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Abstract: It is important to protect forest and grassland ecosystems because they are ecologically
rich and provide numerous ecosystem services. Upscaling monitoring from local to global scale is
imperative in reaching this goal. The SDG Agenda does not include indicators that directly quantify
ecosystem health. Remote sensing and Geographic Information Systems (GIS) can bridge the gap for
large-scale ecosystem health assessment. We systematically reviewed field-based and remote-based
measures of ecosystem health for forests and grasslands, identified the most important ones and
provided an overview on remote sensing and GIS-based measures. We included 163 English language
studies within terrestrial non-tropical biomes and used a pre-defined classification system to extract
ecological stressors and attributes, collected corresponding indicators, measures, and proxy values.
We found that the main ecological attributes of each ecosystem contribute differently in the literature,
and that almost half of the examined studies used remote sensing to estimate indicators. The major
stressor for forests was “climate change”, followed by “insect infestation”; for grasslands it was
“grazing”, followed by “climate change”. “Biotic interactions, composition, and structure” was the
most important ecological attribute for both ecosystems. “Fire disturbance” was the second most
important for forests, while for grasslands it was “soil chemistry and structure”. Less than a fifth of
studies used vegetation indices; NDVI was the most common. There are monitoring inconsistencies
from the broad range of indicators and measures. Therefore, we recommend a standardized field,
GIS, and remote sensing-based approach to monitor ecosystem health and integrity and facilitate
land managers and policy-makers.

Keywords: ecosystem health assessment; grassland; forest; remote sensing; GIS; ecological integrity;
ecosystem attributes; ecosystem indicators; ecosystem stressors

1. Introduction

Forests and grasslands, the two major global ecosystems, account for 40.7% of the
world’s terrestrial surface [1] and provide a multitude of ecosystem services, such as erosion
control, climate regulation, nutrient cycling, raw materials [2], forage provision, habitat,
and recreation [3]. Only 40% of the remaining forests have high landscape level-integrity [4]
and 49.25% of the global grasslands are degraded [5]. Ecosystem health assessments (EHA)
facilitate monitoring and protection of the ecological conditions of these ecosystems. One
of the ecosystem health definitions is “the degree to which the integrity of the soil and the
ecological processes of ecosystems are sustained” [6]. Various entities have proposed and
used attributes and indicators to conduct EHA (e.g., [7–10]). A guidance document for
the conservation of biological and ecological resources, written by Unnasch et al. [11] is a
tool for the U.S. National Parks. Hansen and Phillips [12] developed a Wildland Health
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Index for the Greater Yellowstone Ecosystem, designed to communicate ecological integrity
measures to decision-makers. Other examples include field guides for rangeland health
assessment by partnerships [13] or governmental entities [14].

To accurately assess ecosystem health, certain attributes and indicators need to be
monitored. Key ecological attributes are determined as the most pivotal to the resource’s
persistence and are easily integrated into a conceptual or quantitative model [11]. The
identification of key ecological attributes relies on their connection to existing management
challenges (i.e., extreme climatic events, disease outbreaks, and others), which may have
natural and anthropogenic consequences. These are defined as ecological stressors or
ecosystem threats. Indicators are measurable, and assess the actual status of the key
ecological attribute and provide signals of environmental problems [7,11]. Overall, there is
a complex set of biotic and abiotic attributes for evaluating the resilience of a terrestrial
ecosystem [15]. Concisely, each indicator corresponds to an ecological attribute and is
quantified by direct measures or proxies. For example, “crown closure” and “average
inter-tree distance” are two ecological measures of forest, which correspond to the “fire
area/intensity regime” indicator and belong to the “disturbance” attribute [16]. “Soil pH”
and “conductivity” indicators correspond to the “soils chemistry and structure” attribute
of the grassland ecosystem [17].

Remote sensing and Geographic Information System (GIS) applications in ecosys-
tem health monitoring are becoming more universal, overshadowing the limitations of
traditional methods [18–20] and being able to monitor different spatio-temporal scales
in a repetitive and objective manner [21]. Hunt et al. [22] emphasized the possibility of
filling the information gaps between range managers and remote sensing experts since
remote sensing has the ability to detect noxious rangeland plant species, and to estimate
rangeland productivity and other rangeland properties (e.g., topography, surface rough-
ness, landscape and vegetation patterns, bare soil coverage). Ding et al. [18] established
a conceptual framework for regional EHA based on the use of remote sensing and GIS
(MODIS, land cover, elevation, roads, etc.,) and computed a weighted ecosystem health
index. Zlinszky et al. [20] introduced the use of remote sensing and GIS for habitat quality
monitoring, while Li et al. [23] reviewed the application of remote sensing in ecosystem
health. Nevertheless, only ecological indicators related to biotic interactions, composition,
and structure were under consideration while hydrology, disturbance, soil chemistry and
structure, and fragmentation also need to be assessed to have a dimensional ecosystem
health assessment. Lausch et al. [21,24,25] developed an informative review about remote
sensing-derived characteristics of forest health. However, these need to be transferrable
into ecosystem indicators for ecologists who are not into the field of remote sensing. A
systematic review that summarizes the ecological attributes, indicators, and measures that
have been used for EHA in the two major global ecosystems (grasslands and forests) as
well as their connection to remote sensing and GIS has not been conducted to our knowl-
edge. A recent systematic review on ecosystem health examined 30-year trends of related
publications, summarized popular subjects, journals, authors, and studies [26]. However, it
did not include an in-depth analysis on specific ecosystem attributes and indicators, it did
not focus on remote sensing and GIS tools, neither was there a breakdown by ecosystem
type. This review aims: (1) to identify the prevalent ecological attributes, indicators, and
measures for forest and grassland ecosystem health assessment; (2) to analyze the main
stressors and threats of the two ecosystems, and (3) to analyze ecological attributes and
indicators derived from remote sensing and GIS data for EHA.

It is evident that the numerous approaches for EHA lead to difficulties in larger scale
assessments on the condition of ecosystems. There is lack of consistent monitoring and
continuous assessment of management actions through standardized ecosystem attributes
and indicators. Although the current sustainable development goal (SDG) indicators
monitor sustainability in a consistent way around the world, there is a gap on indicators
related to ecosystem health [27]. There are some indicators related to the forest ecosystem
(e.g., indicators 15.1.1 and 15.2.1), which do not directly look at its condition; and other
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major ecosystems, such as grasslands, shrublands, and wetlands are missing. Having a
common framework for ecological integrity measurements and EHA could benefit en-
vironmental management boards, and become a shareable communication tool among
related stakeholders.

