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Abstract: Video synthetic aperture radar (VideoSAR) can detect and identify a moving target based
on its shadow. A slowly moving target has a shadow with distinct features, but it cannot be detected
by state-of-the-art difference-based algorithms because of minor variations between adjacent frames.
Furthermore, the detection boxes generated by difference-based algorithms often contain such defects
as misalignments and fracture. In light of these problems, this study proposed a robust moving
target detection (MTD) algorithm for objects on the ground by fusing the background frame detection
results and the difference between frames over multiple intervals. We also discuss defects that occur
in conventional MTD algorithms. The difference in background frame was introduced to overcome
the shortcomings of difference-based algorithms and acquire the shadow regions of objects. This
was fused with the multi-interval frame difference to simultaneously extract the moving target at
different velocities while identifying false alarms. The results of experiments on empirically acquired
VideoSAR data verified the performance of the proposed algorithm in terms of detecting a moving
target on the ground based on its shadow.

Keywords: video synthetic aperture radar (VideoSAR); moving target detection (MTD); background-
frame difference; multi-interval frame difference

1. Introduction

The synthetic aperture radar (SAR) combines pulse compression and the synthetic
aperture to obtain high resolution images along the directions of the range and the azimuth.
It is regarded as an important means of earth observations and battlefield surveillance [1–4].
A military target may not stay motionless but seek to attack while constantly moving to
improve its probability of survival. The conventional SAR imaging technique can provide
only static observations of the given scene. The combing ground moving target indication
(GMTI) technique partially enables SAR to detect moving targets. This method extracts
some parameters of moving targets from moving bright spots after SAR imaging, such as
the along track velocity [5], the variations in traffic [6], etc. However, such a GMTI/SAR
technique incurs a significant computational load and has a complex implementation
procedure [7–9]. Researchers at the Sandia National Laboratories have integrated SAR
imaging with video-capturing technology to develop the video synthetic aperture radar
(VideoSAR) technique [10]. Owing to its high frame rate of ground imaging, this technique
can represent dynamic changes in a specific region on the ground at a high resolution in
real time and is regarded as an innovation in military surveillance and reconnaissance [11].

The shadow of a moving target can be used as an object of detection in VideoSAR [12–15].
This has the theoretical advantages of a high positioning accuracy, high rate of detection,
and low minimum detectable velocity. In [15], the authors discussed the mechanism of
formation of the shadow of a moving target in a SAR image, and proposed a moving
target detection (MTD) method as well as a method to assess it. The authors of [16] used
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the maximum threshold segmentation method to calculate binary images and extract a
moving target in them by combining the background difference and the frame difference
algorithms. In [17], a shadow-based low-RCS MTD method for the Ka band was proposed
based on the geometric characteristics of the moving shadow. The authors of [18] presented
a method of local feature analysis based on single-frame images that can accurately detect
the shadow of a moving target. In [19], a dual fast region-based convolutional neural
network for SAR images in the range Doppler (RD) spectrum domain was proposed to
detect a moving target on the ground, but these algorithms have high requirements for
training data [20] and insufficient generalization ability. All these algorithms can extract the
shadow of a moving target on the ground. However, shadow detection by using VideoSAR
has some inherent defects, especially in the case of a slowly moving target. According to
the mechanism of shadow formation in VideoSAR, the main causes of false alarm include
temporal variations in scattering, variations in the shadow with changes in the viewing
angle, energy displacement and shifting of the target, and SAR speckle noise [21]. A
clear and stable shadow is thus challenging to obtain in VideoSAR data. Moreover, the
detection box obtained via difference-based algorithms has such defects as misalignments
and fractures that degrade the detection-related performance of VideoSAR.

