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Abstract: NASA’s ICESat-2 has been providing sea ice freeboard measurements across the polar
regions since October 2018. In spite of the outstanding spatial resolution and precision of ICESat-2,
the spatial sparsity of the data can be a critical issue for sea ice monitoring. This study employs
a geostatistical approach (i.e., ordinary kriging) to characterize the spatial autocorrelation of the
ICESat-2 freeboard measurements (ATL10) to estimate weekly freeboard variations in 2019 for the
entire Ross Sea area, including where ICESat-2 tracks are not directly available. Three variogram
models (exponential, Gaussian, and spherical) are compared in this study. According to the cross-
validation results, the kriging-estimated freeboards show correlation coefficients of 0.56–0.57, root
mean square error (RMSE) of ~0.12 m, and mean absolute error (MAE) of ~0.07 m with the actual
ATL10 freeboard measurements. In addition, the estimated errors of the kriging interpolation are low
in autumn and high in winter to spring, and low in southern regions and high in northern regions
of the Ross Sea. The effective ranges of the variograms are 5–10 km and the results from the three
variogram models do not show significant differences with each other. The southwest (SW) sector
of the Ross Sea shows low and consistent freeboard over the entire year because of the frequent
opening of wide polynya areas generating new ice in this sector. However, the southeast (SE) sector
shows large variations in freeboard, which demonstrates the advection of thick multiyear ice from
the Amundsen Sea into the Ross Sea. Thus, this kriging-based interpolation of ICESat-2 freeboard
can be used in the future to estimate accurate sea ice production over the Ross Sea by incorporating
other remote sensing data.
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1. Introduction

Sea ice in the polar regions plays an important role in global climate by interacting
with the ocean and atmosphere [1]. Snow-covered sea ice reflects a significant amount
of incoming solar radiation back to space [2–5], thus working as an insulator between
the ocean and atmosphere [6]. The annual variations of sea ice cover can influence ocean
and atmospheric circulation [7,8], surface temperature [9], and ecology [10,11]. According
to previous studies, sea ice extent and thickness in the Arctic has decreased since the
1960–1970s, mainly due to the dramatic increase in atmospheric CO2 emissions and its
associated warming, which has a stronger signature in high northern latitudes [4,12–16]. In
contrast with the Arctic, several Antarctic studies have reported that sea ice extent increased
for last 40 years, but started to decrease dramatically after a record high in 2014 [17,18].
Sea ice thickness and volume have also slightly increased, but a definitive trend is not
available [19,20].

In particular, the Ross Sea is one of the most noticeable regions showing a significant
increase of sea ice extent in the Southern Ocean [17,21,22]. There, massive amounts of
sea ice are produced in the Ross Sea polynya which is the largest recurring polynya area
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in Antarctica [23–25]. Thus, sea ice dynamics in the Ross Sea has been the subject of a
number of scientific studies [1,26–30]. Due to the harsh weather and long polar nights,
spaceborne remote sensing has been the most common and efficient approach for these
studies; spaceborne remote sensing allows obtaining sea ice observations over a large area
with regular time spans without the need of physical visits to the study region.

In recent years, the National Aeronautics and Space Administration (NASA)’s Ice,
Cloud, and land Elevation Satellite-2 (ICESat-2) has been providing precise sea ice freeboard
and thickness estimates over the polar regions. ICESat-2 was launched in September 2018
with the objectives of measuring changes in ice sheets, glaciers, and sea ice thickness [31].
The Advanced Topographic Laser Altimeter System (ATLAS) on ICESat-2 measures the
surface heights by using 532 nm wavelength laser photons. ATLAS has six beams of three
pairs of strong and weak beams with 11 m footprints spaced by 0.7 m [32], providing a
better spatial resolution compared to the previous ICESat mission [33]. Various studies
have utilized ICESat-2 for the characterization of sea ice freeboard and thickness in the
polar regions, taking advantage of this outstanding spatial resolution [34–36].

