctuation from regional to
global scales, because the frequency and intensity of ENSO events continuously alter with
climate warming.

4.4. Uncertainties and Perspective for Future Research

The monthly MVC PV images have decreased the atmospheric contamination sig-
nificantly but there was approximately 1% of sampling points affected by unavoidable
frequent clouds which could not completely eliminate the effect on the estimation of PV-
climate relationships and land surface phenology. In PCA, the leading PCs usually could
characterize the major patterns of land cover types, but there was no agreement between
low order PCs and climatic anomalies which depended on region and time span of data
used. It is always necessary to utilize longer data to comprehend the effects of regular
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climatic and climatic variations on the dynamics of vegetation growth in changing climates.
Several studies suggested that CO2 fertilization and nitrogen deposition could enhance
surface greenness [123,124], and it might be necessary to identify their contribution to
vegetation dynamics but such data are not available across the mountainous island. The
low cost of near-surface ground observation by WebCam or PhenoCam will be compa-
rable in the near future for phenological observation across scale in selected sites [125],
though the coverage of representative could be an issue in mountainous regions. The
satellite-derived phenological information of vegetative surfaces is still the most powerful
method for monitoring vegetation growth responses to changing climate across multiple
spatiotemporal scales.

5. Conclusions

In this study, we synthesized the local climate, mainly temperature and precipitation,
and large-scale ENSO anomalies, on vegetation dynamics in subtropical mountainous
Taiwan using PV calculated from MODIS reflectance data to delineate vegetation growth
at monthly, seasonal, and annual scales. The results indicate that PV is positively related to
current monthly temperature and one-month lagged precipitation at a monthly timescale
across various land cover types. The delayed SOS was directly influenced by a spring
drought, <40 mm during February–March, and later SOS related to late EOS, shorter LOS,
and reduction of annual NPP. However, the summer rainfall (August–October) and EOS
were not significantly related to LOS and NPP. The SOS plays a critical role in controlling
vegetation dynamics in this subtropical island. The PCA (principal component analysis)
helped to effectively generate several patterns that accounted for most of the data variance
and were associated with the phenology of land cover types (PC1 and PC2), regional
drought condition (PC3), and large-scale atmospheric fluctuations (PC4). It is fundamental
to disentangle the intertwined connections between vegetation and climate across multiple
time scales that will be crucial for assessing the carbon sequestration and productivity of
terrestrial ecosystems under the cascading effects of a specific climatic process in the near
future.
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