This study used the results of past research and the characteristics of sequences
of images in VideoSAR to propose a robust method to detect the shadow of a moving
target on the ground. In light of the problem whereby the conventional frame difference
algorithm cannot detect a target with varying velocity, the proposed algorithm accumulates
the results of background frame difference over several intervals (multiple intervals),
and then segments the cumulative results to form a binary image to identify slowly and
quickly moving targets. Moreover, in light of the problem whereby the conventional
frame difference algorithm cannot extract the entire region of the moving target, which
leads to misaligned and fractured results of detection, the proposed algorithm combined
background frame difference and multi-interval frame difference to prevent the front-and-
rear fracture of the detection boxes to improve the accuracy of MTD.

The remainder of this paper is organized as follows: Section 2 details the principles of
conventional difference-based algorithms and the defects in their application to VideoSAR.
Section 3 describes steps of the implementation of the proposed algorithm as well as
its advantages. Experiments on empirically acquired VideoSAR data are carried out in
Section 4 to test the effects of the proposed algorithm, and the conclusions of this study are
drawn in Section 5.

2. Principles and Deficiencies of Difference-Based Algorithms

A moving target can be detected through its shadow in VideoSAR, where a moving
shadow can in turn be detected via the difference operation. Difference-based algorithms
are widely used to detect changes in videos due to their simplicity and high efficiency. They
include background difference and frame difference algorithms. This section provides a
brief introduction and analysis of difference-based algorithms.

The background difference algorithm builds a background template and compares it
with a sequence of images one by one to separate the static background from the moving
target [15]. This process is simple in principle, and easy to implement and adapt to a
dynamic background. It is frequently used in scenes where the background does not
change or does so only slowly. Background modeling is the key step here, and is com-
monly implemented via mean background modeling, Gaussian background modeling, and
nuclear density estimation-based background modeling [22].

Frame difference is an algorithm that removes the static region from an image and
preserves the moving target by subtracting adjacent frames. It incurs a low computational
load and is easy to implement. In applications, however, this algorithm exhibits such
defects as misaligned detection boxes and sensitivity to the intensity of ground scattering.
Moreover, targets with low velocities are difficult to detect because variations between
adjacent frames are minor.
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Figure 1 shows the basic principle of the background difference and frame difference
algorithms. Three frames before the given one are used to form the background template.
The grayscales of the background and the target shadow are assumed to be homogeneous
and constant to simplify the derivation. Ct and Cb in the figure represent the grayscales
of the target shadow and the background shadow, respectively. It is clear that both the
background difference algorithm and the frame difference algorithm can partially extract
the moving region. The position of the moving target obtained via background difference
has a significant offset (see the center of the white rectangle in Figure 1a), and the detection
box obtained using frame difference is fractured. Such problems affect the accuracy of
shadow detection and are thus important to solve.
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3. Fusing Background Frame Detection and Multi-Interval Frame Difference for MTD

To address the deficiencies of difference-based algorithms in MTD by using VideoSAR,
this section combines background frame detection and multi-interval frame difference.
By accumulating the results of multi-interval frame difference, the proposed algorithm
can drastically improve the detection of a slowly moving target, and background frame
detection can yield more accurate positions of the moving target. The main procedure of
the proposed algorithm is discussed in this section.

3.1. Background Frame Detection

The shadow of a moving target appears as a low grayscale area in the SAR image,
and its grayscale range is related to the total time for which the shadow of the ground
object is detected. The intensity of the shadow region of the moving target can be written
as (detailed deduction has been provided in [21]):

Pmoving = kFnT0Bn(1 + (1− q)SNRarea) (1)

where k is the Boltzmann constant, Fn are the noise coefficients of noise of the receiver, T0
is the effective temperature of noise in receiver, Bn is the spectral density of effective noise,
SNRarea is the signal-to-noise ratio of the area target, and q is a scale factor related to the
duration for which the shadow appears. It is given by:

q =
La

vt

2ρaVr

rλc
(2)

where La is the azimuthal length of the target, ρa is its azimuthal resolution, vt represents
the velocity of the radar platform, r is the nearest range between the radar and the target,
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and λc is the carrier wavelength. Considering Equations (1) and (2), it is clear that the
intensity of the shadow of the moving target is closely related to the velocity of the target.
Only a target moving within a certain range of velocity forms a macroscopic shadow. When
the velocity of the target exceeds a certain value (q decreases to close to zero), the shadow
of the moving target blends into the background instead of appearing as a distinct feature.

