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Abstract: The spread of invasive alien species promotes ecosystem structure and functioning changes,
with detrimental effects on native biodiversity and ecosystem services, raising challenges for local
management authorities. Predictions of invasion dynamics derived from modeling tools are often
spatially coarse and therefore unsuitable for guiding local management. Accurate information on
the occurrence of invasive plants and on the main factors that promote their spread is critical to
define successful control strategies. For addressing this challenge, we developed a dual framework
combining satellite image classification with predictive ecological modeling. By combining data from
georeferenced invaded areas with multispectral imagery with 10-meter resolution from Sentinel-2
satellites, a map of areas invaded by the woody invasive Acacia longifolia in a municipality of northern
Portugal was devised. Classifier fusion techniques were implemented through which eight statistical
and machine-learning algorithms were ensembled to produce accurate maps of invaded areas.
Through a Random Forest (RF) model, these maps were then used to explore the factors driving
the landscape-level abundance of A. longifolia. RF models were based on explanatory variables
describing hypothesized environmental drivers, including climate, topography/geomorphology,
soil properties, fire disturbance, landscape composition, linear structures, and landscape spatial
configuration. Satellite-based maps synoptically described the spatial patterns of invaded areas,
with classifications attaining high accuracy values (True Skill Statistic, TSS: 0.895, Area Under the
Receiver Operating Curve, ROC: 0.988, Kappa: 0.857). The predictive RF models highlighted the
primary role of climate, followed by landscape composition and configuration, as the most important
drivers explaining the species abundance at the landscape level. Our innovative dual framework—
combining image classification and predictive ecological modeling—can guide decision-making
processes regarding effective management of invasions by prioritizing the invaded areas and tackling
the primary environmental and anthropogenic drivers of the species’ abundance and spread.

Keywords: invasive alien species; plant invasion; Acacia longifolia; biomod2; Sentinel-2; classifier
fusion; supervised classification; predictive modeling

1. Introduction

Biological invasions represent a major threat to biodiversity worldwide, with a broad
range of impacts on ecosystem services, natural capital, and human well-being [1]. The
introduction of alien organisms in new ecosystems has grown exponentially during the
last decades due to the increase of trade (on a global scale) and unprecedented mobility
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of people and goods [2,3]. Driven by this reality, new and often more aggressive invasive
species are expected to spread, threatening the use of natural resources.

Due to their potential impacts and associated costs, biological invasions are at the
core of major global political initiatives, from the 1992 Convention on Biological Diversity
(CBD) to the 2030 Agenda for Sustainable Development of the United Nations. Specific
to invasions, the Aichi Target 9 from the CBD’s Strategic Plan for Biodiversity 2011–2020
stipulated that “by 2020, invasive alien species and pathways are identified and prioritized,
priority species are controlled or eradicated, and measures are in place to manage pathways
to prevent their introduction and establishment”. Successfully pursuing that goal over this
new decade will require a stronger focus on mapping, predicting, and identifying potential
risks and promoting action upon invaders before they become established [4].

Besides direct human management, the success of biological invasions is determined
by three broad factors: the number of propagules entering the new environment, the new
species’ life strategy and functional characteristics, and the environment’s susceptibility to
invasion [5]. The invasion process is deeply influenced by the traits of receiving landscapes
that promote their susceptibility to invasion by species from other world regions. Moreover,
the spatial and ecological patterns of invasive plants are strongly driven by disturbance
regimes acting upon ecosystems and landscapes [6].

Even though the need to enhance ecosystem services often drives plant species in-
troductions in non-native ranges (e.g., soil fixation, erosion control, landscape aesthetics),
several negative ecological, economic, and social impacts can occur if the species become
invasive. In particular, woody invasive alien species can alter ecosystem processes and
functions (e.g., biodiversity erosion, increased fire-proneness, allergic reactions to pollen,
dense vegetation in roads or tracks, ecosystem functioning disruptions) [7–9].

Acacia species are known worldwide for their invasive characteristics [10]. In the
northwest of Portugal (where the study area is located), environmental factors such as
the regions’ rugged topography, the high levels of precipitation and sun hours, associated
with anthropological factors like rural abandonment and fire regime changes during the
last decades promoted the spread of several invasive plant species of the genus Acacia,
including Acacia longifolia (Andrews) Willd [11–13] (hereafter A. longifolia).

Accurate high-resolution mapping of invasive alien species is critical to pursue politi-
cal initiatives, especially for anticipating, early detection, and support management options
on plant invasions [14,15], and remote sensing imagery and techniques are paramount
for this purpose. Multispectral sensors onboard satellite platforms, such as Sentinel-2,
improve the possibilities of detecting alien plant species not only because of suitable spatial,
temporal, and spectral resolutions of the sensor array but also due to the large image swath
covering vast regions at once. Another advantage of Sentinel-2 is that data is available
free of charge in contrast to commercial very-high-resolution platforms such as Rapid-
Eye, WorldView-1-4, GeoEye-1, in which image acquisition costs are often impeditive for
long-term monitoring. Sentinel-2 offers ten spectral bands covering the visible, near, and
shortwave infrared at a spatial resolution of 10 to 20 m (plus three additional bands with
60 m resolution) and five days of temporal resolution. Such characteristics make Sentinel-2
suitable for invasive species mapping and assessment and allow continuous monitoring at
several spatial and temporal scales [14]. These advances make possible a better detection
and perception of the spectral and physical differences between alien plant species and
autochthonous species/vegetation [15].

Complementarily to advances in remote sensing, new statistical and machine-learning
algorithms allow to better exploit and profit from these data. The software package
biomod2 [16] is a well-established platform implemented in R that allows users to assess
and combine different modeling/classification techniques based on statistical and machine-
learning algorithms [17]. Designated as an ensemble platform for species distribution
modeling (SDM), biomod2 allows predicting the habitat suitability of a species across a geo-
graphic space by establishing relationships between species and environmental variables,
based on statistical and machine-learning algorithms [18,19]. Despite the unquestionable
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value and usefulness of SDMs, they often fall short to actually depict invaded areas and
characterize several dimensions usually required by policymakers who need to quickly and
accurately detect invaded places to plan interventions [20]. This happens because SDMs are
correlative models, calculated from species presence/absence (or pseudo-absence) point
records which are then related to environmental variables (e.g., climate, geomorphology,
soil, land use) to generate a final potential distribution of a target species, often with a
coarse resolution inadequate for control or management efforts [21].