2. Materials and Methods

We reviewed literature from the database of USearch (University of Saskatchewan’s
library database) and its linkages to Google Scholar, due to its in-text searching abilities. We
only looked at English studies without year or publication type restrictions. The USearch
database is connected to around 485 other databases (e.g., Web of Science, Academic Search
Complete, Scopus, ScienceDirect). We used keywords related to the ecosystems under
study (i.e., grassland and forest), expressions that refer to ecosystem health, variations of
words related to indices, terms that are connected to the assessment of ecosystem health,
and words related to remote sensing and GIS. The keyword combinations that were used
included ((“ecosystem” OR “ecolog*” OR “forest” OR “grassland” OR “rangeland” OR
“range”) AND (“health” OR “integrity” OR “resilience” OR “sustainability”) AND/OR
(“indicator*” OR “index” OR “assessment” OR “condition” OR “framework” OR “mon-
itoring”) AND/OR (“remote sensing” OR “GIS”). We also included separate searches
that combined “remote sensing” OR “GIS” with specific ecosystem attributes or threats
(e.g., “grassland vegetation composition”, “structural diversity”, “forest fire”, “erosion”).
We further examined reference lists from study reports that were used in this systematic
review and added literature to our list of potential studies. During study selection, we
conducted initial in-text screening and retained those that fell within one of the terrestrial
non-tropical biomes, as defined by Olson et al. [28]. These include the: (1) Temperate
Broadleaf and Mixed Forests; (2) Temperate Coniferous Forests; (3) Boreal Forests/Taiga;
(4) Temperate Grasslands, Savannas, and Shrublands, (5) Montane Grasslands and Shrub-
lands, and (6) Tundra. Studies that were eligible for data extraction had to include one or
a combination of the following; ecological attributes, indicators, measures, and stressors
or threats.

2.1. Metadata Extraction

For each extractable study, a metadata record including information related to the
variables defined in Table 1 was kept. The publication type consisted of seven categories:
(1) review; (2) theoretical article; (3) indicator description; (4) fieldbook/guide; (5) explicit
methods; (6) direct application (case study), and (7) report. The terrestrial biomes were
separated into Olson’s [28] categorization, and excluded the tropical and subtropical
biomes, the Mediterranean biome, desert biome, and mangroves. The scale of each study
belonged to: (1) local (city or municipality); (2) regional (more than one municipality and
up to several States); (3) transnational (more than one country and less than a continent);
(4) continental/global. The extent of the study area was defined in square kilometers, and
the resolution of spatial data in meters. The latitude and longitude were collected from the
study in decimal degrees or from the centroid of the study location. If any of the metadata
attributes were missing, they became “not applicable/available—NA”.

2.2. Data Extraction

We extracted data related to a number of variables (Figure 1, Table 2). Every study was
separated into the forest or grassland ecosystem, and if it had information on ecosystem
stressors, attributes, and indicators, these were noted down. Each indicator can be quanti-
tative or qualitative, and field-based or remote-based. Qualitative indicators do not involve
detailed quantitative measurements and are usually determined by looking at a site (visual
assessment). It is suggested that only experts in the field should use this technique [29].
Quantitative indicators involve specific measurements (e.g., counts, percentages, etc.,), and
are therefore considered to be more precise [30]. Combinations of both methods are also
used [31].
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Table 1. Metadata attributes collected for each study of this systematic review.

Metadata Attributes

Journal
Publication year

Journal name
Publication type

Broader geography

Terrestrial Biome
Ecoregion
Continent
Country
Region

Study area

Study area name
Scale

Extent of study area
Resolution

Latitude
Longitude

Ecosystem

Ecological 
attribute

Ecological 
indicator

Quantitative

Remote based

Satellite sensor

GIS layer

Remote sensing 
index

Data source

Field-based

Data source

Qualitative

Field-based

Data source

Ecosystem 
stressor or threat

-Threshold determination
-Frequency

Figure 1. Hierarchical structure of variables examined in this systematic review (GIS–Geographic Information System).
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Table 2. Extracted data variables collected for each study of this systematic review (RS–remote
sensing, VI–vegetation index, GIS–Geographic Information System).

Extracted Data Attributes Details

Ecosystem Forest or Grassland

Ecological/Management stressor
Level 1
Level 2
Level 3

Ecological attribute
Level 1
Level 2
Level 3

Ecosystem health indicator Quantification of ecological attribute

Indicator Extraction Method Qualitative or Quantitative

Threshold determination
Historic range of variation

Reference plant community
Expert opinion

Measurement frequency Time measure

Field measurement/Proxy value
Level 1
Level 2
Level 3

RS type
RS sensor

RS VI
GIS data

Other data

We further extracted information on the measurement frequency of the ecological
indicators, the data source used, and on how different ecosystem health thresholds were
defined. After the indicators are measured and assessed, they need to be compared to a
specific threshold, which will define the ecosystem health condition of the indicator [32].
The threshold of ecosystem health is defined as “a boundary between ecological states of
an ecosystem that, once crossed, is not easily reversible and results in the loss of capacity
to produce commodities and satisfy values” [6]. This threshold can be defined in different
ways; using the historic range of variation in the specific ecosystem as a reference [8,33],
using a reference plant community which corresponds to how the ecosystem would look
like in pristine conditions [29,34], or using the opinion of experts [35,36]. There are some
limitations to using historical variation and reference plant communities in a changing
climate, since the species that are found within each might change, however they might
still provide essential ecosystem services that preserve its health [8]. Lastly, we collected
information on the type of the remote sensing (RS) sensor, the RS name, vegetation indices
(VIs) used in related studies, the GIS data, and any other type of additional data that were
used. If specific measures or proxy values for an indicator were mentioned, these were
also extracted.

To keep consistency in the data collection of ecological attributes and indicators, we
chose an existing classification system [11] developed for the U.S. National Parks due to
the detailed level in ecological attributes. We matched each studies’ information with this
system. There are five Level-1 attributes, under which there are between two and nine
Level-2 attribute classes for both forest and grassland (Table 3). A Level-3 was added when
more information was provided.



Remote Sens. 2021, 13, 3262 6 of 30

Table 3. Terrestrial ecosystem ecological attributes used for data extraction in this review (modified from Unnasch et al. [11]).

Level 1 Level 2

Biotic Interactions, Composition, Structure

Keystone species and/or functional groups
Vegetation stratification and structure within patches

Rare/sensitive species or species groups
Infestation and mass grazing 1

Component communities and seral stages
Spatial arrangement of key species and communities

Hydrology

Channel morphology and sediments
Plant litter and mineral inputs
Precipitation (rain, snow, fog)

Surface water-groundwater exchange
Water temperature and pH

Soils Chemistry and Structure

Soil erosion and deposition
Soil structure and drainage

Soil chemistry
Soil moisture

Soil temperature and pH

Disturbance

Fire area/intensity regime
Precipitation and flooding extremes

Air temperature extremes and drought
Human disturbance 2

Economy

Social response

Fragmentation
Connectivity with adjacent systems (terrestrial, aquatic)

Connectivity among similar and different patch types within target system
Linear development density

1 Includes insect infestation and browsing activity, 2 Includes domestic grazing.

Although Unnasch’s study did not include specific indicators, it included charac-
teristics that ecological indicators should have (Table A1). Based on these, we collected
measurable indicators from the literature examined. The specific measurements for each
of the indicators are the field measurements or proxy values, which might also have a
Level 2 and 3, depending on the amount of detail provided. Moving further, we identified
the ecological stressors and management concerns from every study. Unnasch et al. [11]
identify direct ecosystem threats based on the International Union for Conservation of
Nature (IUCN) and the Conservation Measures Partnership (CMP), and separate them
into 11 general categories. After consultation with the Ministry of Parks, Culture and
Sports (Saskatchewan, Canada), these were merged into broader ones (Table 4). The eco-
logical stressors had three levels; Level 1 was more general, and Level 2 and 3 included
several sub-stressors.
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Table 4. Ecosystem stressor classification system in this review (modified from Unnasch et al. [11]).