Thus, the boundary value of the grayscale range of the shadow of the moving target is:{
Cmin = kFnT0Bn

Cmax = kFnT0Bn(1 + SNRarea)
(3)

Assuming that the given frame is Ic(x, y), where (x, y) represents the coordinate of an
arbitrary pixel, Ise(x, y) is the binary image obtained via processing for shadow detection,
the background frame detection can be expressed as:

Ise(x, y) =
{

1, Cmin ≤ Ic(x, y) ≤ Cmax
0, Ic(x, y) < Cmin or Ic(x, y) > Cmax

(4)

This operation can extract all regions with similar gray values to those of the shadow
of the moving target, including targets moving at different velocities in a static, low RCS
background. This process thus yields many false alarms while accurately extracting a
moving target, where the number of false alarms is much higher than that of instances of
the real target.

3.2. Multi-Interval Frame Difference

Conventional frame difference involves subtracting the frame adjacent to the given
one from it to highlight moving objects. It has the advantages of low computational load
and a simple implementation, but yet has an inherent defect in the case of detecting a
slowly moving target. A modified method called symmetry difference is proposed to solve
this problem. It involves fusing the results of differences of three frames (from front and
rear to Ic) [23]. An efficient algorithm called multi-interval frame difference is used in this
paper, and the details of its implementation are as follows:

Assume that N frames in front of and behind Ic are used and stacked into a 3D matrix
F. For each frame Fi in F, we calculate the difference between it and Ic, and add all these
results to form Itemp. Then, Itemp is compared with a preset threshold TS in a pixel-by-pixel
manner and transferred into a binary image Imd (logical(·) represents a logical operation),
which can be written as:

Itemp =
N

∑
i=1

logical(|Fi − Ic|) (5)

Imd(x, y) =
{

0, Itemp(x, y) ≤ TS
1, Itemp(x, y) > TS

(6)

The interval used in frame difference affects detection-related performance. Assume
that vt is the velocity of the target, frate is the frame rate, and Lt is the projected length
along its velocity. It is clear that the best moment to calculate the frame difference is
when the target moves exactly by distance Lt. The ideal interval Nideal must satisfy the
following equation:

Nideal =
frate · Lt

vt
(7)

A slowly moving target cannot be extracted via conventional frame difference because
changes between adjacent frames are minor. Hence, it is necessary to calculate the dif-
ferences between frames over a wider interval. The value of N is related to the target’s
velocities in the observed scene. Normally, we need to ensure that the distance moved by
the slowest target during (N − 1)/2 frames is longer than half of its own length. This can
be expressed as:
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(N − 1) ·Vmin

2 frate
≥ Lt

2
(8)

where Vmin denotes the minimum velocity of the target. It is easy to deduce the range of
values of N:

N ≥ frate · Lt

Vmin
+ 1, N ∈ Z (9)

where Z contains all integers. The minimum N value required to meet the detection of slow
moving targets is determined according to Equation (9), and the N-frame difference results
are accumulated according to Equation (5). By accumulating the results of multi-interval
frame difference, we can simultaneously detect a target moving with different velocities.
However, due to characteristics of difference-based algorithms, the detection box and the
real position of the shadow of the target are misaligned, and lead to erroneous results.

3.3. Fusion and Threshold Determination

Background frame detection can be used to obtain accurate positions of the moving
target and the intact regions of coverage, but also leads to a large number of false alarms
in a low-RCS background. Multi-interval frame difference can simultaneously detect the
target at different velocities but incurs problems including the misalignment and fracture
of the detection boxes. Therefore, this paper proposes an MTD algorithm by fusing these
two algorithms.

The area of overlap of shadow is obtained via the logical AND operation:

Ilap = Ise ∧ Imd (10)

Ilap is then added to the result of background frame detection Ise, and the weighted
shadow is extracted. Pixels that are detected by both algorithms are assigned the value “2”,
and other pixels are assigned “1”.