However, the biomod2 R package can also be applied to perform pixel-based supervised
classification through an ensemble approach, which in the context of remote sensing image
analysis and data mining science, is known as “classifier fusion” or “stacking” methods [22].
These techniques allow the combination of different supervised classification algorithms to
obtain a final consensus capable of discriminating the presence/absence of a species based
on satellite spectral data. As such, biomod2 can be used as a suitable multi-classifier stacking
ensemble, which allows standardizing the uncertainty present in the individual models and
determines a general prediction consistent with all classification methods [16,23]. Another
advantage of combining spectral data in biomod2 for alien plant species mapping relates to
its ability to run non-parametric models that, unlike parametric models, can assume that a
pixel is a mixture of features and sub-divide each one to increase spectral variance inside
and between pixels [24].

In addition to fast-paced advances in remote sensing satellite platforms and accessibil-
ity of its data, predictive models in ecology, and especially in invasion biology (e.g., [9,25])
are also growing and diversifying their applications. Predictive modeling is the process of
applying a statistical model or machine-learning algorithm to data to predict an outcome
or to capture the association between the outcome (e.g., presence/absence or abundance
of a species) and a set of drivers as defined by [26]. This analytical toolkit, supported
mainly by statistical and machine-learning algorithms, allows for inferences regarding
multi-scale invasion drivers (either invasibility or invasiveness) and obtain spatiotemporal
predictions [8]. Overall, these advances manifest in managers’ and stakeholders’ ability
to profit from the availability of data and analytical routines to make better assessments,
monitor, and devise strategies to control invasive species. Despite these advances, the
combination of both satellite image classification (for invasive species mapping/detection)
and predictive modeling (for inferring invasion drivers) has been seldom explored (but
see, e.g., [27]). As such, researchers miss the ability to profit from synergistic advances of
both fields and obtain more insights regarding species invasions.

Aiming to address this gap, in this study we developed and tested a dual methodolog-
ical framework for assessing landscape invasion by alien woody plants. The framework
is illustrated for landscape invasion by the Golden wattle (Acacia longifolia) in a munici-
pality of Northern Portugal. First, we developed an improved mapping approach based
on Sentinel-2 imagery and stack fusion techniques with the R package biomod2 to gener-
ate a spatially explicit representation of invaded areas. Secondly, we used a predictive
model-based procedure with the Random Forests algorithm to assess the influence on
the invasion process of several hypothesized drivers related to (i) (bio-)climate, (ii) topog-
raphy/geomorphology, (iii) soil properties, (iv) fire disturbance, (v) land use/landscape
composition, (vi) linear landscape elements, and (vii) landscape pattern/configuration. We
discuss the relevance of the proposed approach—combining satellite image classification
and predictive ecological modeling—to manage invasive alien species at an appropriate
scale to guide decision-making processes.

2. Materials and Methods
2.1. General Workflow

To address the challenges of mapping the invasive alien plant species A. longifolia and
identify the key drivers underlying the spread and abundance at the landscape level, we
propose and develop a dual approach. In stage one (see Section 2.5, Section 2.6, Section 2.7,
Section 2.8), supervised image classification (supported by classifier fusion) was used to
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map the extent of invasion by the target species based on Sentinel-2 data. In stage two
(see Section 2.9), predictive modeling was used to underpin and rank the importance of
the main drivers of the species invasion. This last component of the workflow relied on
a landscape-level approach, supported by previous results from stage one (i.e., invaded
areas map) and a hexagon tessellation of the whole study area. This workflow enabled
us to assess which environmental factors, and respective drivers, mainly contribute to the
spread of the species. Specific steps of each stage are described in Figure 1 and detailed in
the subsections below.
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2.2. Target Species

In general, Australian Acacia species are known for their phenotypic plasticity and
invasive abilities, promoting a wide range of impacts, causing a general reduction in
ecosystem services delivery [28]. These species spread impacts on public health (e.g.,
allergies) [29,30], decrease in the water availability (either by the traits of the plant or by
the density) [31], modification on the biogeochemical cycles [32–34], homogenization of
ecosystems composition and structure [35], change of fire regimes and competition with
native species [10].

Specifically, the target species A. longifolia was introduced in Portugal for ornamental
purposes and for fixing soils in eroded areas [36]. In particular, this species is known to
spread along the coastline, degraded areas, and through the margins of low-altitude rivers.
Together with the increasing human pressure in these specific areas, the resilience and
natural value has severely decreased [37,38]

Due to A. longifolia traits, such as rapid growth, regeneration capacity (sprouting
vigorously), reaction to disturbing agents (fire), remarkable ability to compete for resources,
production of viable seeds for decades, absence of competitors and natural predators, this
species is an aggressive invader in the study area [39].

2.3. Study Area

The study area is located in the municipality of Viana do Castelo (NW Portugal),
which has an area of 319.02 km2 and 85,445 inhabitants. The region presents a temperate
climate, with an average annual temperature of 14.5 ◦C and an average annual rainfall of
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1264 mm [40]. With a remarkable geomorphological and landscape heterogeneity marked
by three distinct landscape units: mountain, riverside, and coastline, its rugged topography
(from sea level to a maximum elevation above 800 m) make this region unique for its
diversity and specific habitat types associated with high levels of biodiversity [40].

In the study area, A. longifolia is spread in large areas, some of them classified as
Natura 2000, causing ecological impacts and promoting ecological regime changes (e.g.,
alteration of the forest composition of riparian galleries) [41]. Furthermore, the study area
presents a set of socio-ecological conditions which facilitate the species expansion, such as
the current regime of very frequent rural fires, large seed banks, and a very dense corridor
network (associated with communication roadways) (Figure 2).
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Figure 2. Location of the study area. Points represent the presence (green color) and X’s absence (in
red) areas used for training the supervised classifier with a size proportional to the symbol dimension.

2.4. Occurrence Data

The delimitation of training areas is of great importance for obtaining accurate results.
The biomod2 classification algorithms are characterized by having binomial responses
(distribution values between 0 and 1), where 0’s code absences of A. longifolia and 1’s
denotes its presence. The diversity of natural spaces and their land uses creates several
challenges for identifying spatial and spectral signatures for A. longifolia.

To represent the environmental heterogeneity on the study area, a total of 207 training
areas were considered, covering river margins, mountainous areas, seaside, and urbanized
spaces, always having the attention to record especially significant training areas (i.e.,
combining mixed pixels but most often heavily invaded areas which generate ‘pure’ pixels
for training). Several sites representing the study area’s main land cover types (e.g., urban,
forest, motorway, shrublands, and agricultural areas) were inspected to collect training
samples. Through ground surveys and GPS equipment, sites invaded with considerable
dimensions (>5 m2) were recorded and georeferenced (n = 67). Due to some locations’
inaccessibility, GIS tools and orthophoto maps with high-spatial-resolution (0.3 m) were
used to obtain additional presence areas (n = 100). Additionally, through manual photoint-
erpretation of high-resolution images, several areas representing the main land cover types
for the study area were collected and used as absences (i.e., ‘true-absences’; n = 40). The
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overall median size of training areas is 188 m2, while the median size of presence areas is
112 m2 and 13,820 m2 for absence areas.