However, despite the good precision and resolution of ICESat-2, the use of ICESat-2
for studying sea ice is substantially limited by the spatial sparsity of the instrument’s
measurements (Figure 1). Since ICESat-2 data is collected along tracks, there are large
sections of area for which there is no data because they are not under a track. In addition,
ICESat-2 cannot measure freeboard in cloudy conditions because the laser photons do not
penetrate clouds. Thus, ICESat-2 data have limitations in sampling sea ice elevation over a
large area during a short sampling period, such as one or two weeks. Due to this limitation,
ICESat-2 has been so far only used to generate monthly sea ice freeboard or thickness maps
over the polar regions based on the near-monthly sub-cycle of its orbit [31,35–37]. Even
though these monthly maps are useful in understanding the overall annual trend of sea ice
thickness, they cannot capture short-term formation and dynamics of sea ice, especially in
regions where sea ice moves very rapidly, such as near the polynya ice production areas.
Since the wind speed and wind direction in the Ross Sea change very rapidly even on
a daily scale [38–40], the spatial distribution of sea ice freeboard over the Ross Sea can
fluctuate significantly in a short period. Thus, weekly maps of the sea ice freeboard over
the Ross Sea should provide an improved characterization of sea ice production and drift
in the polynya areas when compared to monthly maps.
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Figure 1. Actual ICESat-2 ATL10 data coverage in the Ross Sea for the following 1-week periods: (a) 04/26/2019–05/02/2019
and (b) 05/03/2019–05/09/2019. The presence of spatial gaps due to the orbit separations and existence of clouds is
readily apparent.

In order to address the spatial sparsity of ICESat-2 and produce weekly freeboard
maps over the Ross Sea, we employ a geostatistical kriging approach. Kriging is a popular
and well-established spatial interpolation methods for estimating unknown values [41]. In
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addition, one of the advantages of using kriging is that it is useful to examine the spatial
autocorrelation of data (e.g., statistically representative range of ICESat-2 data) [42]. Since
a mining engineer, Krige, used statistics to estimate ore reserves [43], geostatistical analysis
and the kriging method have been used for the mapping of many environmental fields.
In terms of the cryosphere, Herzfeld et al. [44] and Iacozza and Barber [45] characterized
the snow depth on sea ice from geostatistical variograms, and Huang et al. [46] estimated
the spatial distribution of snow depth by using kriging. Kriging is a common method to
interpolate ice shelf thickness [47,48] or ice sheet mass balance [49–51]. Lindsay et al. [52]
and Kurtz et al. [53] used the ordinary kriging to interpolate sea surface heights for the
estimation of sea ice thickness, and Wang and Hou [54] used kriging to determine the spatial
distribution of surface temperature in the Antarctic. Herzfeld et al. [55] used variograms
for the morphological characterization of ice surface types from glacier-roughness sensor
(GRS) data.

Although geostatistics is common for various applications, there have been few
attempts to apply this geostatistical kriging to short-term mapping of sea ice freeboard
or thickness. In this study, we characterize the spatial autocorrelation of the ICESat-2
freeboard measurements in the Ross Sea and apply kriging interpolation to estimate sea
ice freeboards in locations where the ICESat-2 track is not available. Finally, based on this
geostatistical approach, we generate weekly freeboard maps and analyze the short-term
sea ice variability in the Ross Sea in 2019.

2. Study Area

The area of interest for this study is the Ross Sea, which is the southernmost sea of
Antarctica located in a deep embayment of the Southern Ocean between Victoria Land to
the west and Marie Byrd Land to the east (Figure 2). To generate the weekly maps, the
Ross Sea is subjectively limited to the region 78◦S–70◦S latitude, and between the Victoria
Land/Oates Land coast and the 150◦W longitude. In addition, considering the general
distribution of polynyas and ocean currents in this region, we divide the entire Ross Sea
area into four sub-sectors: northwest (NW), northeast (NE), southwest (SW), and southeast
(SE) as shown in Figure 2.
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Figure 2. Map of the Ross Sea showing the four subsectors of interest (northwest—NW, northeast—
NE, southwest—SW, and southeast—SE) for this study superimposed on a sea ice concentration (SIC)
for October 2019 from the U.S. National Ice Center (NIC) ice chart. The three low SIC areas inside
the SW are the three known polynyas: the Ross Ice Shelf Polynya (RISP), Terra Nova Bay Polynya
(TNBP), and McMurdo Sound Polynya (MSP).

One of the important characteristics of the Ross Sea is its large polynyas, mostly in
the SW sector [23,24]. Polynyas can be defined as isolated areas of open water and thin
ice within the ice pack in a polar region [56]. The Ross Sea has three large persistent
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polynyas (Figure 2): the Ross Ice Shelf polynya (RISP), Terra Nova Bay polynya (TNBP),
and McMurdo Sound polynya (MSP) [26,40]. The formation of these polynyas from March
to November is largely related to katabatic winds from the Ross Ice Shelf and Victoria
Land [57,58].