I f usion = Ilap + Ise (11)

Finally, we extracted the region of interest (ROI) from I f usion. The ROI of a moving
target is normally detected by both algorithms, and thus has many pixels with the value 2.
The ROI of a low RCS, static background is detected only by background frame detection,
and thus has pixels of value 1. In practice, a threshold ROI (TROI) can be set to distinguish
between the real target and a false alarm. This is called threshold determination:

ROI(k)→
{

real target , Sweight(k)/Sunweight(k) ≥TROI
false alarm , Sweight(k)/Sunweight(k) <TROI

(12)

where Sweight = sum(ROI(k)) is the weighted area of and Sunweight = numel(ROI(k)) is its
unweighted area. It is easy to obtain the range of values of TROI , as in [1,2]. In general,
TROI is set between 1.3 and 1.5 for satisfactory detection probability of moving target at all
speeds, while suppressing false alarms as much as possible.

Figure 2 shows the effect of the proposed algorithm. It is clear that single frame
shadow extraction can yield an accurate and intact shadow region and leads to many false
alarms. Multi-interval frame difference can be used to acquire information on the moving
region and yields misalignment and fractures in the detection box. After fusion, we can
obtain an accurate position of the target with a low false alarm rate.



Remote Sens. 2021, 13, 3291 6 of 13

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 13 
 

 

where ( )( )ROIweightS sum k=  is the weighted area of and ( )( )ROIunweightS numel k=  is its 
unweighted area. It is easy to obtain the range of values of ROIT , as in [1,2]. In general, 

ROIT  is set between 1.3 and 1.5 for satisfactory detection probability of moving target at 
all speeds, while suppressing false alarms as much as possible. 

Figure 2 shows the effect of the proposed algorithm. It is clear that single frame 
shadow extraction can yield an accurate and intact shadow region and leads to many 
false alarms. Multi-interval frame difference can be used to acquire information on the 
moving region and yields misalignment and fractures in the detection box. After fusion, 
we can obtain an accurate position of the target with a low false alarm rate. 

Target

False 
Alarm

False 
Alarm

False 
Alarm

False 
Alarm

Background
 

Target

Background
 

Target

Background
 

(a) (b) (c) 

Figure 2. Schematic diagram of the proposed algorithm. The gray rectangles represent the shadow of the moving target, 
the gray circles represent false alarms from a low-RCS background, and the red dashed lines represent the detection 
boxes. (a) Results of background frame detection. (b) Results of multi-interval frame difference. (c) Result of fusion and 
threshold determination. 

A flowchart of the proposed VideoSAR-based MTD algorithm is shown in Figure 3. 
The VideoSAR preprocessing procedure is first applied to the input VideoSAR image 
sequence, including the inter-frame registration algorithm and the speckle suppression 
algorithm. After registration and noise suppression, one can obtain an image sequence 
with clear targets and a smooth background. Following this, the background frame de-
tection step (shown in the green box) and the multi-interval frame difference step 
(shown in the orange box) are applied to the results of preprocessing, respectively. Fi-
nally, the fusion and threshold determination step (shown in the blue box) is used to in-
crease the accuracy of detection of the shadow of a moving target on the ground and 
reduce false alarms. 

VideoSAR image sequence

VideoSAR preprocessing

Frame difference intervalsTarget shadow gray value

Multi-interval frame differenceSingle-frame shadow extraction

Target extraction result fusion

Moving target detection results

Background-frame 
difference

Multi-interval 
frame difference

Threshold determination
Fusion & 
Threshold 

determination

 

Figure 2. Schematic diagram of the proposed algorithm. The gray rectangles represent the shadow of the moving target,
the gray circles represent false alarms from a low-RCS background, and the red dashed lines represent the detection
boxes. (a) Results of background frame detection. (b) Results of multi-interval frame difference. (c) Result of fusion and
threshold determination.