To better represent the spectral variance in the image stack and complement the data
from true-absences, three sets of pseudo-absences were randomly generated throughout
the study area using biomod2’s internal routines. To balance train data and avoid biasing
the accuracy of model predictions [42], the number of pseudo-absences was set equal to
the number of presences.

2.5. Satellite Remote Sensing Data

Sentinel-2A multispectral data, provided by the Copernicus Open Access Hub, was
analyzed and inputted in the classification workflow. We collected one image per month
between December 2018 to May 2019, covering the final stage of the growing season
(December–January), flowering period (January–March), and post-flowering period (April–
May). To increase accuracy, it is necessary to minimize overall cloud cover in collected
images from the study area. For each of the six days analyzed, we collected imagery
with 13 spectral bands (Top-Of-Atmosphere Level L1C) that were transformed into the
atmospherically corrected L2A product through the sen2cor processing software for better
comparability, spectral quality, and increased signal retrieval [43], thus creating 12 available
bands.

Through the DSen2 super-resolution algorithm [44], the spectral bands at 20 and
60 m were resampled to 10 m through a pre-trained deep neural network implementing
this method, attaining better performance than standard resampling methods [44]. The
improved and rescaled bands were then used to calculate, for each month, several spectral
vegetation indices: Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI), Modified Chlorophyll Absorption in Reflectance Index (MCARI), MERIS
Terrestrial Chlorophyll Index (MTCI), and the second Modified Soil Adjusted Vegetation
Index (MSAVI2). For higher accuracy on the vegetation index calculation, specific formulas
for Sentinel-2A bands were employed [45] (Table 1).

Table 1. List of spectral vegetation indices and biophysical variables used to support A. longifolia
supervised classification and mapping.

Index Explanation Specific Formula

NDVI Enhances vegetation differences
photosynthetically [46]

(b8 − b4)
(b8 + b4)

EVI
Distinguish differences in the canopy

structure, architecture, and
physiognomy [47,48]

2.5 b9 − b5
(b9 + 6b5 − 7.5b1) + 1

MCARI
A measure of the leaf chlorophyll

content enhancing vegetation
differences [49]

((b5 − b4) − 0.2(b5 − b3))
(

b5
b4

)
MTCI Enhances vegetation senescence and

water/nutritional stress [50]
(b6 − b5)
(b5 + b4)

MSAVI 2
Retrieves information about vegetation

dynamics and reduced the soil
background variations [51]

2b9 + 1 − √(2b9 + 1)2 − 8(b9 − b5)
2

LAI Measure for the total area of leaves per
unit ground area [52]

S2 SNAP Toolbox biophysical
processor.

The Leaf Area Index (LAI) was calculated through the software SNAP with the original
12 bands. In total, 18 spectral layers (12 bands and 6 indexes) were considered for each
month (totaling n = 108).
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2.6. Biomod2 Multi-Algorithm Supervised Classification Training and Evaluation

The study was performed using the latest version of the biomod2 package (version 3.4.6)
within the statistical software R (R Development Core Team 2012) version 4.0. This analysis
is supported by several supervised classification algorithms, based either on statistical or
machine learning methods, including Generalized Linear Model (GLM), Flexible Discrim-
inant Analysis (FDA), Gradient Boosting Machine (GBM), Random Forest (RF); Classifi-
cation Tree Analysis (CTA), Generalized Linear Model (GAM), Artificial Neural Network
(ANN), and MAXENT, Phillips (MAX).

For the input dataset, three different sets of pseudo-absences and 30 model repetitions
were performed using the default options of biomod2. For evaluating the performance of
the classifiers, holdout cross-validation was used by setting 80% of the dataset for training
and 20% for evaluation purposes. Additionally, we ensured a prevalence of 0.5, which
means that the presences and the pseudo-absences have the same weight in the model
calibration process.

To evaluate the overall performance of either partial and final ensemble/fusion classi-
fiers for the test fraction (i.e., not used for training), we calculated the True-Skill Statistic
(TSS), Cohen’s Kappa (KAPPA), and the area under the Receiver Operating Curve (ROC).
The first two measures vary from [−1, 1] while the second between [0, 1]. Values closer to
one flag better-performing classifiers and higher discrimination ability. To complement
these measures, we also calculated sensitivity and specificity. Sensitivity is the proportion
of observed presences predicted and, therefore, quantifies omission errors, while specificity
is the proportion of observed absences that are correctly predicted and therefore quantifies
commission errors. Overall, sensitivity is the probability that the classification algorithm
will correctly classify presences, whereas specificity is the probability that the model will
correctly classify absences.

2.7. Variable Reduction and Importance Calculation

Considering that biomod2 demands considerable computational resources, especially
when the number of variables (or features) used is high, a preliminary reduction was
performed. To identify critical variables in the model’s preparation and thus reduce the
total number of variables, we analyzed the importance of each through a set of preliminary
modeling steps using six classification techniques: GLM, FDA, GBM, RF, CTA, and MAX.
Variable importance calculation was performed using biomod2’s function variables impor-
tance, which returns each variable’s importance score. The highest the value, the more
influence the variable has on the supervised classification process. A value of 0 assumes no
influence of a variable, whereas values closer to 1 signal a highly important variable [17].
This variable importance analysis allowed selecting the variables with higher importance,
making the classifier fusion less computationally demanding [53]. We considered the best
17 individual variables to maintain a good ratio between performance and complexity
(Appendix A).

2.8. Classifier Fusion Ensemble

An ensemble fusion model was obtained by calculating the weighted mean (by the TSS
performance score) of selected partial classifiers, i.e., those which got a good to excellent
performance considering a rule of TSS > 0.8. Finally, to convert the ensemble classifier
model result from probability/suitability values (i.e., continuous values within the [0, 1]
range) to a binary outcome (species presence: 1 or absence: 0), we applied a numerical
threshold [54,55]. In our case, we defined this “binarization” threshold as the value which
maximizes the TSS score [56].