3. Data

In this study, sea ice freeboard data over the Ross Sea region from the ICESat-2 ATL10
(release 003) were obtained from NASA Earthdata (earthdata.nasa.gov). The time period
selected for this study was 1 March to 30 November 2019 which covered one annual ice-
growth cycle from the start of the freezing season to the start of the melting season. We
note that ICESat-2 data from 26 June 2019 to 9 July 2019 were not available because ATLAS
was off during this time in the safe-hold mode.

The ATL10 freeboard product is derived from the sea ice surface heights product
(ATL07) which in turn was derived by the aggregation of 150 photons from the ATLAS
global geolocated photon data product (ATL03). The surface heights of ATL07 are calcu-
lated by assuming a Gaussian distribution of the aggregated 150 photons and the precision
of this surface height is known as less than 2 cm for flat surfaces [59]. Based on this surface
height hs, the sea ice freeboard h f of the ATL10 product is calculated as follows:

h f = hs − hre f (1)

where hre f is a sea surface reference height estimated from a collection of sea ice leads
within a 10 km segment. Herein, this freeboard represents the total freeboard (i.e., the
ice freeboard and snow depth), and freeboard is calculated only for where daily sea ice
concentration (SIC) is greater than 15% [60]. In the ATL10 product, sea ice floes and leads
are classified by three photon factors: photon rate, photon distribution, and background
rate [37]. Since the surface heights are derived from the aggregations of 150 geolocated
photons, the spatial resolution (i.e., height segment length of 150 photon aggregations)
depends on the surface reflectance or roughness. Generally, the segment lengths are
10–200 m for strong beams, and 40–800 m for weak beams [37]. Because the strong beams
have better resolutions than weak beams, only strong beams are used in this study.

4. Methods
4.1. Subsampling of ATL10 Product to 3 km

The purpose of this study is to characterize and estimate the overall distribution of
sea ice freeboard over the entire Ross Sea by using ICESat-2 observations and the kriging
approach. However, for some sea ice floes, ridged ice or thin ice in leads can distort the
global freeboard values for level sea ice (Figure 3a). Thus, the ATL10 freeboard data are
first resampled every 3 km to reduce the impacts of sea ice deformation (ridged ice or sea
ice leads) on the level ice freeboard values (Figure 3b). Geostatistical approaches can have
difficulty predicting these local and linear sea ice deformation features because they are
based on the assumption of data stationarity [61].

It is known that the sea ice freeboard generally follows a lognormal distribution [62]
and the modal freeboard represents the freeboard for level ice [63,64]. Therefore, in order
to reduce the effect of the sea ice deformation, the freeboard distributions are fitted to
lognormal distributions for every 3 km cell and the modal freeboards for the 3 km cells
are considered as representative freeboards of the level sea ice (Figure 3b–d). Since three
strong beams of ICESat-2 are separated with 3.3 km intervals, we make the ICESat-2 track
data look like ~3 × 3 km2 pseudo-square cells (Figure 3b).
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Figure 3. (a) Diagram of ICESat-2 photon beams over sea ice floes showing that ICESat-2 freeboard
measurements include ridges and leads as well as level ice floes, (b) 3 km sampling of ICESat-2 data,
(c) distribution of ATL10 freeboard for a single 3 km sample segment on 21 June 2019, and (d) distri-
bution of ATL10 freeboard for a 3 km sample segment on 24 November 2019 (note that the lognormal
distribution better fits the real freeboard distributions compared to the normal distribution).

4.2. Geostatistical Modeling

After the ATL10 data are aggregated as modal freeboards every 3 km, we build
geostatistical models for interpolating freeboard values to select locations where ICESat-2
observations are not available. A geostatistical model first measures the spatial dependence
or autocorrelation from a semivariogram that represents the relationship between the
semivariance γ(h) and the lag distance h. The average semivariance at a lag distance h is
defined by:

γ(h) =
1

2N

N

∑
i=1

[z(xi)− z(xi + h)]2 (2)

where z(xi) is the measured sample value (i.e., ATL10 freeboard in this study) at the point
xi, z(xi + h) is the measured sample value at another point displaced from the point xi by a
lag distance h, and N is the number of observations for a lag distance h.

