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Abstract: LiDAR occupies a vital position in self-driving as the advanced detection technology
enables autonomous vehicles (AVs) to obtain much environmental information. Ground segmentation
for LiDAR point cloud is a crucial procedure to ensure AVs’ driving safety. However, some current
algorithms suffer from embarrassments such as unavailability on complex terrains, excessive time
and memory usage, and additional pre-training requirements. The Jump-Convolution-Process (JCP)
is proposed to solve these issues. JCP converts the segmentation problem of the 3D point cloud
into the smoothing problem of the 2D image and takes little time to improve the segmentation
effect significantly. First, the point cloud marked by an improved local feature extraction algorithm
is projected onto an RGB image. Then, the pixel value is initialized with the points’ label and
continuously updated according to image convolution. Finally, a jump operation is introduced in
the convolution process to perform calculations only on the low-confidence points filtered by the
credibility propagation algorithm, reducing the time cost. Experiments on three datasets show that
our approach has a better segmentation accuracy and terrain adaptability than those of the three
existing methods. Meanwhile, the average time for the proposed method to deal with one scan
data of 64-beam and 128-beam LiDAR is only 8.61 ms and 15.62 ms, which fully meets the AVs’
requirement for real-time performance.

Keywords: autonomous vehicles; LiDAR; ground segmentation; convolution; real-time

1. Introduction

LiDAR [1] is widely used in AVs due to its stability and accuracy compared with
the easily disturbed camera by light and weather. It is essential to process the raw point
cloud in the perception phase because what the planning system ultimately needs is an
accessible area and the obstacles’ location [2–4]. Ground segmentation is a material priority
work in conventional perception tasks, which is the basis for Clustering, Recognition,
and Tracking. Furthermore, the accuracy and the time delay of ground segmentation
directly determine the safe driving speed of AVs. Less processing time enables the system to
receive more LiDAR scan data, and higher accuracy can restore a more realistic surrounding
environment. The vehicle’s safety can be guaranteed by having both of them, which is a
necessary condition for AVs to be able to drive at high speed [5].

Considering the diversity of the outdoor driving environments and the technical
limitations of the mobile LiDAR, the primary difficulties faced by current researches on
the ground segmentation of 3D point clouds are as follows: (1) AVs’ encounters on rugged
terrain concerning pitch, roll, and suspension changes, resulting in abnormal features of
the point cloud. (2) The density distribution of the point cloud is not uniform, and points
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far away from the LiDAR sensor are sparse and poorly characterized. (3) More than
100,000 points need to be handled for every scan. It is arduous for the onboard computer
to achieve a balance with accuracy and speed.

At present, the ground segmentation of the LiDAR point cloud can be roughly divided
into the following methods [6]: the method based on elevation, the method based on the re-
lationship between adjacent points, the method based on road modeling, the method based
on LiDAR image, the method based on Markov, and the method based on deep learning.

Researchers at Stanford University first proposed an elevation map method [7], which
divided the points into ground and non-ground based on the relative height difference. This
algorithm allowed their AVs to win the 2005 DARPA Grand Challenge, but simple elevation
maps are unsuitable for complex scenes, so scholars have obtained better segmentation
effects by adding postprocessing or changing the grid structure. Zermas et al. [8] extracted
the road surface according to the initial seed ground points generated from a simple
elevation map and performed iterative clustering to improve the segmentation effect.
A multi-volume grid structure is introduced in [9] to increase the segmentation accuracy.
The main strength of this structure is that it is capable of coping with protruding and
hanging objects found in urban scenarios.

By strictly limiting the spatial distance and angle of the front and back points, the typ-
ical terrain can be segmented accurately and effectively [10–12]. Denoising and correcting
the 3D point cloud would help to improve the segmentation effect [13]. Cheng et al. [14]
analyzed the adjacent line segments’ characteristics, marking them as the ground segments
and obstacle segments based on the height, distance, and angle. In [15], the points on the
same horizontal line are also filtered to improve the segmentation effect on complex ter-
rains. However, the methods based on the relationship between adjacent points are poorly
applicable because they usually need to set different parameters for different terrains.