Values lower than the TSS cutoff were considered pixels with very low spectral
similarity to invaded areas, whereas biomod2’s output values close to the maximum rescaled
probabilistic value of 1000 were considered to have very-high spectral similarity to invaded
areas.
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2.9. Assessing the Invasion Drivers of A. longifolia at the Landscape Level through Predictive
Modelling

From the classified Sentinel-2A images, we assessed the abundance drivers of A. longi-
folia through a predictive model-based framework based on the Random Forest regression
algorithm [57]. We started by devising a hexagonal grid (or tessellation) covering the whole
study area with 2 Km2 units for performing this assessment. This grid was necessary to
adequately address the structural and environmental drivers promoting the abundance
of A. longifolia at the landscape level. The size of each hexagonal unit was considered
suitable for three relevant criteria: (i) maximize the environmental heterogeneity, (ii) scale
conformity to climate data (which is the coarser dataset with ~1 Km2 of spatial resolution),
and (iii) adequate sample size for modeling (n = 189 effective units after checking for
invalid data).

The response variable is the proportion covered by invaded areas for each hexagon
unit, obtained from zonal statistics of the classified Sentinel-2A imagery from previous
steps. The A. longifolia map generated through image classification was used to quantify
the response variable, allowing to get a full area view of invasion extent at the landscape
level instead of relying on a limited set of sample training areas for that purpose.

The list of predictive drivers (Table 2), exploits the following aspects of distribution
and colonization of A. longifolia at the landscape level, which relate to the degree of
invasibility [8].

Table 2. Full list of environmental factors considered, which were hypothesized as drivers of invasion
in the study area, totaling 59 independent variables (see also Appendix B). Variables in bold were
selected for the final RF regression model (n = 20).

Environmental Factors Driver Description Acronym

(Bio)Climate

Annual Mean Temperature CL_BIO01

Mean Diurnal Range CL_BIO02

Isothermality CL_BIO03

Temperature Seasonality CL_BIO04

Maximum Temperature of Warmest Month CL_BIO05

Minimum Temperature of Coldest Month CL_BIO06

Temperature Annual Range CL_BIO07

Mean Temperature of Wettest Quarter CL_BIO08

Mean Temperature of Driest Quarter CL_BIO09

Mean Temperature of Warmest Quarter CL_BIO10

Mean Temperature of Coldest Quarter CL_BIO11

Annual Precipitation CL_BIO12

Precipitation of Wettest Month CL_BIO13

Precipitation of Driest Month CL_BIO14

Precipitation Seasonality CL_BIO15

Precipitation of Wettest Quarter CL_BIO16

Precipitation of Driest Quarter CL_BIO17

Precipitation of Warmest Quarter CL_BIO18

Precipitation of Coldest Quarter CL_BIO19
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Table 2. Cont.

Environmental Factors Driver Description Acronym

Disturbance
Total Burnt Area (last 10 years) DT_BA10YR

Total Burnt Area (last 20 years) DT_BA20YR

Total Burnt Area (last 5 years) DT_BA5YR

Land use

Percent of permanent crops LU_PCPCO

Percent of annual crops LU_PCACO

Percent of permanent and annual crops LU_PCPAC

Percent of native forests LU_PCNFO

Percent of eucalyptus (production) forest LU_PCEFO

Percent of maritime-pine (production) forest LU_PCPFO

Percent of shrublands LU_PCSHL

Percent of complex agroforestry mosaics LU_PCAFM

Percent of other production forests LU_PCOPF

Percent of pasturelands LU_PCPAS

Percent of wetlands LU_PCWET

Percent of beaches and sand dunes LU_PCBSD

Percent of roads and rails LU_PCRRL

Percent of bare rock surfaces LU_PCBRS

Percent of water surfaces LU_PCWTS

Percent of artificial/urban areas LU_PCART

Percent of sparsely vegetated areas LU_PCSPV

Landscape
pattern/configuration

and heterogeneity

Landscape Mean Patch Area LP_MNPAR

Landscape Patch Area Coefficient of variation LP_PACOV

Landscape Largest Patch Index LP_LAPAI

Landscape Shannon Diversity LP_SHDVI

Landscape Simpson Diversity LP_SPDVI

Landscape Patch Area Standard-deviation LP_PASTD

Linear elements

Landscape edge density LE_EDGDN

Total length of rivers LE_TLRIV

Total length of all road types LE_TLROD

Total length of motorways LE_TLMTW

Soil properties

Available water content SO_AVWTC

Bulk Density SO_BULKD

Percent of clay in soils SO_PCLAY

Percent of coarse elements in soils SO_PCOAR

Percent of sand in soils SO_PSAND

Percent of silt in soils SO_PSILT

Topography/
Geomorphology

Slope (%) TG_SLOPE

Average Solar Radiation TG_RADAV

Topographic Ruggedness Index TG_TORGI

Topographic Wetness Index TG_TOWTI
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To select a smaller and meaningful set of predictive drivers, we performed an iterative
variable elimination procedure combining variable importance obtained from an initial set
of Random Forest models (n = 500) and multicollinearity reduction through non-parametric
Spearman correlation analysis. From this analysis, we retained the 20 most important
drivers with a pairwise correlation of ρ < |0.75|. This number of drivers was chosen to
include at least one variable from each of the seven groups of drivers (see Appendix B for
the complete list).

Model evaluation, for the final model including the selected set of predictive drivers,
was based on the Out-Of-Bag (OOB) fraction [57,58], which consists of the subset of records
not selected for training through bootstrap resampling in RF. Based on this, the following
evaluation metrics were calculated: R-squared (R2), Spearman Correlation (CORSP), Root-
Mean-Square Error (RMSE) and, the Median Absolute Error (MAE).

Drivers’ importance ranking was assessed through multiple runs of RF (n = 1000) and
calculating the percentage increase in mean square error by shuffling the OOB samples’
values. For each tree, the prediction error on OOB samples is calculated through the
mean-square error. After that procedure, the same is performed after permuting each
predictor driver. The difference between the two is then averaged over all trees and
normalized by the standard deviation of the differences to obtain the final importance
measure. Importance values across all rounds were averaged. To increase the random
forest model interpretability, we developed partial dependence plots [59], which can be
defined as low-dimensional graphical representations of the prediction function so that
the relationship between the outcome and each predictor can be more easily visualized
and interpreted. These plots are especially useful for explaining the output of “black-box”
models such as the random forest model.

3. Results

The results obtained supported the spatially explicit detection of areas invaded by A.
longifolia. The supervised image classification performance through biomod2’s revealed a
good ability to map the target species.

Preliminary analysis aiming to reduce the number of variables employed in the
image classification stage allowed for some performance gains while also making it less
demanding in computation time. The results obtained by the variable importance analyzes
can be consulted in Supplementary Information—Tables S1 and S2. In addition, the
development of a predictive model based on the mapping carried out in the first stage, and
the main environmental variables allowed identifying drivers of invasibility.