After an experimental semivariogram is derived from the measurements, the ex-
perimental semivariogram must be fitted with a mathematical model to estimate the
semivariance at any given distance [42]. This fitted semivariogram has three elements:
nugget, effective range, and sill. The nugget (c0) is the semivariance at the distance 0, which
means measurement error. The effective range is the distance at which the semivariogram
starts to be flat, which means the data have no spatial correlation beyond this range. The
sill is the semivariance at this leveling point. Among various types of semivariogram
models, three representative variogram models are calculated and compared in this study:
exponential, Gaussian, and spherical. These models are defined by the equations:

Exponential : γ(h) =

{
c0 + c

(
1 − exp

(
− h

a

))
h > 0

0 h = 0
(3)
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Gaussian : γ(h) =

{
c0 + c

(
1 − exp

(
− h2

a2

))
h > 0

0 h = 0
(4)

Spherical : γ(h) =


c0 + c

(
3h
2a −

1
2

(
h2

a3

))
0 < h ≤ a

c0 + c h > a
0 h = 0

(5)

Based on these variogram models, ordinary kriging is employed to estimate sea ice
freeboards. The general equation for estimating the z value at a point is:

Z0 =
s

∑
i=1

ZxWx (6)

where Z0 is the estimated value, Zx is the known value at point x, Wx is the weight on the
point x, and s is the number of sample points for estimation. The weights are derived from
solving a set of simultaneous equations [42]. In this study, Esri’s ArcGIS software is used
for the derivation of semivariogram models and ordinary kriging.

In order to cross-validate these kriging models, we divide the weekly data into a
training dataset and validation dataset. For every week, we randomly select two tracks as a
validation dataset and build kriging models using the other available tracks (Figure 4). This
model is then compared to the validation dataset to check if this geostatistical approach is
reliable for the estimation of the unknown values. In this process, we compare the three
different variogram models to determine which model is the most accurate. After the
accuracy of the geostatistical model is assessed, we map sea ice freeboard over the Ross Sea
weekly. These freeboard maps have a grid size of 25 km which is comparable to previous
sea ice mapping results [35,36,65] and the ICESat-2 Level 3 product of monthly gridded sea
ice freeboard (ATL20) [60]. The freeboard for the center of each 25 km grid cell is estimated
by applying kriging with the 3 km mode sampled ATL10 data. We note that the mapped
freeboard in this study is the total freeboard for level sea ice because the impacts of sea ice
deformation (i.e., ridges and leads) are minimized by the previous 3 km mode sampling
(Section 4.1). The number of ATL10 tracks used for each weekly map is generally 15–25; the
number of used tracks depends on the time and location of ground tracks and cloud cover.
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5. Results
5.1. Cross Validation of Kriging Estimated Freeboards

Figure 5 describes the cross-validation results by time. In general, the correlation
coefficient (R) is greater than 0.4, which indicates a moderate correlation [66]. R value
is relatively greater in the thicker-ice season from July to November (R > 0.5), but it
is relatively low in the thinner-ice season from March to June (R ~ 0.4–0.6) (Figure 5a).
Similarly, while the root mean square error (RMSE) and mean absolute error (MAE) are
relatively low in March to June, they are relatively high in July to November (Figure 5b,c).
The higher errors in July to November may be attributed to higher freeboard values (i.e.,
thicker ice) during these months.
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The overall cross-validation results of the kriging freeboard estimation for three
variogram models are depicted in Figure 6. The exponential, Gaussian, and spherical
variogram models show similar results to each other: an R of 0.56–0.57, RMSE of ~0.12 m,
MAE of 0.07 m. Although this level of R value indicates only moderate correlation between
kriged freeboard and actual freeboard, the p-value (< 0.001) shows that this correlation
is significant. Additionally, this cross-validation result implies that the geostatistical
approach interpolates and estimates of freeboards in the Ross Sea with an expected RMSE
of approximately 0.12 m, and the differences between the three variograms are negligible.
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Furthermore, we compare the cross-validation parameters for each subsector: NW,
SW, NE, and SE (Figure 7). As shown in Figure 7a, the SW and SE sectors show higher R
values than the NW and NE sectors. This is because the ICESat-2 tracks are more densely
distributed in the southern regions (Figure 1), which consequently guarantees higher
reliability of kriging interpolation for the southern sectors. However, since the RMSE and
MAE depend on the freeboard value as well, the SE sector, where the thickest ice is located,
shows a higher RMSE and MAE compared to the other sectors (Figure 7b,c). The SW sector
generally shows the lowest RMSE and MAE among the four sectors, which should be
attributed lower freeboard of the SW sector due to the existence of large polynyas there.
More details about ice freeboard and thickness for these sectors and the reason for it are
discussed in the following sections.
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5.2. Variations of Variogram Factors