A flowchart of the proposed VideoSAR-based MTD algorithm is shown in Figure 3.
The VideoSAR preprocessing procedure is first applied to the input VideoSAR image
sequence, including the inter-frame registration algorithm and the speckle suppression
algorithm. After registration and noise suppression, one can obtain an image sequence with
clear targets and a smooth background. Following this, the background frame detection
step (shown in the green box) and the multi-interval frame difference step (shown in the
orange box) are applied to the results of preprocessing, respectively. Finally, the fusion and
threshold determination step (shown in the blue box) is used to increase the accuracy of
detection of the shadow of a moving target on the ground and reduce false alarms.
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Figure 3. Flowchart of the proposed VideoSAR-based MTD algorithm. The green box represents the
background frame detection step, the orange box represents the multi-interval frame difference step,
and the blue box represents the fusion and threshold determination step.

4. Experimental Results and Discussion

Empirical VideoSAR data were used to verify the performance of the proposed method.
The data were captured at Kirtland Air Force Base and published by Sandia National
Laboratories (SNL) [10]. The video contained 900 frames captured at a rate of 29.97 Hz.
The height and width of each frame after preprocessing were 720 pixels and 650 pixels,
respectively. The methods proposed in [24] were used to register the image sequence and
suppress speckle noise. The method to reduce the number of false alarms proposed in [21]
was applied after fusion.
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4.1. Results of Shadow Marking

To quantitatively analyze the results of shadow detection, the shadow of the moving
target was marked for SNL VideoSAR data, and the area of the shadow was manually
marked frame by frame. A total of 50 moving targets (vehicles) were marked in 900 frames
of the video, including 33 vehicles on the left road and 17 on the right road. The results
of marking of the moving vehicles in the SNL VideoSAR data are shown in Figure 4, the
number of moving vehicles is plotted in Figure 4a, from three to 11 in each frame, and the
motion of 50 vehicles in and out the frame is shown in Figure 4b.
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Figure 4. Results of marking of moving cars in the SNL VideoSAR data. (a) Number of moving cars. (b) Motion of
moving cars.

Due to limitations of space, only the results of the 23rd and the 551st frames are shown
here. Figure 5 shows the results of detection of the shadow of a moving target on the
ground after VideoSAR registration preprocessing. The shadows of six moving cars are
marked in the 23rd frame in Figure 5a and in the 551st frame shown in Figure 5b.
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4.2. Results of Shadow Detection

The processing parameters were as follows: The grayscale range used for background
frame detection (Cmin, Cmax) was (30, 50), TROI was set to 1.3, and N was set to 7 based
on the analysis in Section 3. The area of ROI was limited to the range (80, 500). The
morphological opening operation used a 3 × 3 circular structural element. The closed
operation used a 5 × 5 circular structural element. Adaptive histogram equalization was
used to improve visibility (the original video was extremely dark and objects in it were
difficult to recognize).

Figures 6 and 7 show that the background frame detection algorithm could extract
regions that satisfied the grayscale range-related criteria of the moving target, while gen-
erating a large number of false alarms (see Figures 6b and 7b). The multi-interval frame
difference algorithm could detect regions of vibrations (see Figures 6c and 7c). A compari-
son of the results of these two algorithms yielded a precise difference between false alarms
and shadows of the real target (note the grayscale of each pixel; a false alarm could meet
the grayscale criteria without variation), shown in Figures 6d and 7d. The results of fusion
are shown in Figures 6e and 7e, and the final MTD result is depicted in Figures 6f and 7f,
marked with the green rectangles. Meanwhile, compared with Figure 5b, a false alarm
detection was found in the lower left corner in Figure 7f.
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Figure 7. The results of processing of the 551st frame. The green rectangles highlight the detected moving targets.
(a–f) correspond to those in Figure 6a–f.

The probability of detection Pd and false alarm rate Far were used to evaluate the
detection performance of the proposed method. Pd and Far are defined as follows:

Pd =
Nc

Nr
× 100% (13)

Far =
N f

Nall
× 100% (14)

where Nc denotes the number of correct instances of detection and Nr denotes the number
of real moving targets. N f represents the number of false alarms and Nall represents the
number of all detected targets.