3.1. Partial and Ensemble Fusion Classification Performance

The supervised classification technique with the best results for all evaluation metrics
was GAM, followed by the FDA and RF algorithms. In contrast, the classification technique
ANN presented the lowest scores across all classifiers (Table 3). On average, across all
partial classifiers, we found high-performance scores with 0.794 for TSS, 0.945 for ROC,
and 0.798 for KAPPA.

Overall, the ensemble classifier based on biomod2’s multi-algorithm fusion showed
very high-performance values as well as sensitivity and specificity (Table 4). The ensemble
model presents a performance gain for any evaluation metric value compared to the best
partial classification model (i.e., GAM). This gain shows the added value of fusing multiple
classifiers with distinct types of algorithmic frameworks (i.e., such as tree-based in CTA or
RF vs. neural networks in ANN).



Remote Sens. 2021, 13, 3287 11 of 25

Table 3. Partial evaluation scores by classification algorithm showing the average and standard deviation (across evaluation
rounds). Numbers in bold indicate the top-three algorithms in our study.

TSS ROC KAPPA

Classification
Algorithm Average Standard Deviation Average Standard Deviation Average Standard Deviation

GBM 0.799 0.042 0.953 0.014 0.796 0.042

RF 0.824 0.043 0.962 0.012 0.823 0.043

CTA 0.715 0.045 0.886 0.027 0.715 0.045

GLM 0.789 0.068 0.928 0.051 0.800 0.069

FDA 0.827 0.030 0.964 0.009 0.831 0.030

ANN 0.640 0.057 0.859 0.033 0.646 0.057

MAX 0.726 0.045 0.890 0.025 0.731 0.045

GAM 0.843 0.031 0.965 0.011 0.846 0.030

Table 4. Performance evaluation scores for the final ensemble classifier combining biomod2 algorithms.

Evaluation Metric Evaluation Metric Value (Test) Cutoff Threshold Sensitivity Specificity

TSS 0.895 539 96.0 93.4

ROC 0.988 544 96.0 93.5

KAPPA 0.857 724 88.7 96.7

3.2. Feature Importance in Image Classification

According to biomod2 ranking, the four most important variables were Band 3 (green),
Band 12 (SWIR2), Band 2 (blue), and the LAI index. In opposition, the bands with lower
importance were in the spectral region of red (band 4), red edge (bands 5, 6 and, 7), and
the near infrared (bands 8 and 8a), often used for remote sensing of vegetation. Overall,
the variable importance analysis highlighted the usefulness of the spectral bands on the
classifier (with 78% of all information used) in contrast to the less performant vegetation
and biophysical indices (with 22%) (Figure 3). Despite exhibiting lower importance scores
and secondary contributions, the remaining variables also improved overall accuracy.
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The selection of the most important variables (to reduce the computational processing
time) resulted in 17 layers of spectral information with a combined relative importance of
approximately 45%. The three most important independent variables were band 12 (SWIR
band 2) in December (4.79%), band 2 (blue) in January (4.32%), and LAI in January with
(4.18%).

The months with the highest combined relative importance (from the 17) were Decem-
ber, January, February (Appendix A), which coincides with the final growing period and
the flowering period. On the other hand, April and May were the months with smaller
contributions to the classification process (Figure 4).
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3.3. Acacia Longifolia Mapping

The ensemble classifier based on the biomod2’s ensemble fusion approach was able to
discriminate invaded areas by A. longifolia spectrally similar to training sites. These areas
occur along the Lima and Minho River (with higher density when approaching estuarine
spaces), coastal areas, low altitude slopes with high solar exposure and smooth inclination,
and discontinuous urban areas (Figure 5).

The distribution pattern A. longifolia, in the study area, coincides primarily with spaces
of high ecological value under protection networks (e.g., Natura 2000).

3.4. Predictive Modelling—Landscape-Level Drivers of A. longifolia Invasion

After performing the preliminary models and correlation analyses, 20 predictive
drivers were selected to include in the final model out of 59 (see Supplementary Information
—Table S3 for all variable importance rankings). These drivers are for the climate the Tem-
perature Seasonality (CL_BIO04), Minimum Temperature of the Coldest Month (CL_BIO06),
Precipitation Seasonality (CL_BIO15), and Precipitation of the Warmest Quarter (CL_BIO18).
For topography/geo-morphology, it includes Average Solar Radiation (TG_RADAV),
while for soil properties, the available water content (SO_AVWTC), percentage of clay
(SO_PCLAY), and percentage of coarse elements (SO_PCOAR). As for disturbance, solely
the Total Burnt Area in the last five years (DT_BA5YR) was selected. Land use and land-
scape composition include the percentage of annual crops (LU_PCACO), percentage of
eucalyptus (production) forest (LU_PCEFO), percentage of maritime-pine (production)
forest (LU_PCPFO), percentage of other types of production forest (LU_PCOPF), percent-
age of shrublands (LU_PCSHL) and percentage of artificial/urban areas (LU_PCART)
while for linear structures the Total length of rivers (LE_TLRIV) and, Total length of motor-
ways (LE_TLMTW) and, finally, for landscape pattern/configuration the Landscape Mean
Patch Area (LP_MNPAR), Simpson’s Landscape Diversity (LP_SPDVI), and the Patch Area
Coefficient of variation (LP_PACOV).
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Figure 5. Map showing the distribution of invaded areas by the target species (colored pixels) obtained by the ensemble
classifier. Inside these areas, the color ramp highlights the spectral similarity to invaded (train) areas, showing those spots
with a potential greater likelihood of invasion or higher plant density/coverage. Training areas are shown in colored
polygons in yellow color (presences) and light green (absences). Sub-areas A–D (left side) are shown in detail on the right
side to depict different invaded sites from forest areas to wetlands in the stud area.

Overall, model performance for the selected drivers was generally good for the OOB
test fraction with a coefficient of determination R2 of 0.52 and a Spearman correlation
between predicted and observed values of 0.76. The MAE and RMSE have an error between
3.8 and 5.5% which is considered acceptable given the response variable distribution (min:
0.0%, max: 57.5%, mean: 7.3%, standard deviation: 7.7%).

The random forest model importance (Figure 6) allowed ranking the selected drivers,
which highlighted first the role of climate followed closely by land use and landscape spatial
configuration (see Supplementary Information—Table S4 for driver importance ranking
for the 20-best selected). We found that drivers related to soil properties, topography,
disturbance, and linear elements in the landscape had comparatively less importance.
Besides importance scores, partial dependence plots (Figure 7) allowed us to deepen the
interpretation of each predictive driver of A. longifolia invasion extent at the landscape
level.

More specifically, invaded areas were positively related to higher annual minimum
temperature values and higher precipitation seasonality and negatively associated with tem-
perature seasonality and the precipitation of the warmest/summer quarter (see Figure 7
and Supplementary Information—Figure S1 for all plots).