We also compare the temporal variations of the variogram factors (i.e., range and sill).
As shown in Figure 8a, the effective ranges of the variograms generally range in 5–10 km,
but the exponential variogram model shows greater range than the other variogram models
because of its mathematical approach (Equation (3)). The exponential model takes a longer
distance to reach the level sill points than the other models due to the mathematical
characteristics, even though they have all the same experimental semivariograms. Since
the ranges of the variograms represent the spatially autocorrelated distance, it can be said
that the ICESat-2 ATL10 freeboards are representative of freeboards on scales of 5–10 km
surrounding sea ice floes in the Ross Sea.
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The sills increase from March to November for all three variogram models (Figure 8b).
The sills are less than 0.01 m2 in April–June, but it increases from July, so reaches up to
0.02–0.03 m2 in November. Since sills can be regarded as the maximum variations of the
kriging interpolations, this result indicates that the variations of the kriging estimation are
larger in winter to spring than in autumn. Given that sea ice is thicker in winter to spring,
it is reasonable that winter and spring show large variations. Moreover, although we
attempt to reduce the impacts of the sea ice deformation by applying 3 km mode sampling,
some sea ice deformation (ridges) can still introduce higher variations during the winter
to spring period because a significant portion of sea ice is heavily deformed in the Ross
Sea [67]. Meanwhile, it is also noted that late October to November shows the largest sill
values. Since late October to November is the start of melting season, we can deduce that
the melting of sea ice and reduction of the sea ice covers can lead to higher variations of
this kriging interpolation.
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5.3. Weekly Freeboard Changes over the Ross Sea

Based on the cross-validation results, we generate weekly freeboard maps over the
Ross Sea by using the spherical variogram model. Figure 9 shows the weekly variations
of the sea ice freeboard for each sector retrieved from these freeboard maps. In April,
the average freeboard for the entire Ross Sea is approximately 0.15 m, and it increases
by October. October shows the maximum average sea ice freeboards up to 0.25 m. After
October, freeboard started to decrease and returned to under 0.2 m in November.

Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 18 
 

 

5.3. Weekly Freeboard Changes over the Ross Sea 
Based on the cross-validation results, we generate weekly freeboard maps over the 

Ross Sea by using the spherical variogram model. Figure 9 shows the weekly variations 
of the sea ice freeboard for each sector retrieved from these freeboard maps. In April, the 
average freeboard for the entire Ross Sea is approximately 0.15 m, and it increases by Oc-
tober. October shows the maximum average sea ice freeboards up to 0.25 m. After Octo-
ber, freeboard started to decrease and returned to under 0.2 m in November. 

It is notable that the four sectors in the Ross Sea show their own distinctive freeboard 
variations. The SE sector shows the highest and most variable freeboard values compared 
to the other sectors. In April to May, the average of the freeboard for the SE sector is ap-
proximately 0.12–0.15 m, but it started to increase from late May. Consequently, the aver-
aged freeboard for the SE sector reached up to 0.5 m in the second week of October, while 
the other sectors show freeboard less than 0.25 m. Contrary to the SE sector, the SW sector 
shows the lowest freeboard values for the whole year: less than 0.15 m. The freeboard in 
the SW sector shows relatively constant values of freeboard, without large increases or 
decreases. In April to June, the four sectors show only small differences in their freeboard. 
During June to November, however, the SE sector shows the highest increases in free-
board values, followed by NE, NW, and SW. In order to better understand the spatial and 
temporal variations of freeboard, we compare weekly freeboard maps and their distribu-
tions over the Ross Sea for each sector and for three seasons: the slow-freezing season 
(April to June), fast-freezing season (July to September), and melting season (October to 
November). 

 
Figure 9. Weekly variations of the average freeboards for the four sectors in the Ross Sea. 