Level 1 Stressor Level 2 Stressor

Developments

Residential and Commercial Development
Energy Production and Mining

Biological Resource Use
Human Intrusions and Disturbance

Transportation and Service Corridors

Disturbance
Overgrazing

Natural System Modification 1

Climate Change and Severe Weather

Invasive and Other Problematic Species and Genes /
1 Includes insect infestation, disease, and natural wildfires.

The summary measures used for the collected metadata and data attributes mainly
included counts and percentages. We also used a world map for the spatial distribution of
the studies that were reviewed and used collapsible tree diagrams to show the variety in
ecological attributes, indicators, measures, and stressors for each ecosystem and for both.
Duplicate entries were removed every time before the calculation of counts or percentages
for every metadata and data attribute. For “GIS data”, we provide a summative table that
includes common broader themes, and we describe the three main “Other data” categories.
We used R for most analysis and last analysis was conducted manually.

Lastly, to assess the feasibility of integrating RS data in EHA for future regional and
local studies, we developed tables to match each most important ecological indicator of
each ecological attribute with a RS or GIS measure. We selected recent research studies
(past 5–10 years.) from our established literature list. We matched the indicators with
the most prominent stressors of each ecosystem, which were selected based on the top-
down ranking of repeated occurrences. These were refined after consulting with the
Saskatchewan Ministry of Parks, Culture and Sports (Canada). During the indicator
selection process, a sensitivity assessment must be completed [37,38]. Once we identified
the list of ecological indicators, we summarized how RS techniques can estimate these for
the forest and grassland ecosystem (not all indicators can be estimated from RS).

2.3. Methodological Approach

The flow diagram of the final study selection is depicted in Figure 2. We found
176 potentially suitable studies. We reached 192 potential studies together with study
reference searches (see “Potential_Studies.csv” openly available on Figshare https://doi.
org/10.6084/m9.figshare.14850525, accessed on 14 August 2021). After accessing the full
text of each study, we assessed them toward eligibility and excluded 29 studies that did
either not contain the attributes of interest, fell outside of the predefined terrestrial biomes,
or where not retrievable. Overall, 148 studies had extractable data (ecological attributes,
indicators, measures, stressors), whereas 15 remaining studies included valuable theoretical
information on the topic. The full list of studies together with the metadata and extracted
data variables are openly available on Fighare https://doi.org/10.6084/m9.figshare.1485
0525 (accessed on 14 August 2021).

https://doi.org/10.6084/m9.figshare.14850525
https://doi.org/10.6084/m9.figshare.14850525
https://doi.org/10.6084/m9.figshare.14850525
https://doi.org/10.6084/m9.figshare.14850525
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PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources 
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Figure 2. Study selection flow diagram (re-use from Page et al. [39] with CC BY 4.0, found at http://prisma-statement.org/
PRISMAStatement/FlowDiagram, accessed on 15 June 2021).

3. Results and Discussion
3.1. Metadata Results

Our studies span from 1949 to 2021 (Figure 3a), and have an increasing trend, with
most belonging to 2018 (12 studies) and 2016 (11 studies). Most (71 studies) refer to direct
applications of EHA, followed by theoretical articles (33 studies) and reviews (31 studies)
that outline the specific methodology for completion of such (Figure 3b). There is an
increase in studies from the year 2000 and after, with the addition of field book guides
and indicator description studies and reports from 2002 and after (Figure S1). The large
number of studies published in 2002 are potentially related to a conference from the
Western Forestry Contractors’ Association (WFCA) that focused on “forest health and
the silvicultural industry” in January 2003, British Columbia, Canada. Most studies form
which we extracted data in 2002 were related to the forest ecosystem in Northern US and
Canada. Seventeen studies come from books, governmental or provincial reports, and
field books and field guides related to ecosystem health assessment. All others are journal
papers published in 75 different journals. The top three most frequent journals include:
(i) “Remote Sensing of Environment” (14 papers); (ii) “Remote Sensing” (10 papers), and (iii)
“Forest Ecology and Management” (6 papers). Local studies represent the highest proportion
(46.3%, with an increase after 2004, Figure S2), followed by regional studies (26.5%), while
transnational studies are rare (5.4%) (Figure 3c).

http://prisma-statement.org/PRISMAStatement/FlowDiagram
http://prisma-statement.org/PRISMAStatement/FlowDiagram


Remote Sens. 2021, 13, 3262 9 of 30

0

2

4

6

8

10

12
19

49

19
88

19
92

19
93

19
94

19
95

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

Year

C
ou

nt
Number of extracted publications by years(a)

0

10

20

30

40

50

60

70

T
he

or
et

ic
al

 a
rt

ic
le

In
di

ca
to

r 
de

sc
rip

tio
n

D
ire

ct
 a

pp
lic

at
io

n

R
ev

ie
w

R
ep

or
t

F
ie

ld
bo

ok
/G

ui
de

Publication Type

C
o

u
n

t

Number of publications by publication type(b)

0

20

40

60
Lo

ca
l

R
eg

io
na

l

T
ra

ns
na

tio
na

l

U
nd

ef
in

ed

Scale

C
o

u
n

t
Number of publications by study scale(c)

Figure 3. Number of extracted publications by (a) year, (b) type, and (c) study scale.

The world map shows the location of each study (Figure 4). Although we made an
effort to have broad spatial coverage, most studies fall in the North American Continent
(50.3%), followed by Asia (19.0%), while only 11.6% of studies were located in Europe.
There is an increase in studies from 2002 and after in North America, whereas slightly
more studies appear in Asia after 2008, and in Europe after 2011 (Figure S3). Most of the
terrestrial biomes studied are “Temperate grasslands, savannas, and shrublands” (33.5%)
(Figure 5), with growing number of studies from 1995 and after (Figure S4). The lowest
number of studies were in the “Montane Grasslands & Shrublands” (3.4%), and many
studies did not explicitly define their biome (22.2%). There was one study that worked
with multiple biomes.
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Figure 4. Geographical distribution of case study locations by continent.
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 Figure 5. Percentage of case studies by biome.

3.2. Extracted Data Results

The studies represented the forest and grassland ecosystem almost equally (36.3% and
37.7% respectively) (Figure 6b). Both forest and grassland studies show an increasing trend
through time, however, forest studies already had higher representation in 2002, whereas
the start of increasing grassland studies is only visible from 2004 and after (Figure S5).
Some studies did not separate between ecosystems and included various combinations
of the above, including shrubland (e.g., grassland and shrubland). Most indicators were
quantitative (86.7%) with an increasing trend throughout the years, whereas fewer (4%)
were qualitative (sporadic representation throughout the years) (Figure S6). The nature for
9.3% of indicators was not defined. The threshold determination method for the indicators
used in each study is not clearly defined in most cases (89.7%). For the studies that report
this information, historic range of variation prevails (4.1%) (Figure 6c). This method is
used from 2005 and onward, while the reference plant community is used in both older
(e.g., 1949) and newer studies (e.g., 2016). The use of expert opinion is more recent (starting
from 2014). Furthermore, it is not always clear how often the proposed indicators have
to be measured for an ecosystem health assessment. Some studies define a timespan,
while others are vague and use “flexible” or “periodical”. In many cases (92.8%), this
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information is not defined (Figure 6a). When defined, a 1-year repeat-cycle is the most
common approach (3.9% from 1997 to present).