Remote Sens. 2021, 13, 3287 14 of 25

For land use/landscape composition, production forests of all types (i.e., eucalyptus,
pine, and other less common types), which dominate the tree strata in invaded areas, were
all positively related to invaded areas. In contrast, shrublands and annual crops were
negatively related. Artificial areas showed a complex response, with invaded areas peaking
at small values (i.e., probably related to forest-like landscapes) and again increasing at
high values (i.e., urbanized landscape as the dominant matrix with semi-natural habitats
dispersed).

As for landscape pattern/configuration, highly invaded areas tend to have larger
patches (potentially dominated by continuous forest areas of a single type, e.g., monocul-
tures of eucalyptus, maritime pine, or other dominant tree species). This effect can also
be observed in the Simpson Landscape Diversity index, which is negatively related to the
percentage cover of invaded areas, showing that less heterogeneous areas create favorable
conditions for the target species spread.
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In terms of soil attributes, the species was positively related to soils with higher clay
content and a lower percentage of coarse elements. Solar radiation (which is modulated
by topography and exposure) was positively associated with the species. Disturbance
dynamics related to wildfires (calculated as the total burnt area in the five past years)
positively contributed to species abundance. Linear elements traversing the landscape,
including both natural features (i.e., rivers) and artificial ones (i.e., motorways), also
showed positive effects contributing to the landscape-level abundance of A. longifolia.
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Figure 7. Partial dependence plots showing the relation between the response variable (abundance given by the percentage
of invaded area in the y-axis) and the selected predictive variables of different environmental factors (x-axis). The black line
indicates the “raw” response from the RF model, while the blue line applies a moving average smooth.

4. Discussion
4.1. Multispectral Remote Sensing Imagery and Data Fusion Techniques through biomod2 for A.
longifolia Detection

Although distribution maps of invasive alien plants are common in scientific literature,
due to the requirements and the fine-scale of species-level mapping, most resort to very-
high-resolution satellites (≤5 m), airborne or unoccupied aerial vehicles to collect remote
sensing data [60,61]. These data and techniques are often associated with considerable
economic investments, low temporal resolutions, and time-demanding procedures (both
in personal and computational terms). Spatially explicit maps of invasive alien plants
are critical to understanding their spatiotemporal distribution patterns and their driving
factors at several scales to support and improve management and control strategies.

For tackling this challenge, satellite remote sensing coupled with classifier fusion
methodologies (such as the one employed here through the biomod2 R package) offers
tremendous advantages [62]. First, this methodology is implemented on the R computing
platform, firmly established in the academic community. Second, multispectral and mul-
titemporal high-resolution imagery is free of charge (e.g., Sentinel-2, Landsat), allowing
continuous updates of invasive alien plant species’ distribution maps. Moreover, contrary
to species distribution models, which target invasive alien plant potential distribution, satel-
lite image classification does not require environmental variables at low spatial resolution
(e.g., precipitation; temperature).

Our study showed the ability of Sentinel-2 to support invasive alien plant mapping
through a multitemporal approach supported by multispectral data together with vegeta-
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tion and biophysical indices stacks, capable of feeding the biomod2 fusion classifier. Overall,
results show that the spatial, spectral, and temporal resolutions of Sentinel-2 were adequate
for mapping A. longfiolia invaded areas, and it may be the case for similar plant species
sharing similar compositional and structural traits [52].

However, contrary to what one would expect, the primary source of spectral infor-
mation was not in the red, red-edge, or near-infrared regions (often valuable for depicting
spectral information about concentrations of chlorophyll-a and other pigments typically
used for vegetation analyses [52]). The Sentinel-2′s blue (458–523 nm), green (543–578 nm),
and SWIR2 (2100–2280 nm) spectral bands were those that showed, for our study region
and the period analyzed, better ability to discriminate between A. longifolia and other
woody species.

A possible explanation for this fact is that A. longifolia fluorescence, like other yellow
flowers, is better distinguished at the spectrum comprehend between 480–550 nm [63]. The
carotenoids (yellow pigments) are known to cause high reflectance on the spectral region
covered by the green light (due to decreased chlorophyll absorption of red light during
senescence) and strong absorption in the blue light [64,65].

The SWIR2 spectral region is especially sensitive to vegetation water content and
leaf liquid water and is often used for plant detection [66]. In our study, SWIR2 (band 12)
obtained the best results in December and February, corresponding climatically to the rainy
season and phenologically to the end of the growing period and the beginning of blooming.

Despite having contributed to improving image classification performance, the indices
used were less relevant. This result may be because spectral information used for its
calculation is also incorporated into the classification pipeline. Biophysical indices like LAI
showed a good ability to distinguish areas invaded from the rest. A possible explanation
is that LAI relates to the canopy structure, thus conveying useful vegetation structural
features that allow disentangling the target species from other plant species. In addition,
A. longifolia has been linked to broad biophysical changes in invaded areas, often with
significant increases in leaf area index and reduced light intensity in the understory [35].
The same authors also describe profound changes in the water budget in invaded patches.
Altogether, these effects may potentially explain the importance of LAI and the SWIR
bands in image classification.

4.2. Landscape Patterns and Drivers of Acacia longifolia Distribution

The study area has a high level of occupation of A. longifolia, with stable populations
capable of multiplying and spreading throughout the landscape. In particular, the spread
of A. longifolia, according to our mapping results, poses a risk to various habitat types
occurring in the territory, from coastal sand dunes, riparian corridors along streams and
rivers, estuarine and wetland ecosystems (e.g., Natura 2000), and forest areas often along
low-lying hillsides (e.g., Local Natural Monuments) [10].

In the study area, climatic drivers have the most decisive influence on explaining the
target species distribution, with the coldest month’s temperature being the most influential
variable. Minimum temperatures can physiologically constrain plant function and are
a well-known driver of landscape invasibility by frost-sensitive alien invaders [67,68].
However, in the face of global warming, with temperatures becoming warmer at higher
altitudes, this abiotic barrier is in danger of decreasing and may increase the risk of invasion
(i.e., upward elevation shift).

Drivers related to land cover/use also influence the abundance and spread of A.
longifolia at the landscape level, as production forests such as eucalyptus (Eucalyptus
globulus) or maritime pine (Pinus pinaster), widespread in the study area, are positively
related to the species. Forest stands of (non-native) eucalyptus, often in monoculture,
tend to present low species diversity [69] (due to inhibitory effects in plants [70]) and
foster management practices with higher soil moving, which triggers conditions for the
establishment of fast-growing species such as A. longifolia [71,72]. Eucalyptus plantations
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often have a tree spacing and a canopy density that allows comparatively higher amounts
of light to reach the understory stratum, thus facilitating A. longifolia development [73,74].