Figure 8 shows indices of the probability of detection and false alarm rate. Both Pd and
Far yielded suitable values of 77.65% and 11.21%, respectively. Table 1 compares detection-
related performance of the background frame detection algorithm, the multi-interval frame
difference algorithm and the proposed algorithm. It is clear that the background frame
detection algorithm recorded the highest rate of detection and the highest false alarm rate.
The multi-interval frame difference algorithm yielded lowest false alarm rate but also a
low rate of detection. The proposed algorithm, by combining the advantages of these two
algorithms, yielded good results on both indices.
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Figure 8. Statistics on detection-related performance of the proposed algorithm. (a) Detection rate. (b) False alarm rate.

Table 1. Comparison of detection-related performance of three algorithms.

Indices Frame Number Background Frame
Detection Algorithm

Multi-Interval Frame
Difference Algorithm Proposed Algorithm

Detection rate

50 100% 3/5 60% 4/5 80%
150 100% 100% 100%
250 100% 2/6 33.3% 100%
350 6/7 85.7% 3/7 42.9% 5/7 71.4%
450 100% 2/5 40% 4/5 80%
550 100% 1/5 20% 100%
650 100% 2/5 40% 100%
750 100% 2/5 40% 100%
850 100% 1/4 25% 3/4 75%

False alarm rate

50 25/30 83.3% 2/5 40% 0
150 14/18 77.8% 0 0
250 26/32 81.3% 0 1/7 14.3%
350 30/38 78.9% 0 1/7 14.3%
450 19/24 79.2% 0 1/5 20%
550 16/21 76.2% 1/2 50% 0
650 14/19 73.7% 0 0
750 24/29 82.8% 0 0
850 16/20 80% 0 0

4.3. Comparison and Discussion

To visually show the effects of the background frame detection algorithm and the
multi-interval frame difference algorithm, part of the target region is illustrated in Figure 9.
The background frame detection algorithm could not deal with false alarms in a low-
RCS background, whereas the multi-interval frame difference algorithm could not handle
problems such as the misalignment and fracture of the detection box. The fusion algorithm,
however, obtained satisfactory results in terms of both measures.

To verify the advantage of the multi-interval frame difference algorithm, it was com-
pared with the conventional frame difference method (adjacent frame difference mentioned
in Section 2). Three targets were marked in descending order of velocity from 1 to 3.
The multi-interval frame difference algorithm outperformed the conventional method, as
shown in Figure 10. In Figure 10a, only small areas of targets 1 and 2 are detected and
deviated away from their real positions. By contrast, the result of detection in Figure 10b
is superior.



Remote Sens. 2021, 13, 3291 11 of 13

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 13 
 

 

low-RCS background, whereas the multi-interval frame difference algorithm could not 
handle problems such as the misalignment and fracture of the detection box. The fusion 
algorithm, however, obtained satisfactory results in terms of both measures. 

  
(a) (b) 

Figure 9. Comparison between the background frame detection algorithm and the multi-interval frame difference algo-
rithm. The green rectangles represent the real position of the shadow of the moving target. (a) Result of the background 
frame detection algorithm. (b) Result of the multi-interval frame difference algorithm. 

To verify the advantage of the multi-interval frame difference algorithm, it was 
compared with the conventional frame difference method (adjacent frame difference 
mentioned in Section 2). Three targets were marked in descending order of velocity from 
1 to 3. The multi-interval frame difference algorithm outperformed the conventional 
method, as shown in Figure 10. In Figure 10a, only small areas of targets 1 and 2 are de-
tected and deviated away from their real positions. By contrast, the result of detection in 
Figure 10b is superior. 

  
(a) (b) 

Figure 10. Comparison between the multi-interval frame difference algorithm and the conventional frame difference al-
gorithm. The green rectangles represent the real position of the shadow of the moving target. (a) Result of conventional 
frame difference. (b) Result of multi-interval frame difference.  