 

2 

6

 

 
8 
 
 
  

Figure 6. Number of studies by (a) measurement frequency, (b) ecosystem, and (c) thresholding method.

3.2.1. Ecological/Management Stressor

We counted the Level 1 ecological stressors that existed in all studies (including both
ecosystem types). The main stressors are related to “Disturbance regimes” (18.7%), followed
by “Developments” (10.7%), while most studies (59.6%) did not define this (Figure 7a).
“Disturbance regimes” appear to be a stressor from early on (since 1949) whereas “De-
velopments” and “Pollution” occur from 1999 and after, followed by “Invasive & Other
Problematic Species & Genes” (from 2004) and “Agriculture & Aquaculture” (since 2015)
(Figure S7). For the forest and grassland ecosystem studies, these two main stressors remain
the same, with “Disturbance regimes” taking up 19.1% and 19.2%, and “Developments”
12.2% and 9.2% respectively. However, “Pollution” is double more important than the
remaining two stressors for the forest ecosystem (Figure S8a), and “Invasive & Other Prob-
lematic Species & Genes” is more than double more important than the other two remaining
stressors for the grassland ecosystem (Figure S8b). The main Level 2 stressors related to
“Disturbance” are “Climate change” (14.3%), followed by “Grazing” (13.5%) and “Fire
regime” (7.5%). However, “Climate change” and “Fire regime” only appear in studies after
the year 2000, whereas “Grazing” is considered a stressor in earlier studies (i.e., 1949, 1997)
(Figure S9). Furthermore, “Insect infestation” and “Invasive species and noxious weeds”
have similar importance (6.8%), however the last category only appears in studies after
2005 (Figure 7b, Figure S9). For the forest ecosystem, “Climate change” is also the most
important Level 2 stressor (15.6%), while the second most important is “Insect infestation”
(9.8%) (Figure S10a). On the other hand, for the grassland ecosystem, “Grazing” is the
dominant stressor (21.8%) followed by “Climate change” (15.4%) (Figure S10b).
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Figure 7. Counts of (a) Level 1 ecological stressors for all examined studies, and (b) Level 2 ecological stressors for all
studies where Level 1 stressors are defined in grassland and forest ecosystem.

All Level 1 stressor sub-categories are visible in the tree-diagram of Figure 8a. Most
Level 2 categories are related to “Developments”, in which “Landscape changes” has most
Level 3 stressors. “Disturbance regimes” have a high number of Level 2 stressor categories,
in which “Climate change” has most Level 3 stressors for that category. By separating
ecological stressors according to the ecosystem of study, we found almost equal amount of
Level 2 stressors for the forest (23 in total) and grassland ecosystem (26 in total). For forests,
“Developments” is the Level 1 ecological stressor that had the greatest number of Level 2
stressors, with “Disturbance regimes” ranking second (Figure 8b). The same stressors are
the first and second most important for grasslands (Figure 8c). Unlike forests, in grasslands
there are more stressors related to “Invasive & Other Problematic Species and Genes”.
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Figure 8. Tree diagram of Level 1, 2, and 3 ecological stressors (a) for both forest and grassland ecosystem (b) for forest
ecosystem, and (c) for grassland ecosystem.

In the regional context of North America, human development, including urban
expansion, infrastructure, and land-use change, results in habitat fragmentation and losses
of forest and grassland ecosystems. According to the World Bank statistics [40] the total
population in North America has continuously increased over the past 70 years. Meanwhile,
the Gross Domestic Product, Gross National Income, and Life Expectance at Birth have also
increased. Beside the human factor, climate change has been a major ecological stressor.
For example, this is a key factor that intensifies the consequences of wildfires. In the
western United States, the number of large fires increased by nearly seven per year or
yearly 355 km2 burned area increment during 1984–2011 [41]. In Canada, annual burned
area significantly increased. However, fire characteristics (e.g., length of fire season, Forest
Fire Weather Index) varied spatially because of the combined change in temperature and
precipitation [33]. Another climate-change-derived problem is severely and frequently
prolonged drought. Ecological studies were conducted locally in the U.S. forests [42]
and grasslands [43] to monitor numerous ecological indicators and examine the negative
impacts of drought to ecosystem health.

Sadly, climate change is a global concern that does not only occur in North America.
In Asia, a desertification index was one of the two nature pressures which were inputs to
the Pressure-State-Response model that assessed ecosystem health in an Inner Mongolia
grassland in China [19]. Injured rubber trees from annual hurricanes in southern China have
been assessed quantitatively with crown segmentation [44]. Results showed that these had
decreased their leaf area and crown volume. Meanwhile, grassland resilience is negatively
influenced from climate change, especially forage production. Noteworthy is the future
prediction of changing land-use and climate on ecosystem services of mountain grasslands
in Austria [45]. In addition to the stressors from human development, human activities also
facilitated plant invasion through international trade and travel [46]. Moreover, ecological
degradation (e.g., soil erosion and soil carbon sink alteration) is a consequence of unsuitable
grazing systems in the long term. This problem is also challenging in Asian grasslands [47].

Sharing agreements together with annual discussion among related stakeholders
(i.e., governments, local authorities, researchers, and ranchers) could guide toward better
grazing strategies that not only maximize grazing outputs but also maintain healthy grass-
lands. A Grassland Management Plan was developed for Saskatchewan Landing Provincial
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Park for 2020–2030 by the Saskatchewan Ministry of Parks, Culture and Sport [48]. This
is an example in which impacts of current grazing practices were analyzed before rec-
ommendations on grazing management strategy and optimum cattle carrying capacity
were made.

3.2.2. Ecological Attributes and Ecological Indicators

To get a better overview of the ecological attributes and ecological indicators, we
developed a tree diagram for all ecosystems and for each ecosystem separately (i.e., forest,
grassland). Due to the numerous ecological indicators, we only analyze ecological attributes
here. The Level 1 ecological attribute that has most Level 2 attributes for all ecosystems
is the one that corresponds to “Biotic Interactions, Composition, Structure”, in which the
Level 2 ecological attribute “Vegetation stratification & structure within patches” has the
largest variety of ecological indicators. This shows that there is a wide range of measures
for this specific attribute. The tree diagrams give an overview of the breath of attributes and
indicators for each ecosystem. However, they are difficult to read due to the large amount
of information and do not show the actual percentage that each attribute has over the
examined studies. This is shown in Figure 9. “Biotic Interactions, Composition, Structure”
has the highest number of Level 2 attributes and accounts for most concerns among the
forest examined attributes (65.3%) (Figure 9a). This is followed by “Disturbance” (16.3%).
There is a large gap between the highest-ranking Level 1 attribute and its followers.
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Figure 9. Percentages of Level 1 ecological attributes per (a) forest ecosystem and (b) grassland ecosystem for all exam-
ined studies.

“Biotic Interactions, Composition, Structure”, also has the highest number of Level 2
attributes and contributes the most in the grassland studies (53.3%, Figure 9b). This Level 1
ecological attribute is used in transnational studies [21,25], regional studies [46,49,50], and
local studies [51–53]. “Vegetation stratification & structure within patches” has the largest
group of ecological indicators, followed by “Keystone species and/or functional groups”.
The second most common Level 1 attribute for the grassland ecosystem is “Soil Chemistry
& Structure”, which contributes more than double compared to forests (20.7%, Figure 9b).
For the grassland system, the number of indicators for each attribute is lower, which shows
higher consistency among studies. The use of indicators related to the “Biotic Interactions,
Composition, Structure” attribute increases from 2001 and onward, even though it was
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used in the oldest study (in 1949) (Figure S11a). The following four ecological attributes
only start being used more frequently after 2013 (Figure S11b–e).