Road modeling is an essential branch in the ground segmentation of the 3D point
cloud. Although the angle information between the points could be used to simulated
the object boundary through the region growing algorithm [16,17], this is only suitable
for flat roads with apparent boundaries. Gaussian process regression (GPR) is widely
adopted in this field [18–20]. Using the covariance function to establish a one-dimensional
or two-dimensional Gaussian model could predict the road height accurately. Liu et al. [21]
integrated the GPR and robust locally weighted regression (RLWR) by dividing the point
cloud projected on the polar grid map into radial and circumferential filtering processes
to form a hybrid regression model, eliminating the outliers’ influence and predicting the
ground surface robustly. However, these methods require obtaining accurate pavement
seed points beforehand, which is a challenge for rugged roads.

Considering the fixed angle relationship between the LiDAR scanner rays, Bogoslavskyi
et al. [22,23] proposed to map the point cloud into a depth image and used the neighbor-
hood relationship to segment the depth image. This ingenious transformation gave later
researchers a new direction [24,25]. Because of the flexibility of the graph structure, af-
ter mapping points into pixels, using a rich image processing library can quickly and
accurately get a good segmentation effect. In [26], the flood-fill algorithm is applied to
optimize the depth image segmentation result. Moreover, the clustering operation [27] is
added after the first segmentation, which improves the effect significantly. Yang et al. [28]
developed and proposed a Two-Layer-Graph structure on this basis, which described the
point clouds hierarchically. They used a range graph to represent point clouds and a set
graph for point cloud sets, reducing processing time and memory consumption.

Several of the road detection methods based on Markov Random Field (MRF) [29–31]
have the potential for ground segmentation. They used gradient cues of road geometry to
construct MRF and implemented belief propagation algorithms to classify the surrounding
environment into different regions. Refs. [32,33] extended in this direction and proved
that this method could accurately segment the point cloud even in undulating roads
(such as downhill/uphill). Nevertheless, using belief propagation for reasoning about
MRF is computationally expensive, which limits the prospect of real-time performance.
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Huang et al. [34] initialized the MRF model by the coarse segmentation results obtained
from the local feature extraction rather than prior knowledge, dramatically reducing
modeling time. Then, the graph cut method is used to minimize the proposed model to
achieve fine segmentation.

With the advent of PointNet [35,36], many researchers have set their sights on apply-
ing deep learning to three-dimensional point clouds [37,38]. GndNet [39] divided the point
cloud into a small cell by separating the grid, then used PointNet and Pillar Feature Encod-
ing network to extract features and regress ground height for each cell. In Cylinder3D [40],
the cylinder partition and asymmetrical 3D convolution networks were designed to handle
the inherent difficulties in the outdoor LiDAR point cloud, namely, sparsity and varying
density, effectively and robustly. Although they have perfect segmentation effects on the
Semantickitti dataset [41], the lack of datasets, the poor interpretability of the network,
and the time-consuming conversion between 3D point cloud data and network input
data are all issues that are hard to solve at the present stage and limit the development
of convolutional neural networks. As a result, scholars still hold a wait-and-see attitude
toward applying convolutional neural networks to the point cloud [42].

In this paper, we distribute the ground segmentation into two stages. We extract the
local point cloud height characteristic and a ground characteristic to quickly get a rough
segmentation result in the first stage. Then, we apply a method based on image convolution
with low computational complexity to refine the segmentation result further in the second
stage. Our contributions are summarized as follows:

• The ground height characteristic is attached to the elevation map, which breaks
through its limitations in complex road scenes, and significantly improves the over-
segmentation compared with the usual elevation map method.

• An image smoothing method using Jump-Convolution-Process (JCP) is proposed to
optimize the segmentation effect. As a result, our method has a better segmentation
effect, less processing time, and more robust terrain adaptability than other methods.

Two experimental results in the urban road environment and wild road environment
are shown in Figure 1 (All drawings in this paper, the ground points are denoted as green,
the obstacle points are denoted as red).

Figure 1. Illustration of the 3D point cloud segmentation applying JCP on the urban road (left) and
the field road (right). Ground points are green; Obstacle points are red.

The remainder of this paper is organized as follows. Section 2 describes the proposed
method specifically. Then, Section 3 shows and analyzes the experiment results, Section 4
carries out relevant discussions, and Section 5 summarizes the article and prospects for
future work.