Figure 9. Comparison between the background frame detection algorithm and the multi-interval frame difference algorithm.
The green rectangles represent the real position of the shadow of the moving target. (a) Result of the background frame
detection algorithm. (b) Result of the multi-interval frame difference algorithm.

Remote Sens. 2021, 13, x FOR PEER REVIEW 11 of 13 
 

 

low-RCS background, whereas the multi-interval frame difference algorithm could not 
handle problems such as the misalignment and fracture of the detection box. The fusion 
algorithm, however, obtained satisfactory results in terms of both measures. 

  
(a) (b) 

Figure 9. Comparison between the background frame detection algorithm and the multi-interval frame difference algo-
rithm. The green rectangles represent the real position of the shadow of the moving target. (a) Result of the background 
frame detection algorithm. (b) Result of the multi-interval frame difference algorithm. 

To verify the advantage of the multi-interval frame difference algorithm, it was 
compared with the conventional frame difference method (adjacent frame difference 
mentioned in Section 2). Three targets were marked in descending order of velocity from 
1 to 3. The multi-interval frame difference algorithm outperformed the conventional 
method, as shown in Figure 10. In Figure 10a, only small areas of targets 1 and 2 are de-
tected and deviated away from their real positions. By contrast, the result of detection in 
Figure 10b is superior. 

  
(a) (b) 

Figure 10. Comparison between the multi-interval frame difference algorithm and the conventional frame difference al-
gorithm. The green rectangles represent the real position of the shadow of the moving target. (a) Result of conventional 
frame difference. (b) Result of multi-interval frame difference.  

Figure 10. Comparison between the multi-interval frame difference algorithm and the conventional frame difference
algorithm. The green rectangles represent the real position of the shadow of the moving target. (a) Result of conventional
frame difference. (b) Result of multi-interval frame difference.

4.4. Algorithm Time Complexity Analysis

In this subsection, we theoretically analyze the computational burden of the proposed
algorithm by computing the floating-point operations (FLOPs) of the main steps. Assume the
size of a frame of an image is P×Q (pixel× pixel). The image is real data. The calculation
complexity of addition, subtraction, multiplication and logical operations of a frame of the
image is PQ FLOPs. Then, the computational complexity of Equations (4)–(6) and (10)–(11)
can be expressed as:

Cp = PQ + PQ · 3N + PQ + PQ + PQ + PQ = (3N + 5)PQ (15)
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Since N is much smaller than P and Q, the computational complexity is O(PQ).
In addition, considering the frame rate of VideoSAR is frate, the calculation burden of
VideoSAR per second can be obtained as:

Cp1 = frate · Cp = frate(3N + 5)PQ (16)

In this paper, frate is 29.97 Hz, P is 720 pixels, Q is 650 pixels and N was set to 7; the
calculation amount of video SAR detection part is about 3.6 × 108 FLOPs per second.

The proposed algorithm was tested in C language on a platform with an Intel i7–7700
K CPU with a dominant frequency of 4.2 GHz and 32 GB RAM. The running time of
the detection algorithm part is 24.81 s, which is less than the whole video acquisition
time of 30 s. The algorithm has high computational efficiency and meets the needs of
practical application.

5. Conclusions

In light of the problem of the misalignment of the detection box, and a mismatch
between the difference intervals and the target velocities, this paper combined the back-
ground frame detection algorithm and the multi-interval frame difference algorithm to
improve performance in terms of MTD, especially in the case of a slowly moving target. To
solve the problem whereby the conventional frame difference algorithm cannot detect the
target at different velocities, the proposed algorithm accumulated the results of differences
among multiple frames to improve MTD of a slowly moving target. To solve the problem
whereby the detection boxes obtained via difference-based algorithms were misaligned
and fractured, the proposed algorithm introduced background frame detection to obtain
accurate positions of the shadow and used the result of multi-interval frame difference
to reduce false alarms, while preserving the correct target. The results of experiments on
empirically acquired VideoSAR data verified the effectiveness of the proposed algorithm.
The algorithm can also be applied to point moving target detection of optical video satellites
(such as Jilin No. 1 Video Satellite).
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