The three prevalent ecological attributes for both forest and grassland ecosystems
are: “Biotic Interactions, Composition, Structure”, “Soils Chemistry & Structure”, and
“Disturbance” (Figure 9). For the grassland ecosystem, “Soil Chemistry & Structure” con-
tributes more, whereas for forests, it is “Disturbance”. This agrees with current knowledge
since soil stability is an important attribute of the grassland ecosystem that prevents soil
exposure and erosion [54], maintains the potential productivity of rangelands, protects the
soil, and supports stable long-term biomass production [13]. Soil degradation also affects
nutrient cycling, seed germinations, seedling development, and many other ecological
processes that are crucial parts of a grassland [6]. The prevalence of the “Disturbance”
attribute in the forest ecosystem is mainly related to the larger number of indicators under
“Fire area/intensity regime” (64 in number), compared to the grassland ecosystem (22 in
number). It is known that fire disturbance is a management challenge due to soil degra-
dation, species and habitat loss, and many other factors; however, it is also an important
natural process for forest regeneration [55].

The contribution of each ecological attribute in the literature differs by ecosystem,
which suggests that different weights should be applied to each ecosystem when develop-
ing an overall health score [56,57]. This approach is more difficult to take when it comes to
ecosystem health indicators and measures. We extracted 856 different Level 1 indicators,
for which only “aboveground biomass”, “soil moisture” and “species richness” were used
ten times or more (17, 10, and 10 times respectively). Therefore, their selection should be
based on specific criteria (Table A1). Similarly, we extracted 493 different Level 1 indica-
tor measures, from which “aboveground biomass”, “bare ground cover”, “Net Primary
Productivity”, and “soil moisture” were used nine times or more (13 times, and the rest
9 respectively).

For each ecosystem, we found alignment between the first five most contributing
stressors and the main five ecological attributes detected from the literature. The order
of this alignment is also noteworthy. The “Fragmentation” attribute has the fourth and
fifth place for forest and grassland (Figure 9), while the related “Development” and “Agri-
cultural” Level 1 stressors have second and fourth place for both ecosystems (Figure 7a).
This is in line with the notion that ecosystem stressors and ecological attributes are con-
nected [25,58,59]. The development of a standardized system that connects stressors for
each ecosystem with specific indicators and measures would overcome the large inconsis-
tencies that are currently observed for these variables. Adoption of such approaches by
global monitoring initiatives, such as through the SDGs would be beneficial. Ecosystem
managers would then be able to follow a straightforward approach after identifying the
major stressors for their management area, and their documentation would aid in tracking
global progress. Priority should be given to indicators that are used by other regional or
national monitoring programs so that it is possible to combine data over multiple pro-
grams. The current review has tried to amalgamate such studies, which are representative
of the Canadian ecosystems, and provides the first step toward regional/national EHA
standardization. After selecting ecological indicators for each ecological attribute, one
could develop a composite ecosystem health index to assess overall status and trends and
engage with policy-makers and the public [32]. For larger scale studies that cover a whole
province or nation, an integrated index is in many cases the only solution to make the large
amount of data more digestible and interpretable by stakeholders.

3.2.3. Remote Sensing (RS) and GIS Attributes

More than half of our selected studies use RS to assess ecosystem health (53.1%).
Almost half of these use long-term multispectral data (48.8%), such as Landsat (18.1%) and
MODIS (12.6%) derived images (Figure 10a,b); hyperspectral sensors are also common
(16.5%), followed by UAV and aerial imagery (13.4%), whereas LiDAR (11.0%) and Radar
(10.2%) data are less commonly used (Figure 10a). In the 1990s only UAV and aerial



Remote Sens. 2021, 13, 3262 17 of 30

imagery together with Radar sensors were used for EHA studies (Figure S12d,e), while
multispectral, hyperspectral, and LiDAR data started being used from the years 2000, 2005,
and 2009 respectively (Figure S12a–c). Some studies did not explicitly define the exact
hyperspectral or aerial sensor they used. In regional studies, multispectral data are widely
used, meanwhile hyperspectral data, aerial photos, and LiDAR are more frequently used in
local studies. When looking at each ecosystem separately, LiDAR data is the second most
frequently used RS type for forests (17.35) and hyperspectral data for grasslands (22.2%)
after multispectral data (45.3% and 52.8% respectively) (Table A2). This is also reflected in
the top ten RS sensors used in each ecosystem, with Landsat and MODIS being the most
frequently used for both ecosystems. However, these only appear from 2001 and after
(Figure S13a,b).
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Figure 10. Examined studies by (a) remote sensor (RS) type, (b) top ten RS sensors, (c) spatial resolution, and (d) top 10 veg-
etation indices (VIs) used to assess indicators of ecosystem health (studies that did not use RS sensors are excluded here).

Most studies (22 studies)) used a 30 m spatial resolution, which is connected to the
long-term availability of the Landsat sensor (Figure 10c). The second and third most used
spatial resolutions are 250 m (9 studies) and 1 km (7 studies), which are connected to the
MODIS sensor. Lastly, the 10 m resolution, connected to Sentinel-2, has equal representation
as the 1 km category (7 studies). This is likely to increase in the following years, since the
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Sentinel-2 sensor provides one of the highest spatial resolution products that are freely
available for use from 2015 and onwards (which coincides with the Sentinel studies that
span from 2016 and after, Figure S13c). The second most important resolution for forest
ecosystem studies, after 30 m is 1000 m (17.4%), whereas for grasslands it is 250 m (12%)
(Table A2). For both ecosystems, 10 m resolution is the third most frequent; however, it
is more than two times more common in the grassland ecosystem compared to the forest
ecosystem (10% vs. 3.6%). Overall, the four most common resolutions used all occurrences
in studies that take place after the year 2000.

Vegetation indices (VIs), known as the second indicators of EHA [54] can be promising
indices that apply the advancement of long-term and consistent data series for EHA. From
the studies examined, only 17.7% of ecosystem health indicators were assessed with a
VI. In these studies, there are 70 different remote sensing indices used. This shows a
wide variety of indices, some of which might be more specific to certain indicators (e.g.,
burned area related BR, NBR). However, most indices are used only once. We therefore
grouped the modified and original versions of VIs together (e.g., GNDVI and NDVI,
GSAVI and SAVI) and present the ten most frequently used. The most common RS index
is NDVI (Normalized Difference Vegetation Index) (31.0%), which outnumbers by far
other RS indices, such as Tasseled Cap, NBR, and SAVI (each 6.9%), and the Enhanced
Vegetation Index (EVI) (5.2%) (Figure 10d). These five indices are used from the year 2000
and after, with NDVI showing an increasing trend, while the other four indices are used
sporadically throughout the years (Figure S14). For the forest ecosystem we see a slightly
higher representation of the NBR and Tasseled Cap index (12.1% vs. 6.9% and 9.1 vs.
6.9% respectively), whereas the SAVI and EVI indices are more common for the grassland
ecosystem (6.9% vs. 4% and 5.2% vs. 4%) (Table A2). We found a significant number of
newly developed indices, either as modified versions of traditional VIs or recently invented
ones to measure the specific ecological indicators. However, application of locally specified
VIs to other areas is not practiced.