In contrast, shrubland areas were negatively related to the species coverage at the
landscape level. This may happen due to the region’s topography, where this land cover is
linked to higher altitudes, translating into lower environmental suitability for the species
because of lower minimum temperatures and higher difficulty for the seeds to reach these
points. Nonetheless, these results deserve further study given A. longifolia ability to invade
dune shrub ecosystems [33,35].

Landscape configuration and heterogeneity features are known to influence the spread
and the extent of invaded areas [68,75]. We found that those landscapes with lower Shannon
diversity, less patchy, and dominated by larger patches (i.e., higher mean patch area and a
lower coefficient of variation) tend to be related to more invaded landscapes.

Lower levels of landscape heterogeneity promote the A. longifolia spread in the study
area and may also increase the connectivity between and across A. longifolia populations,
and was already identified as a driver positively influencing other Acacia species [71].
This effect may be linked to higher propagule availability from nearby populations, which
increases the odds of establishment, persistence, naturalization, and invasion [76]. Besides,
such results may be coherent with the non-long distance dispersal adaptation more often
found in Acacia species, typically dispersed by animal vectors (e.g., birds and ants) [72].

Besides heterogeneity, other landscape features related to linear elements, such as
rivers or motorways, were also positively linked to the species presence and spread. Despite
obvious differences between dispersal agents and drivers acting in these two very distinct
types of linear elements, both seem to promote pathways for the species spread at the
landscape level [8,9], with implications for management and control actions [9].

As previously recorded for other Acacia species in Europe, fire disturbance was
positively related to A. longifolia abundance [72]. In fact, this may connect to the species
capacity to profit from disturbance (particularly in post-fire environments) with high-fire
tolerance of the species, fast rate of vegetative reproduction, and allelopathic behavior [71,72].

4.3. Applications in Invasion Management and Control

Since A. longifolia is already widespread throughout the territory, in the short term,
high-cost management is expected to implement control actions, particularly in produc-
tion forest areas (economic impacts) and habitat types of high-conservation interest (eco-
logical impacts). In the long term, costs will increase to further avoid the loss of rele-
vant ecological values and their related services [77], reduce the effect of changes in fire
frequency/risk [28,78], and decreasing soil formation in invaded areas [78]. If these losses
are ignored or poorly tackled, tipping points may be unleashed, promoting regime shifts
changing beyond return points ecosystem structure, function, or dynamics [79].

Managing alien plant invasions is a challenging process due to the multiscale processes
acting across space and time. The early detection of invaded areas is the most cost-effective
action but challenging to achieve due to a lack of monitoring programs dedicated to
invasive alien species [68].

Monitoring actions in drivers related to land use and management (e.g., annual crops,
production forest, discontinuous urban areas) may translate into time and efficiency gains.
Overall, these spaces are of great importance for the containment of A. longifolia, due to
their influence in invasibility patterns and for being drivers where political legislators and
stakeholders can implement planning and action measures to control invasive alien plant
species [80,81].

The mapping and quantification of invaded spaces may also allow the planning
and adoption of large-scale actions to transform A. longifolia, using temporary economies,
into an economic resource to self-finance recovery and restoration processes. The natural
degradation process of A. longifolia in green waste compost leads to better soil quality
and higher organic matter content, thus being a product of economic interest [82]. The
high calorific potential of this species for the production of pellets is also known [83].
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Nonetheless, using invasive alien species as an economic resource and market creation is
always controversial and must be considered very carefully [84,85].

Besides abiotic and geographic variables that are impossible to control (e.g., climate,
geomorphology, soil formation processes) and land use, other drivers related to landscape
configuration like motorways and burnt areas play an essential role in the spread of A.
longifolia. As such, these landscape elements and land use types should receive special
attention from political decision-makers to effectively halt their spread.

4.4. Future Improvements to the Methodology

Improvements in the results obtained can be achieved by including free multi-sensor
fusion (e.g., Sentinel-1 or Landsat) to have more features related to texture or a longer time
span or resort to very-high spatial resolution images such as RapidEye or WorldView-2/3.

Future studies using the present methodology can explore the spatio-temporal trans-
ferability (for different regions and years) and the obtained distribution maps to identify
more areas to collect ground-truth data aiming to complement the initial database and
improve the image classification pipeline [86]. Assessing Sentinel-2 images’ ability and
limitations to map invaded areas with different plant sizes and densities is also a critical
issue to target in future research. In addition, quantifying error propagation when using
satellite-derived maps depicting invasion extent as inputs for modeling invasibility drivers
is also highly relevant.

Predictive modeling can also be improved by incorporating variables with a higher
spatial resolution (e.g., climate, land use/cover) and incorporating variables capable of
describing human dynamics or pressures in the landscape (e.g., fire severity, land abandon-
ment).

5. Conclusions

This study implemented a dual framework for improving the detection of invaded
areas by A. longifolia, combining supervised image classification and a predictive modeling
approach, respectively, to map the target species and to identify and rank the main drivers
of abundance at the landscape level. By using Sentinel-2 multispectral data, we were able to
discriminate invaded from non-invaded areas with very high sensitivity through biomod2’s
package classifier fusion techniques and non-parametric ensemble classifiers. Overall,
Sentinel-2′s blue, green, and SWIR2 spectral bands for winter months (corresponding
phenologically to the beginning of the growing period and blooming onset) presented the
highest ability to discriminate between A. longifolia and the background vegetation.

Based on invaded areas maps and the Random Forest modeling algorithm, we were
able to identify the most relevant drivers shaping the patterns of abundance of the target
species in the study area. Models highlighted the primary role of climate (mainly of
minimum temperatures), followed by landscape composition (fraction cover of production
forest, shrublands, and artificialized areas) and landscape configuration (heterogeneity,
patch size distribution, and density of linear elements) as the most important factors to
explain the species’ abundance at the landscape level.