2. Methods

The proposed method is developed on the coarse-to-fine segmentation structure [8,27,28,34],
accessing the entire point cloud as a single input and assigning each point to a category. The over-
all framework is shown in Figure 2. To facilitate data indexing, we sort the LiDAR data in
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advance according to the angular relationships, detailed in Section 2.1. First, the raw point
cloud is pre-classified as ground points or obstacle points by an improved feature extraction
algorithm—the ring-shaped elevation conjunction map (RECM), which detailed in Section 2.2.
Then, the point cloud is mapped to an RGB image, and the pixel value is initialized depending
on the result of the coarse segmentation to generate the “Ground-Obstacle Image”. Finally,
the jump convolution process (JCP) is executed to re-classify the “low-confidence points”—the
intersections between the green and red channels after credibility propagation, and optimize the
segmentation result, detailed in Section 2.3.

Credibility 

proagation

channelgreen

channelblue

channelred

UpdateSplite

Ground-Obstacle Image

Merge...

Ground-Obstacle Image

JCP

Raw point cloud

Pre-classification 

result

Re-classification

 result

Reverse 

mapping

JCP

Coarse segmentation Fine segmentation

RECM

Low-confidence points

Mapping

Figure 2. The framework of the proposed method. RECM and JCP are for ring-shaped elevation conjunction map and jump
convolution process, respectively.

2.1. Point Cloud Sorting

To improve the algorithms’ performance, we order the raw point cloud by employ-
ing the angular relationships between the laser beams. A LiDAR system contains three
spherical coordinates: rotation angle β (Figure 3a), vertical angle γ (Figure 4a), and mea-
surement distance d. Thus, we define a single LiDAR point as p(t,c), and its data structure
{x(t,c), y(t,c), z(t,c), label(t,c)} is shown in Figure 3c. Among them, (t, c) represents the serial
number of this point; x, y, and z represent the three-dimensional Cartesian coordinates;
and label represents its type. The conversion relationship between the spherical coordinates
and the Cartesian coordinate system is formulated as

x = d · cos γ · sin β
y = d · cos γ · cos β
z = d · sin γ

(1)

the γ of the same laser beam is constant, while the β will be increased with a fixed horizontal
angular resolution α (usually 0.18◦) over time. Therefore, the point cloud can be sorted by t = f (γ), 0 ≤ t < T

c =
β

α
, 0 ≤ c < C

(2)

where f (∗) denotes the corresponding connection between the γ and the laser beam
sequence, and t and T are the serial number of the laser beam (arrange from bottom to up)
and total numbers of the laser beams, respectively. c is the serial number corresponding to
the rotation angle (clockwise direction), and C is the total number of points obtained by
one laser beam scans 360◦.

C =
360◦

α
(3)
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Figure 3. (a) The schematic diagram of the ring-shaped elevation map. The black circles represent
the LiDAR scan’s ideal shape, and different colored blocks represent different cells. (b) The three-
dimensional display of the adjacent cells and the corresponding stored points. Rm is the radius of
the grid(m,n). (c) The data form of a single point. t, c are the serial number; x, y, z are the Cartesian
coordinates; and label is the category.
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Figure 4. The segmentation results of different ∆R values and the segmentation principle diagram of the ring-shaped
elevation conjunction map (RECM). (a) A large value of ∆R causes under-segmentation. The distant road surface is
considered as an obstacle. (b) A small value of ∆R causes over-segmentation. The car’s roof is regarded as the ground.
(c) Points on the slope are corrected to the ground by the RECM. (d) Points on the roof are corrected to the obstacles by
the RECM.