Almost half of the studies used some form of RS or GIS data for specific ecosystem
health indicators. The largest part of these studies used long-term multispectral data
at 30 m resolution. Only 13.4% of the extracted indicators were assessed with VIs, the
majority of which was the NDVI index. The same patterns were found when looking
at each ecosystem separately. However, the higher use of the NBR index in forest stud-
ies can be explained by the higher number of studies that look at “Fire area/intensity
regime”, whereas the larger representation of the SAVI index in grassland studies could
be attributed to its suitability to low density vegetation with soil exposure [60]. This
lower vegetation density could be caused by either arid climate [61] or higher disturbance.
Overall prevalence of the NDVI index is expected, since it is commonly used in a variety
of study scales (i.e., transnational, regional, local) to represent green vegetation amount,
net primary productivity in grasslands [51,62] and is also known as an indicator of forest
degradation [50]. Based on a combination of MODIS NDVI time series and agricultural
statistics, a MODIS-based mowing frequency index was introduced to examine the spatial
patterns of grassland management intensity across 27 European countries [63]. MODIS
NDVI was used to quantify the impacts of disease outbreak in Rio Grande National Forest
and Southern New England, United States [64]. Moreover, other researchers chose the same
remote sensing index to evaluate grassland ecosystem health in China [47] or to measure
gross primary productivity, an ecological indicator of the Southern Alberta prairie [65].
Since the coarse spatial resolution of the MODIS sensor is not prefered in local studies,
aerial photo/UAV NDVI can be used [66]. NDVI remains promising for future research as
lower levels of this index could indicate unhealthy vegetation, lower biomass, or increases
in bare ground.

Apart from using remote sensors and indices, several types of GIS data are also used.
Most of these can be derived from RS, however, since these are used directly without the
use of RS, we classified them in a separate category (Table 5). GIS data related to roads
and fences have been used to assess the “Fragmentation” attribute [67,68]. Other GIS
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layers, such as those related to grazing units or GPS collars have been used for “Infestation
and mass grazing” [69,70], while location occurrences of species and land use can be
used to assess “Keystone species and/or functional types” [71]. Land cover and land use
layers have been used under the “Disturbance” attribute, facilitating, for instance, change
detection [18].

Table 5. Common GIS datasets used in ecosystem health studies.

GIS Datasets Example Studies

Topographic information in local/national/global scales: i.e.,
Digital Elevation Model, contour map, slope. These are remote

sensing derived (e.g., from RADAR (Radio Detection and
Ranging) or multispectral sensors)

Hammi et al. [72]; Ding et al. [18]; Anderson and Croft [73];
Lyu et al. [53]; Pasolli et al. [74]; Huang et al. [75]; Doan [69];

Powers et al. [76]

Land use Land cover (LULC) layers Ding et al. [18]; Wei and Wang [77]; Anderson and Croft [73];

National Forest/Wetland Inventories Powers et al. [76];

Landscape features (e.g., rivers, roads, barriers, fences,
boundaries, pipelines, ecoregions) Roch and Jaeger [78]; Doan [69]; Heilman et al. [67]

There are three “Other data” groups that have been used in ecosystem health stud-
ies. The most common group is meteorological data with regional or local temperature,
precipitation, humidity, and radiation on different time bases (e.g., monthly, daily). A
number of socioeconomic indicators are used to assess their effects on ecosystem health.
Examples include, gross domestic product (GDP), population, level of urbanization, and
food production. When agriculture and aquaculture is one of stressors to ecosystem health,
researchers are concerned about the increase of agricultural and aquacultural activities and
gather statistics from local administrations in this field (e.g., agricultural yield, irrigation
areas, fertilizer amount).

3.3. Additional Analysis Results

Tables 6 and A3–A5 summarize how specific satellite sensors and their variables can
be used to monitor ecological indicators under the “Biotic Interactions, Composition, and
Structure”, “Soil Chemistry and Structure”, “Disturbance”, “Fragmentation”, and “Hydrol-
ogy” attributes. RS makes it possible to estimate biophysical variables as well as energy
fluxes and nutrient cycling [79]. In transnational and regional scales, the medium spatial
resolution and long time series of Landsat imagery are beneficial for ecosystem health
studies in grassland and forest. Finer spatial resolution satellite sensors (e.g., Sentinel-2)
are more frequently used if there is no need for time series data. Costly satellite sensors
are recommended for regional and local studies. The RS approach lessens the burden of
fieldwork, although some is needed for training and validation. Consequently, the use
of RS becomes a faster and cost-effective alternative, its methods are strictly quantitative
and prevent potential biases from qualitative assessments and its overall approach is less
destructive to the ecosystem [54].
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Table 6. Satellite sensors and derived indices to estimate ecological indicators of the “Biotic Interactions, Composition, and Structure” attribute in grassland and forest ecosystem.

Satellite Sensors Independent Variable Derived Ecosystem Health
Indicator Ecosystem Used Field Measurements Modeling Method Example Studies

Unmanned Aerial Vehicle EGI, Canopy height metrics

Aboveground biomass

Grassland Average canopy height, dried
aboveground biomass

Correlation analysis between
canopy height model and field

aboveground biomass
Zhang et al. [79]

LiDAR Forest
Diameter at breast height, tree height,

canopy density, height percentiles, mean
and maximum height

Gradient boost machine Bombrun et al. [80]

Hyperion Landsat 8 OLI Radar NDVI, RVI, DVI, MSAVI, TVI Vegetation composition:
species, functional components

Grassland
Spectral curves of species, height, crown

width, density, coverage, and dried
aboveground biomass

Multiple endmember spectral
mixture analysis Lyu et al. [53]

MODIS
Radar Forest Summary of all species maps Powers et al. [76]

Landsat
Hyperspectral data

NDVI, NBR, DFI,
NDSVI, NDWI, PVI

Vegetation cover

Grassland
Ground percentage cover of component

groups, dried above ground
biomass, spectral reflectance

Linear spectral mixture analysis Xu et al. [81]

Landsat NDVI, NDWI Grassland Ground-bare sand ratio, vegetation
coverage

Spectral mixture analysis and
decision tree method Li et al. [82]

Landsat
LiDAR

TCB, TCG, TCW, TCA, TCD,
EVI, NBR Forest Canopy cover, stand height, basal area,

stem volume, aboveground biomass Random forest algorithm Matasci et al. [83]

Unmanned Aerial Vehicle EGI, Canopy height metrics

Canopy height

Grassland Average canopy height, dried
aboveground biomass Canopy height model Zhang et al. [79]

Aerial photographs
SPOT Forest

Species and morphology records, tree’s
height, net foliage volume, number of

regenerations and stumps
Analysis of Variance Hammi et al. [72]

Landsat
MODIS NDVI, NMDI

Invasive species cover
Grassland Abundance of invasive plant species, top

soil samples
Random forest

algorithm Das et al. [84]

Hyperspectral data Forest, Grassland He et al. [46]

Aerial
photographs TanDEM-X Tree age and size Forest Species records, tree’s height, stem

diameter at breast height Non-linear regression algorithm Wallerman et al. [85]