5.3.1. Freeboard Changes from April to June (Slow-Freezing Season) 
 Freeboard maps and distributions in April to June are shown in Figure 10. From 

April 12 to May 16, the freeboard distributions and the mean freeboard values look similar 
without large differences between them. Nevertheless, it is noted that the SW sector gen-
erally shows bimodal distributions such that the lower peak freeboard (~0.05 m) is lower 
than the other sectors (~0.1–0.15 m). This is attributed to the existence of large polynyas in 
the Ross Sea, especially the RISP. Clearly, the thin ice region near the RISP remains during 
the entire slow-freezing season from April to June (Figure 10). Two other polynyas (the 
TNBP and MSP) should be occasionally observed in the Ross Sea, but they are hardly 
overlapped with ICESat-2 tracks because of their relatively small spatial scales compared 
to the RISP (Figure 2). Thus, these relatively small polynyas can be only observed if the 
ICESat-2 tracks are exactly coincident with the occurrence of these polynya events. There 
was no coincidence between the ICESat-2 tracks and the TNBP or MSP polynya events 

Figure 9. Weekly variations of the average freeboards for the four sectors in the Ross Sea.

It is notable that the four sectors in the Ross Sea show their own distinctive freeboard
variations. The SE sector shows the highest and most variable freeboard values compared
to the other sectors. In April to May, the average of the freeboard for the SE sector is
approximately 0.12–0.15 m, but it started to increase from late May. Consequently, the
averaged freeboard for the SE sector reached up to 0.5 m in the second week of October,
while the other sectors show freeboard less than 0.25 m. Contrary to the SE sector, the
SW sector shows the lowest freeboard values for the whole year: less than 0.15 m. The
freeboard in the SW sector shows relatively constant values of freeboard, without large
increases or decreases. In April to June, the four sectors show only small differences in
their freeboard. During June to November, however, the SE sector shows the highest
increases in freeboard values, followed by NE, NW, and SW. In order to better understand
the spatial and temporal variations of freeboard, we compare weekly freeboard maps
and their distributions over the Ross Sea for each sector and for three seasons: the slow-
freezing season (April to June), fast-freezing season (July to September), and melting season
(October to November).

5.3.1. Freeboard Changes from April to June (Slow-Freezing Season)

Freeboard maps and distributions in April to June are shown in Figure 10. From
April 12 to May 16, the freeboard distributions and the mean freeboard values look similar
without large differences between them. Nevertheless, it is noted that the SW sector
generally shows bimodal distributions such that the lower peak freeboard (~0.05 m) is
lower than the other sectors (~0.1–0.15 m). This is attributed to the existence of large
polynyas in the Ross Sea, especially the RISP. Clearly, the thin ice region near the RISP
remains during the entire slow-freezing season from April to June (Figure 10). Two other
polynyas (the TNBP and MSP) should be occasionally observed in the Ross Sea, but they
are hardly overlapped with ICESat-2 tracks because of their relatively small spatial scales
compared to the RISP (Figure 2). Thus, these relatively small polynyas can be only observed
if the ICESat-2 tracks are exactly coincident with the occurrence of these polynya events.
There was no coincidence between the ICESat-2 tracks and the TNBP or MSP polynya
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events during our study period. Although there is no large increase or decrease in the
freeboard for all four sectors in this slow-freezing season, freeboard starts to increase in the
eastern sectors (NE and SE) from the week of 24 May. In particular, the freeboard starts
to increase mainly from the east side of the SE sector, which indicates the inflow of thick
multiyear ice from the Amundsen Sea, east of the Ross Sea area [68–70].
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5.3.2. Freeboard Changes from July to September (Fast-Freezing Season)

Figure 11 shows the weekly freeboard maps and distribution changes during the fast-
freezing season from July to September. The SW sector still shows a bimodal distribution
during this season, and the first lower mode has approximately 0.05 m of freeboard, which
indicates the thin ice around the RISP in this sector. The freeboard in the SE sector has
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dramatically increased during this period until the first week of September. The SE sector
also shows a bimodal distribution, but both modal freeboards continuously shift to the
right, unlike the consistent bimodal freeboard values for the SW sector. Additionally, while
the right mode increases much faster, the left mode moves with similar increase rates to the
NW and NE sector. It is logical that the increase in freeboard in the SE sector is mainly led
by two different sources: (1) inflow of thick ice from the Amundsen Sea (greater mode), and
(2) internal ice growth in the SE sector (lower mode). Thus, the SE sector shows a very wide
range of freeboard compared to the other sectors. The NE and NW sectors usually show
unimodal distributions, but sometimes they also show bimodal distributions. Specifically,
the thin ice from the SW sector is sometimes advected into the NW sector, shown as the
small mode in the distribution, and thicker ice from the SE sector is sometimes advected
into the NE sector, shown as the greater mode in the distribution in these weeks.
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5.3.3. Freeboard Changes from October to November (Melting Season)