2.2. Ring-Shaped Elevation Conjunction Map

The elevation map has demonstrated its reliable performance in many methods [9,20].
As the laser beam scan roughly circle-shaped, it is more practical to establish a ring-shaped
elevation map (REM) [19] to meet our requirements. We set up an elevation map E of
M× N size on the xoy plane, cutting the plane into M− 1 rings with LiDAR as the center
of the circles; every ring is equally divided into N parts. Figure 3a shows that each cell
grid(m,n) is expressed by a colored block, representing the n− th part of the m− th ring.
Provided the height is ignored, all points will be assigned into a grid related to their plane
distance and rotation angle β. Namely, two conditions should be met if p(t,c) ∈ grid(m,n):

Rm ≤
√

x2
(t,c) + y2

(t,c) < Rm+1, m ∈ [0, M− 1)

n = f loor(
β · N
360◦

) = f loor(
c · α · N

360◦
), n ∈ [0, N)

(4)
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where Rm is the radius of the m− th circle of E, and R0 = 0 is the center of the LiDAR.
f loor(∗) represents the round-down function. The lowest height value of the points in the
grid(m,n) is regarded as the ground surface height of this cell, named E(m,n). The points
higher than E(m,n) + Thg in the grid(m,n) are classified as the obstacle; otherwise, they are
classified as the ground. Thg is a ground height threshold, usually assigned as 0.2 m.

Although it is competent for the ground segmentation task under ideal road conditions,
the simple ring-shaped elevation map is easily affected by sloped roads and enormous
obstacles in realistic scenes. On the one hand, it is difficult to select a suitable value of ring
spacing (we call it ∆R) because of the variable ground height on steep roads. On the other
hand, it cannot guarantee that there are actual ground points in the grid(m,n) once the point
cloud is sparse. For example, as shown in Figure 4a, the ground points on the slope are
regarded as obstacles because the ∆R is too long. By contrast, the sparse obstacle points on
the car’s roof will be divided into the ground if the ∆R is short, as shown in Figure 4b.

The ring-shaped elevation conjunction map (RECM) is proposed to reduce these
mistakes by extracting the ground height feature. The road surface within a short distance
is relatively flat, so there is no sudden change in the road height. We consequently select a
small value of ∆R to avoid under-segmentation (Figure 4c).

Furthermore, we establish a gradient connection between the front and rear grids,
linking these isolated areas that can significantly avoid over-segmentation. Concentrating
on the grids with steep gradients and use the slope k as the condition for judging the
authenticity of its height.

k = arctan (
∆E
∆R

) = arctan (
E(m,n) − E(m−1,n)

Rm − Rm−1
) (5)

We consider that there are no actual ground points in the grid(m,n) once the k at the
grid(m,n) is greater than the road’s maximum slope δmax, and then correct the E(m,n).

E(m,n) =

{
E(m,n), k ≤ δmax
E(m−1,n) + ∆R · tan δmax, k > δmax

(6)

Figure 4b shows a typical automobile meeting scene where the car on the opposite
side occupies an entire cell of elevation map, resulting in no ground points in the grid(m,n).
In the previous algorithm, E(m,n)−F is regarded as the ground height in this area, which is
the primary cause of over-segmentation. In contrast, the wrong ground height E(m,n)−F
is corrected to E(m,n)−T through our proposal because a gradient mutation ∆E is gener-
ated here, as shown in Figure 4d. Thus, the accuracy of pre-classification is increased,
even if the E(m,n)−T may not be actual ground height, which is beneficial to our delicate
segmentation task.

Algorithm 1 shows the pseudocode for pre-classification through RECM, as long as
the input point cloud is traversed twice, the ground can be roughly segmented. All points’
label are set to “ground” at first, as shown in line 5. Line 7 indicates that the lowest height
of the selected cell is treated as the ground height. Line 9 indicates that the cell height is
corrected according to the gradient conjunction. Lines 12 and 13 suggest that points higher
than the cell height by a threshold or more are set as obstacles.
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Algorithm 1 Coarse segmentation (RECM)
Input: Raw Point Cloud
Output: First Labeled Point Cloud

1 Thg ← threshold of the ground height;
2 ∆R← ring spacing of the grid;
3 δmax ← road’s maximum slope;
4 for each p(t,c) in Cloud do
5 label(t,c) = ground;
6 p(t,c) ∈ grid(m,n);
7 E(m,n) = min(E(m,n), z(t,c));

8 for each E(m,n) in E do
9 E(m,n) = min(E(m,n), E(m−1,n) + ∆R · tan δmax);