Sentinel-1 Sentinel-2 Landsat NDVI, EVI, LSWI
Leaf Area Index

Grassland Leaf area index, aboveground biomass Multiple linear regression, support
vector machine, random forest Wang et al. [86]

Landsat NDVI, EVI, EVI2, TCB, TCG,
TCW Forest Leaf area index, canopy openness Contextual Mann-Kendall

significance test Czerwinski et al. [87]

EGI: Excess Green Index, NBR: Normalized Burn Ratio, NDVI: Normalized Difference Vegetation Index, RVI: Ratio Vegetation Index, DVI: Difference Vegetation Index, MSAVI: Modified Soil-adjusted Vegetation
Index, TVI: Transformed Vegetation Index, DFI: Dead Fuel Index, NDSVI: Normalized Difference Senescent Vegetation Index, NDWI: Normalized Difference Water Index, PVI: Perpendicular Vegetation Index,
TCB: Tasseled Cap brightness, TCG: Tasseled Cap greenness, TCW: Tasseled Cap wetness, TCA: Tasseled Cap angle, TCD: Tasseled Cap distance, NMDI: Normalized Multi-band Drought Index, LSWI: Land
Surface Water Index, EVI: Enhanced Vegetation Index, EVI2: Enhanced Vegetation Index 2.
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The benefits of RS make its use for EHA an attractive method for key stakeholders,
such as land managers and policymakers. With this review, we demonstrated the use of RS
in EHA with the hope to inspire and encourage further research into this direction. Potential
limitations are the spatial mismatch that can exist between the field-based plot data and
the scale of the image pixel [54]. Nevertheless, not all indicators can be measured with
RS (even less with freely available data), since they are limited by their resolution (spatial,
spectral, temporal). This is especially true for fine-scale assessments (e.g., species-specific
cover, soil chemistry, thickness of litter layer). These could be assessed from organized
field-visits or crowdsourcing tools. Unfortunately, there is no detailed field book or guide
that discusses which RS approaches should be used for which ecosystem indicators. This
makes the implementation and consistency in the use of RS tools among regions a more
complicated task. An initial attempt was made in this section. Future research through
partnerships should be conducted toward these goals and stakeholders’ opinions should be
used toward the determination of appropriate ecosystem health indicators and measures.
This would ensure their successful monitoring, and would spur ongoing management
adjustments. The role of stakeholders is key toward determining the ecosystem stressors
based upon which each EHA is built.

3.4. Limitations

Although our systematic review was conducted with a broad variety of topic-related
keywords in an extensive database, some relevant literature might not have been acquired.
For instance, studies on specific forest or grassland types for ecosystem health assessment
without the term “grassland” or “forest” could have been missed. Moreover, a longer
timespan for searches (>4 months) might have resulted in more studies. Non-native English
publications were not used, potentially leading to uncertainty in the representativeness
of our final literature library, and to a bias in geographic location of studies (e.g., fewer
studies in northern and southeast Asia) (Figure 4). Future studies could include more
detailed keyword searches and studies in other languages. By implementing a common
classification system for the ecological attributes (Table 3) and stressors (Table 4), there
could be uncertainty in the classification. There might be variables from studies that do not
entirely correspond to one of the established classes or each reviewer might interpret and
classify a variable differently, potentially creating confusion. Future studies should try to
quantify such uncertainties and biases to get a more reliable result on the contributions of
the variables extracted in this review.

4. Conclusions

This systematic review shows that every ecosystem is characterized by different eco-
logical attributes and a broad variety of indicators and measures, exposing inconsistencies
in current EHA approaches. Nevertheless, each ecosystem stressor is well aligned with its
main ecological attributes. The major stressor for the forest ecosystem is “climate change”,
followed by “insect infestation”, while for grasslands it is “grazing”, followed by “climate
change”. “Biotic interactions, composition, and structure” is the most important ecological
attribute for both ecosystems. “Fire disturbance” is the second most important for forests,
while for grasslands it is “Soil chemistry and structure”. Moreover, almost half of the exam-
ined studies used RS or GIS data for the estimation of indicators, a fact that encourages their
future use in a more systematic way. Less than a fifth of studies used vegetation indices,
from which NDVI was the most common. The development of a standardized EHA system
among ecosystem types and protocols for use of earth observation and GIS data in EHA
are major future suggestions. Nevertheless, not all indicators can be accurately estimated
from RS and GIS data due to resolution constraints, and fieldwork remains important for
validation purposes.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/rs13163262/s1. Figure S1: Extracted studies by year and publication type, (a) direct application,
(b) fieldbook/guide, (c) indicator description, (d) report, (e) review, (f) theoretical article. Figure S2:
Extracted studies by year and study scale, (a) local, (b) regional, (c) transnational. Figure S3: Extracted
studies by year and continent, (a) Asia, (b) Europe, (c) North America. Figure S4: Extracted studies by
year and top four biome types, (a) boreal forest/taiga, (b) temperate coniferous forests, (c) temperate
grasslands, savannas, shrublands, (d) temperate broadleaf and mixed forests. Figure S5: Extracted
studies by year and ecosystem, (a) forest, (b) grassland, (c) forest and grassland, (d) grassland
and shrubland, (e) forest and grassland and shrubland. Figure S6: Extracted studies by year and
indicator extraction method, (a) quantitative, (b) qualitative. Figure S7: Extracted studies by year
and top five Level 1 ecological stressors, (a) disturbance regimes, (b) developments, (c) invasive
and other problematic species and genes, (d) pollution, (e) agriculture and aquaculture. Figure S8:
Number of extracted studies by Level 1 ecological stressors per ecosystem, (a) forest, (b) grassland.
Figure S9: Extracted studies by year and top five Level 2 ecological stressors, (a) climate change, (b)
grazing, (c) fire regime, (d) insect infestation, (e) invasive species and noxious weeds. Figure S10:
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Appendix A

Table A1. Criteria for ecosystem health indicator selection (in bold are the criteria that are covered by using remote
sensing data).

Criterion Details Source

Assesses integrative ecosystem health Vigor, organization, resilience [65]

Describes the status of an ecosystem Decline of nutrient pools, primary
productivity, species diversity [25,65,66]

Reflects function and structure of an ecosystem
Species composition, distribution, abundance,

tolerance, adaptability, efficiency across
different scales

[11,65–68]

Represents sustainability of human-coupled
ecosystems

Biophysical and social-economic ecosystem
services [11,25,65,68]

Representative of the ecosystem and
interpretable

Sensitive to stresses, strong scientific basis,
quantifiable, expected responses to stress,
corresponds to broad geographic extends,

historical record available

[11,12,16,25,26,65–68]

Related to management goals

Easy to apply, cost-effective, integrative
(summarizing many indicators),

nondestructive to the ecosystem, potential for
measurement continuity, not redundant,

timely, retrospective, used by other monitoring
programs, comprehensible, applicable to

policy and management goals

[16,25,26,66–68]

Table A2. Percentage contributions of examined studies per ecosystem type by remote sensing (RS) type, top ten RS sensors,
top five resolutions, and top five vegetation indices (VIs).