Freeboards reached a maximum in the week of 11 October and began to decrease after
that (Figure 9). During this melting season, the SW sector contains the lowest freeboard,
and we can still identify the spatial distribution of the polynya-related thin ice in this sector
(Figure 12). The NW sector shows the second lowest freeboard due to the impacts of thin
ice advected from the SW sector. The SE sector shows the highest freeboard and the widest
distribution of the freeboard, but the freeboard decreases from the week of 24 November.
An interesting finding here is that the highest freeboard region shifts northward in the
SE sector. During the weeks of 11–31 October, the highest freeboard regions are located
in the southeast coastal area of the SE sector. As time passes, however, we can observe
that these highest freeboard regions are shifted to the northern side of the SE sector (i.e.,
border between the SE and NE sectors) in the weeks from 1 November to 28 November.
This can be associated with the movement of thick sea ice towards the north of the Ross
Sea. According to previous studies [68,69,71], sea ice moves northward in this sector, so
thick ice was pushed away to the north side.
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6. Discussion
6.1. Comparison with NIC Ice Chart

We compare the weekly freeboard estimated by kriging with the National Ice Center
(NIC) weekly ice chart (Figure 13). The NIC ice charts are produced through the man-
ual interpretation of various data sources including in situ, remote sensing (e.g., visible,
infrared, active/passive microwave), and model outputs [72]. Although they do not pro-
vide accurate thickness measurements, they consist of multiple polygons showing the
categorical stage of development of sea ice (e.g., nilas, grey ice, young ice, first-year thin
ice, first-year thick ice, old ice, etc.). This ice chart data has been used to examine the
spatiotemporal variations of ice thickness and volume in the Ross Sea area [69]. In this
study, we convert the categorical ice type of each polygon into numerical ice thickness
values using the method of DeLiberty et al. [69] Thus, since each polygon of the ice chart
has a single thickness value, we compare the converted ice thickness for each polygon with
the ICESat-2 freeboard averaged over that polygon.
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As shown in Figure 13, the kriged freeboard and the NIC ice thickness show a signif-
icant correlation (R = 0.587, p-value < 0.001) to each other. This implies that our weekly
freeboard estimation agrees with the existent sea ice thickness products. Furthermore,
the slope of this linear fit (2.61) is close to that from the literature that converted sea ice
freeboard into ice thickness for the Ross Sea area in early spring (2.45) [73].

However, it should be noted that they do not have a perfect linear relationship because
of the major differences between them. First, while our freeboard maps represent the total
freeboard, the NIC ice charts represent the ice thickness. Considering the variations of
snow/ice density or snow depth over the Ross Sea [74], the freeboard and ice thickness
can be deviated from the complete linear fit. Second, while our freeboard maps are based
on the quantitative measures from ICESat-2, the NIC ice charts are based on the manual
interpretation of various data. Thus, the thickness from the NIC ice chart is not an accurate
reference but a rough categorical estimation of sea ice thickness. Third, although we try to
reduce the impacts of sea ice deformation using the 3 km mode sampling, our freeboard
maps can still involve these dynamic impacts. In contrast, the thickness from the NIC
ice chart is merely based on the thermodynamic ice growth [69]. Therefore, herein, we
only check a rough coherency between our estimation and the NIC ice chart, rather than
the accurate validation of our freeboard maps. We would suggest the weekly ICESat-2
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freeboard maps, if they can be produced in near real-time, to be incorporated into a
real-time weekly NIC ice chart to improve the potential accuracy of the chart.

6.2. Limitations of the Geostatistical Approach

This study presents a geostatistical characterization and weekly mapping of total
freeboard in the Ross Sea by using ICESat-2 ATL10 products. The spatial autocorrelation
ranges of ATL10 freeboard are quantified from the geostatistical variograms, and freeboards
are interpolated by ordinary kriging based on these variogram models. The resulting
weekly freeboard maps successfully identify the spatial distributions of polynya areas in
the Ross Sea.