The proposed dual framework combines image classification and predictive modeling
into a single analytical pipeline, thus covering many of the requirements needed to support
regional to global policy initiatives focused on prevention, early detection, and monitoring
of invasions. Moreover, it strongly contributes to guiding local decision-making on early
intervention for invasive species control by targeting and prioritizing the invaded areas
while also tackling the primary environmental and anthropogenic drivers of the species’
abundance and spread.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13163287/s1, Table S1—Results from the preliminary analysis used to select the most
important features for biomod2 image ensemble classification with the total 108 variables (X12—
December; X01—January; X02—February; X03—March; X04—April; X05—May; the name suffix is
Sentinel-2’s band position), Table S2—Performance evaluation scores from the preliminary analysis,

https://www.mdpi.com/article/10.3390/rs13163287/s1
https://www.mdpi.com/article/10.3390/rs13163287/s1
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Table S3—Average driver importance ranking for all variables tested (ordered in descendent fashion),
Table S4—Driver importance ranking for the 20-best selected variables for the final random forest
model (ordered in descendent fashion), Figure S1—Partial dependence plots for all variables used in
RF models, showing the relation between the response variable (abundance given by the percentage
of invaded area, in the y-axis) and the selected predictive variables of different environmental factors
(x-axis). The black line indicates the “raw” response from the RF model, while the blue line applies a
moving average smooth.
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Appendix A

Table A1. Best variables in image ensemble classification selected from the preliminary analysis. The percentage shows
the relative importance across all variables tested. The 17 variables with higher average importance combined perform
approximately 45% of total importance.

Month/Spectral Band/Index Average Variable Importance
Score

Importance Score Standard
Deviation % Relative Importance

December_b12 0.137 0.206 4.79

January_b2 0.124 0.109 4.32

January_lai 0.120 0.183 4.18

April_b3 0.098 0.131 3.41

March_b3 0.084 0.162 2.94

December_b11 0.079 0.131 2.78

February_b9 0.070 0.133 2.44

December_b1 0.066 0.084 2.32

February_b12 0.065 0.132 2.29

March_b1 0.063 0.117 2.20

May_b3 0.061 0.127 2.14

December_b3 0.057 0.104 1.99

April_b2 0.054 0.065 1.89

February_b3 0.054 0.086 1.88

December_b4 0.048 0.075 1.69

March_lai 0.046 0.090 1.60

December_lai 0.045 0.097 1.60

Appendix B

Table A2. Full list of variables used for modelling landscape drivers of Acacia invasion, their acronyms and data sources.

Type Acronym Variable Description Data Source

Climate

CL_BIO01 Annual Mean Temperature

CHELSA Climate data v-1.2 (URL:
https://chelsa-climate.org/, access date: 6
December 2020, spatial resolution: ~1 Km2,

reference period: 1979–2013)

CL_BIO02
Mean Diurnal Range (Mean of monthly

(maximum temperature–minimum
temperature))

CL_BIO03 Isothermality (CL_BIO2/CL_BIO7) (×100)

CL_BIO04 Temperature Seasonality (standard deviation
× 100)

CL_BIO05 Maximum Temperature of Warmest Month

CL_BIO06 Minimum Temperature of Coldest Month

CL_BIO07 Temperature Annual Range
(CL_BIO5–CL_BIO6)

CL_BIO08 Mean Temperature of Wettest Quarter

CL_BIO09 Mean Temperature of Driest Quarter

CL_BIO10 Mean Temperature of Warmest Quarter

CL_BIO11 Mean Temperature of Coldest Quarter

https://chelsa-climate.org/
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Table A2. Cont.

Type Acronym Variable Description Data Source

Climate

CL_BIO12 Annual Precipitation

CL_BIO13 Precipitation of Wettest Month

CL_BIO14 Precipitation of Driest Month

CL_BIO15 Precipitation Seasonality (Coefficient of
Variation)

CL_BIO16 Precipitation of Wettest Quarter

CL_BIO17 Precipitation of Driest Quarter

CL_BIO18 Precipitation of Warmest Quarter

CL_BIO19 Precipitation of Coldest Quarter

Disturbance

DT_BA10YR Total Burnt Area (last 10 years) Burnt Areas Dataset for Mainland Portugal
(URL: https://geocatalogo.icnf.pt/, access

date: 6 December 2020, spatial resolution: ~1
ha, reference period: 2000–2019)

DT_BA20YR Total Burnt Area (last 20 years)

DT_BA5YR Total Burnt Area (last 5 years)

Land use

LU_PCPCO Percent cover of permanent crops

Land Cover Map for Portugal (URL:
http://mapas.dgterritorio.pt, access date: 11
December 2020: spatial resolution: ~100 m,

reference year: 2018)

LU_PCACO Percent cover of annual crops

LU_PCPAC Percent cover of permanent and annual crops

LU_PCNFO Percent cover of native forests

LU_PCEFO Percent cover of eucalyptus (production)
forest

LU_PCPFO Percent cover of maritime-pine (production)
forest

LU_PCSHL Percent cover of shrublands

LU_PCAFM Percent cover of complex agroforestry
mosaics

LU_PCOPF Percent cover of other production forests

LU_PCPAS Percent cover of pasturelands

LU_PCWET Percent cover of wetlands

LU_PCBSD Percent cover of beaches and sand dunes

LU_PCRRL Percent cover of roads and rails

LU_PCBRS Percent cover of bare rock surfaces

LU_PCWTS Percent cover of water surfaces

LU_PCART Percent cover of artificial/urban areas

LU_PCSPV Percent cover of sparsely vegetated areas

Landscape
pattern/

configuration
and

heterogeneity

LP_MNPAR Landscape Mean Patch Area

LP_PACOV Landscape Patch Area Coefficient of
variation

LP_LAPAI Landscape Largest Patch Index

LP_SHDVI Landscape Shannon Diversity

LP_SPDVI Landscape Simpson Diversity

LP_PASTD Landscape Patch Area Standard-deviation

https://geocatalogo.icnf.pt/
http://mapas.dgterritorio.pt
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Table A2. Cont.

Type Acronym Variable Description Data Source

Linear
elements

LE_EDGDN Landscape edge density

LE_TLRIV Total length of rivers

European River Catchment Database (URL:
https://www.eea.europa.eu, access date: 6
December 2020: spatial resolution: 100 m,

reference year: 2007)

LE_TLROD Total length of all road types Open Street Map (URL: https://download.
geofabrik.de/europe/portugal.html, access
date: 6 December 2020: reference year: 2020)LE_TLMTW Total length of motorways

Soil properties

SO_AVWTC Available water content

Topsoil physical properties for Europe (URL:
https://esdac.jrc.ec.europa.eu, access date: 6

December 2020: spatial resolution: 500 m,
reference year: 2009)

SO_BULKD Bulk Density

SO_PCLAY Percent of clay in soils

SO_PCOAR Percent of coarse elements in soils

SO_PSAND Percent of sand in soils

SO_PSILT Percent of silt in soils

Topography/
Geomorpho-

logy

TG_SLOPE Slope (%)
SRTM v-4.1 (URL: https://srtm.csi.cgiar.org/,

access date: 6 December 2020: spatial
resolution: 90 m, reference year: 2008)

TG_RADAV Average Solar Radiation

TG_TORGI Topographic Ruggedness Index

TG_TOWTI Topographic Wetness Index
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