10 for each p(t,c) in Cloud do
11 p(t,c) ∈ grid(m,n);
12 if z(t,c) ≥ E(m,n) + Thg then
13 label(t,c) = obstacle;

2.3. Jump Convolution Process

A three-channel blank image of T × C size is established to store the point cloud,
and we move origin of the image coordinate system from the upper left to the lower left
for the convenience of description. In this way, the position of the point corresponds to the
pixels of the image, that is, the pixel [t, c] stores p(t,c). Different labels marked in the first
stage correspond to different pixel values. The pixel value of the ground points is [0, 255, 0],
the pixel value of the non-ground points is [255, 0, 0]. In other words, the green channel
stores “ground points”, the red channel stores “obstacle points”. As shown in Figure 5a, all
points are allocated to a corresponding channel after the first step of pre-classification.

Inaccurate segmentation typically occurs at the junctions between the ground and
obstacles. That is to say, the category of the points near the red channel (chr) and the green
channel (chg) is doubtful. The image dilation algorithm is used to describe the credibility
of points.

chr(x, y) = max
(x′ ,y′):element(x′ ,y′) 6=0

chr(x + x′, y + y′) (7)

We dilate the red channel of the original “Ground-Obstacle Image” because of the
over-segmentation generated by thresholds. We changed the pixel value of the intersections
from [255, 255, 0] to [0, 0, 255] to make the distinction clear. As shown in Figure 5b, the blue
channel (chb) stores “low-confidence points”.

Credibility propagation 

Image smoothing

(a). original image

(b). low-confidence points are generated

(c).smoothed image

Figure 5. Fine segmentation based on jump convolution process (JCP).

Generally, the distance between points belonging to the same object is smaller than
the distance between points belonging to different objects. We can determine their final
attribution by comparing the distances from “low-confidence points” to different surround-
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ing “high-confidence points”. As a result, we use W to represent the weight of a pixel and
smooth the RGB image depending on the context—a spatial relationship of the neighboring
pixel. In the end, the segmentation of the entire image turns into a convolution process.
For example, the 5× 5 convolution kernel corresponding to p(t,c) is expressed below.

Core(t,c) =


W(t+2,c−2) W(t+2,c−1) W(t+2,c) W(t+2,c+1) W(t+2,c+2)
W(t+1,c−2) W(t+1,c−1) W(t+1,c) W(t+1,c+1) W(t+1,c+2)

W(t,c−2) W(t,c−1) 0 W(t,c+1) W(t,c+2)
W(t−1,c−2) W(t−1,c−1) W(t−1,c) W(t−1,c+1) W(t−1,c+2)
W(t−2,c−2) W(t−2,c−1) W(t−2,c) W(t−2,c+1) W(t−2,c+2)

 (8)

Among them, W(∗) represents the weight of the neighborhood point p(∗) and is
generated by the Euclidean distance disxyz. The connection between the two points is
negatively related to the disxyz, so that we use the e−disxyz to express the relationship.
To be more practical, we also stipulate that the point is irrelevant if disxyz > Thd, and an
amplification factor s is added for data enhancement.

D(t+i,c+j) =

{
0, disxyz > Thd || (i = 0, j = 0)
exp(−s · disxyz), otherwise

(9)

Finally, the normalized weighted distance is used as the element of the convolution kernel.

W(t+i,c+j) =
D(t+i,c+j)

u=2,v=2
∑

u=−2,v=−2
D(t+u,c+v)

(10)

We perform a jump convolution operation on the image because we are only interested
in “low-confidence points”. As shown in Figure 6, when the convolution kernel slides on
the image, if it is facing a “high-confidence point”, then skip this calculation. If it is facing a
“low-confidence point” p(t,c), then update the image by comparing the convolution result of
the red channel (Scorer(t, c)) and the convolution result of the green channel (Scoreg(t, c)).

Scorer(t, c) = chr(t, c) ∗ Core(t,c) =
i=2,j=2

∑
i=−2,j=−2

chr(t + i, c + j) ·W(t+i,c+j)

Scoreg(t, c) = chg(t, c) ∗ Core(t,c) =
i=2,j=2

∑
i=−2,j=−2

chg(t + i, c + j) ·W(t+i,c+j)

(11)

It is considered that p(t,c) belongs to an obstacle once Scorer(t, c) > Scoreg(t, c), and the
pixel value of the image coordinate [t, c] updates to [255, 0, 0]; otherwise, the pixel value
becomes [0, 255, 0].