However, the geostatistical approach used here can have several limitations. From the
statistical point of view, this method can introduce significant uncertainties if the number
of ICESat-2 observations are not sufficient in a given region [75,76]. In particular, since
ICESat-2 laser photons cannot penetrate into clouds, overcast weather conditions can cause
a lack of measurements. This is evidenced by a somewhat discontinuous appearance in
some of the freeboard maps (Figures 10–12).

Another issue of the geostatistical approach used in this study is that it assumes
that the sea ice across the Ross Sea remains static over a week’s period (i.e., stationarity).
However, the sea ice distribution over the Ross Sea is very dynamic and can change
significantly even within one week, especially in the SW sector where frequent katabatic
wind events can drive significant sea ice production. Since our geostatistical kriging model
is based on the assumption of static conditions for the training dataset, freeboard changes
occurring with a shorter than one-week scale cannot be described by this approach.

In addition, it is also necessary to consider the assessment or validation of the ATL10
total freeboard product for the Ross Sea. Although some studies assessed the ATL10
freeboard data in comparison with other air-borne missions, such as Operation Ice Bridge
(OIB) for the Arctic [59], the accuracy of ATL10 freeboard over the Ross Sea has not been
evaluated. Due to the lack of validation data in the Ross Sea, the cross-validation of this
study is conducted with the ATL10 freeboard product itself, rather than independent sea
ice freeboard measurements. Therefore, it is necessary to assess the accuracy of the ATL10
freeboard product by using sea ice field data in the near future. In addition, herein we
only analyze the freeboard values, not the sea ice thickness. Although there are several
methods to convert freeboard into thickness for the Ross Sea area [28,73], it is not clear
what method would best describe the sea ice conditions over Ross Sea for the entire year.
Therefore, it is also critical to examine how to associate the freeboard changes with the
thickness variations over the Ross Sea.

7. Summary and Conclusions

In this study, we implement a geostatistical analysis to examine the spatial autocor-
relation characteristics of ICESat-2 ATL10 freeboards over the Ross Sea. Based on this
spatial autocorrelation, we generate weekly freeboard maps by applying ordinary kriging
to detect spatiotemporal variations of sea ice over the Ross Sea. Before applying kriging
interpolation for mapping, we conduct a cross validation to check the reliability of this
kriging method for freeboard mapping. According to the cross-validation results, the
kriging-estimated freeboards show significant correlation (R > 0.5), RMSE ~ 0.12 m, and
MAE ~ 0.7 m with the ATL10 freeboard measurements. Three different variogram models
(exponential, Gaussian, and spherical) show insignificant differences in their accuracy. This
cross-validation result shows that the geostatistical approach can be useful for estimating
freeboards in missing spaces where ICESat-2 data are not directly available. The spatial
correlation range of the variogam models indicates that the ATL10 freeboard product can
statistically represent the freeboard on scales of 5–10 km from the source data track. For the
area farther away from the ATL10 measurements than this effective range, the variograms
show the sill values less than 0.01 m2 for April to July, but greater than that for August to
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November. The uncertainty of this kriging method increases in winter to spring as the ice
grows, but the largest uncertainty is expected for the melting season.

The resulting weekly maps are used to examine the spatiotemporal changes of sea
ice freeboard over the Ross Sea. We divided the Ross Sea into four sectors (SW, SE, NW,
and NE) to better characterize short-term regional sea ice changes. Our weekly freeboard
maps capture the spatial distributions of large polynya areas (i.e., RISP) over the Ross
Sea. The polynya areas are mainly located in the SW sector, but sometimes they extend
to the SE or NW sectors. The SW sector shows the lowest and less variable freeboard
changes with bimodal freeboard distributions due to the large polynya areas in this sector.
In contrast, the SE sector shows the largest and more variable changes of the freeboard from
the freezing season to the melting season, which is partially attributed to the thick multiyear
ice advected from the Amundsen Sea. Meanwhile, we also find that the thick ice in the
SE sector drifts northward in the melting season. If our short-term freeboard mapping
is combined with other multispectral or radar satellite data (e.g., Landsat, Sentinel-1,
Sentinel-2), we are confident that we can efficiently estimate sea ice production in the
polynya areas over the Ross Sea.
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