Ecosystem Type Forest Grassland

RS type

Multispectral 45.3% Multispectral 52.8%
LiDAR 17.3% Hyperspectral 22.2%

Hyperspectral 13.3% UAV/Aerial 12.5%
UAV/Aerial 13.3% Radar 6.9%

Radar 10.7% LiDAR 5.6%

Top 10 RS sensors

Landsat 20.9% Landsat 23.1%
MODIS 10.1% MODIS 17.9%
LiDAR 10.1% Hyperspectral 12.6%
Aerial 6.2% Aerial 5.3%

AVHRR 5.4% AVHRR 5.3%
SPOT 4.7% Sentinel 5.3%
SAR 3.9% AVIRIS 4.2%

AVIRIS 3.1% LiDAR 4.2%
Hyperspectral 3.1% Digital Multispectral Imagery 2.1%

EnMAP 2.30% Hyperion 2.1%

Top 5 resolutions (m)

30 21.7% 30 30.0%
1000 17.4% 250 12.0%

10 3.6% 10 10.0%
20 3.6% 1000 3.6%
1 3.6% 25 3.6%

Top 10 VIs

NDVI 28.3% NDVI 31.0%
NBR 12.1% NBR 6.9%

Tasseled Cap 9.1% SAVI 6.9%
EVI 4.0% Tasseled Cap 6.9%

SAVI 4.0% EVI 5.2%
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Table A3. Satellite sensors and derived indices to estimate ecological indicators of the “Soil Chemistry and Structure” attribute in grassland and forest ecosystems.

Satellite Sensors Independent Variable Derived Ecosystem
Health Indicator Ecosystem Used Field Measurements Modeling Method Example Study

TerraSAR-X
COSMO-SkyMed

SPOT
Landsat

NDVI, LAI, FAPAR,
FCOVER Soil moisture content

Grassland

Soil moisture, soil
roughness, LAI, FAPAR,

FCOVER, biomass,
vegetation water content,

vegetation height,

Multi-layer perceptron
neutral networks El Hajj et al. [88]

LiDAR DTW Forest
Soil bulk density and

chemicals, gravimetric
water content, soil pH

Linear mixed-effect
model Sewell et al. [89]

AirSAR AVIRIS Landsat LTCG, Radar Cvv, Lhv,
NDVI, EVI, PRI Bare ground cover Grassland Canopy percentages Break points and linear

interpolation Huang et al. [75]

RADAR
ERS-1
JERS

Landsat

Forest
Training sites’ GPS

location for vegetation
classification

Maximum likelihood
classification Ranson et al. [90]

ASTER SAVI Variation of erosion Grassland
Vegetation height,

vegetation cover, surface
roughness length

Supervised
maximum-likelihood

classification
Reiche et al. [91]

NDVI: Normalized Difference Vegetation Index, LAI: Leaf Area Index, FAPAR: Fraction of Absorbed Photosynthetically Active Radiation, FCOVER: Fraction Vegetation Cover, DTW: Depth-to-water Index,
LTCG: Landsat Tasseled Cap Greenness, PRI: Photochemical Reflectance Index, SAVI: Soil Adjusted Vegetation Index.
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Table A4. Satellite sensors and derived indices to estimate ecological indicators of the “Disturbance” attribute in grassland and forest ecosystems.

Satellite Sensors Independent Variable Derived Ecosystem
Health Indicator Ecosystem Used Field Measurements Modeling Method Example Study

Sentinel-2

SR, NDVI, EVI, RCI,
NDVIn, PVIn, GSAVIn,
MSAVIn, NDVIngreen,
EVIn, EVI2n, MTVI1n,

NDII7n, NDVIre2n,
NDVIre3n

Grazing capacity and
stocking rate Grassland Dried aboveground

biomass

Resource Selection
Functions and Multiple

linear regression
Doan [69]

Sentinel-2
Landsat
RADAR

NBR, NDVI, LST
Seasonal timing of

disturbance

Grassland
Species identification,

species abundance, soil
samples

Vegetation species
response capacity model Adagbasa et al. [92]

Landsat
MODIS NBR Forest Decision tree analysis Loboda et al. [93]

Landsat NDVI, NPV, MASD, FVC

Disturbance intensity

Grassland Aboveground biomass Artificial neural
networks and ANOVA Li et al. [82]

MODIS
Landsat NBR, dNBR, RdNBR Forest

Distributional statistics,
Linear and Non-linear
regression algorithms

Heward et al. [94]

Landsat
MODIS

Band 7/Band 5, NDVI,
NBR, dNBR, RdNBR,

Kauth Thomas
brightness—greenness—

wetness

Disturbance extent Forest Residual organic layer
depth Random forest algorithm Barrett et al. [95]

HyMAP
Landsat

MSI, CRI1, GNDVI,
ARI2, NDVI, NWI2,

NSMI, GOSAVI, NPCI,
TCARI, DI1

Defoliation and tree
mortality rate Forest

Classification algorithms
Naïve Bayes, Support

Vector Machine,
Decision tree analysis

Lausch et al. [21]

SR: Simple Ratio, NDVI: Normalized Difference Vegetation Index, EVI: Enhanced Vegetation Index, RCI: Ratio Cover Index, NDVIn: Narrow Normalized Difference Vegetation Index, PVIn: Narrow Perpendicular
Vegetation Index, GSAVIn: Narrow Green Normalized Difference Vegetation Index, MSAVIn: Narrow Modified Soil-adjusted Vegetation Index, NDVIngreen: Narrow Green Normalized Difference Vegetation
Index, EVIn: Narrow Enhanced Vegetation Index, EVI2n: Narrow Enhanced Vegetation Index 2, MTVI1n: Narrow Modified Triangular Vegetation Index 1, NDII7n: Narrow Normalized Difference Infrared
Index 7, NDVIre2n: Narrow Normalized Difference Vegetation Index red-edge 2, NDVIre3n: Narrow Normalized Difference Vegetation Index red-edge 3, NBR: Normalized Burn Ratio, LST: Land Surface
Temperature, NPV: Non-photosynthetic Vegetation, MASD: Mean Absolute Spectral Dynamic, FVC: Fractional Vegetation Cover, dNBR: Difference NBR, RdNBR: Relativized dNBR, MSI: Moisture Stress Index,
CRI1: Carotenoid Reflectance Index 1, GNDVI: Green NDVI, ARI2: Anthocyanin Reflectance Index 2, NWI2: Normalized Water Index 2, NSMI: Normalized Difference Soil Moisture Index, GOSAVI: Green
Optimized SAVI, NPCI: Normalized Pigment Chlorophyll Ratio Index, TCARI: Transformed Chlorophyll Absorption Reflectance Index, DI1: Derivative Index.
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Table A5. Satellite sensors and derived indices to estimate ecological indicators of “Fragmentation” and “Hydrology” attributes in grassland and forest ecosystems.

Satellite Sensors Independent Variable Derived Ecosystem
Health Indicator Ecosystem Used Field Measurements Modeling Method Example Study

MODIS NDVI
Landscape diversity

index

Grassland Improved Costanza
model Suo et al. [96]

Digital Number values Forest
Shannon Index, Simpson
Index, Pielou evenness,

Renyl Indices

Open-Source Program
GRASS-GIS Rocchini et al. [46]

Landsat
Indian Remote Sensing

satellite

Number of patches

Forest Patch analysis Pattison et al. [68]

Mean patch size

Linear forest clearings
density

Edge density

Percent of land
occupied/unoccupied by

linear forest clearings
(LFCs)

AVHRR NDVI Winter snow coverage Grassland Least-squares method Wang & Qiao [86]

NDVI: Normalized Difference Vegetation Index.
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