W
Scorer  > Scoreg

too far
ground

missing 

obstacle

jump

. . .

Figure 6. Find and re-classify “low-confidence points”.

Because the reclassification of blue pixels is an iterative update process, the previous
calculation results will affect the subsequent results, so it is necessary to ensure the accuracy
of the current calculation. Considering that the nearby point cloud is more “dense” and the
distant point cloud is more “sparse”, prioritizing the reclassification of nearby low-confidence
points will meet our expectations. We choose the direction from the bottom to the top of the
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image for convolution to avoid under-segmentation, the final smooth result of the image is
shown in the Figure 5c. Similarly, we give the pseudocode of this Algorithm 2.

Algorithm 2 Fine segmentation (JCP)
Input: Original Image
Output: Final Labeled Point Cloud

1 Image← the original iamge;
2 cv :: split(Image, channels);
3 cv :: dilate(channels.at(0), src, (5, 5));
4 channels.at(0) = src;
5 cv :: merge(channels, Image);
6 if Image.at < vec3b > (t, c) == [255, 255, 0] then
7 Image.at < vec3b > (t, c) = [0, 0, 255];

8 queue← sorted pixel coordinates of the blue channel;
9 while !queue.empty() do

10 coor(t,c) = queue. f ront();
11 Scorer(t, c) = Image.at < vec3b > (t, c)[0] ∗ Core(t,c);
12 Scoreg(t, c) = Image.at < vec3b > (t, c)[1] ∗ Core(t,c);
13 if Scorer(t, c) > Scoreg(t, c) then
14 Image.at < vec3b > (t, c) = [255, 0, 0];
15 label(t,c) = obstacle;

16 else
17 Image.at < vec3b > (t, c) = [0, 255, 0];
18 label(t,c) = ground;

19 queue.pop();

Using the OpenCV library, the image type is RGB. Lines 2 to 5 indicate that the original
image is split based on channels, a 5× 5 kernel dilates the red channel, and the other two
channels are merged with the new red channel to generated “low-confidence points”. Lines
6 to 8 indicate that the “low-confidence points” are placed in a separate channel and stored
in a queue data structure in order. Lines 11 and 12 are required to perform a convolution
calculation on a specific position of the image. Lines 13 to 17 indicate that the image’s pixel
value and the corresponding point category are changed according to two possible results.

3. Results

This section verifies the flexibility and superiority of the proposed method. We first
prove the progressiveness of each module, then compare our method with some previous
works [15,23,34] to demonstrate some of our advantages.

3.1. Datasets and Evaluation Indicators

We conduct the test based on the Robot Operating System (ROS) on the same computer
(Intel I7-8700 CPU and 16 GB RAM) to ensure consistency. Then, we run the algorithms
on our self-developed autonomous driving experimental platform (Figure 7) to evaluate
its actual working conditions. In all experiments, our experimental parameters are set as
follows: Thg = 0.2 m, ∆R = 2 m, δmax = 7◦, Thd = 1 m, and s = 5, and we select a 5× 5
kernel for image dilation and select 24-pixels neighborhood for smooth.
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RS-Ruby128

Figure 7. Autonomous driving experimental platform: “Intelligent Pioneer No. 3”.

Common scenarios simulation tests and extreme scenarios simulation tests are con-
ducted on the Semantickitti dataset, the Koblenz dataset, and our self-made dataset.

We use the labeled sequence (00-10) on the Semantickitti dataset [41]—a total of
23,201 scans data consist of urban traffic, residential areas, highways, and other scenes.
It uses the Velodyne HDL-64E LiDAR scanner, which can generate more than 100,000 points
per scan. To judge the effectiveness of the method more realistically, we divide the 32 ef-
fective categories of Semantickitti into two classes, which are “ground” (including road,
sidewalk, and parking) and “non-ground”. According to the danger level of obstacles
to autonomous driving, we further define some objects in the “non-ground” as “major
obstacle” (including human, vehicle, trunk, pole, traffic sign, building, and vegetation).
As shown in Figure 8, they are represented by green, red, and fuchsia, respectively. As the
“major obstacle” accounts for a substantial proportion in the class “non-ground”, it is easy
to observe whether there is over-segmentation and judge the safety of the algorithm.
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Figure 8. Objects included in “ground” and “non-ground”.

The Koblenz dataset [43] is also produced through 64-beam LiDAR. Its scenes are
more diverse than Semantickitti, including 426 scans for the farm, 644 scans for the campus,
and 263 scans for the forest. Similarly, we divide the data into two classes: “ground” and
“non-ground”. As there is no occlusion from buildings, the point cloud range of this dataset
is extensive, which can be used to verify the segmentation effect on different terrains.

Our self-made dataset is collected and produced by our own autonomous driving
experimental platform. Its primary LiDAR is an RS-Ruby128 scanner, which collects data
at a frequency of 10 Hz, and the output number of points in each scan is twice the Velodyne
HDL-64E. We collected and labeled a total of 1148 scans of point cloud data in Hefei, China.
It contains 650 scans for city road and 498 scans for field road, and the data are also divided
into two classes as above.

The experiment is tested based on the following four aspects:

• the ground segmentation effect of the method;
• the security of the method;
• the time delay of the method; and
• the stability of the method in different environments.

We use IoUg (intersection-over-union of the “ground”), Recallg (recall rate of the
“ground”), Recallmo (recall rate of the “major obstacle”), and Delayt (processing time for
one scan) as the evaluation indicators of methods’ performance. Their calculation formulas
are as follows:

IoUg =
1
n

n

∑
v=1

TPg

TPg + FPg + FNg
(12)

Recallg =
1
n

n

∑
v=1

TPg

TPg + FNg
(13)
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Reacllmo =
1
n

n

∑
v=1

TPmo

TPmo + FNmo
(14)

Delayt =
Time

n
(15)

where TPg, FPg, and FNg represent the number of True Positive, False Positive, and False
Negative predictions for class “ground”, respectively. TPmo and FNmo represent the number
of True Positive and False Negative predictions for “major obstacle”. Time represents the
time spent on the program. n Indicates the number of scans. The first two indicators
are used to evaluate the accuracy of the segmentation result. In general, if the ground
segmentation effect of a specific method is excellent, its corresponding IoUg and Recallg
will be high. Furthermore, the Recallg can also reflect the degree of under-segmentation,
it must be kept above 95% to ensure smooth driving of the AVs. The Recallmo is used to
evaluate the method’s safety because it represents the ability to detect critical obstacles,
and less than 90% indicates severe over-segmentation. The time indicator is used to
evaluate the rapidity. It is considered that the processing time of the ground segmentation
for a low-frequency LiDAR (10 Hz) should not exceed 40 ms, for a high-frequency LiDAR
(≥20 Hz) should not exceed 20 ms.

3.2. Performance Verification of Each Module

As mentioned in Section 2.2, the ring-shaped elevation map (REM) algorithm is not
suitable for sparse point clouds, and the obstacle will be incorrectly divided into the ground
in complex scenes, resulting in the loss of obstacle information. By adding ground height
characteristic in the coarse-segmentation stage, the ring-shaped elevation conjunction map
(RECM) can effectively improve the segmentation effect. The jump convolution process
(JCP) further enhances the segmentation effect because “low-confidence points” are re-
classified in the fine-segmentation stage. We tested these modules on the Semantickitti
dataset. Table 1 shows the segmentation results, and Figure 9 shows the overall segmenta-
tion effect.

Table 1. The influence of each module of the proposed algorithm on performance.

Method IoUg (%) Recallg (%) Recallmo (%) Delayt (ms)

REM 1 67.73 99.40 83.65 1.99
RECM 2 72.20 99.20 88.63 2.00

RECM + JCP 3 76.50 98.07 96.04 8.61
1 Ring-shaped elevation map. 2 Ring-shaped elevation conjunction map. 3 Jump convolution process.

It can be seen from Table 1 that the IoUg of the REM algorithm is very low, and the
Recallmo does not even reach 90%. Therefore, classifying the point cloud based only on the
relative height difference will be accompanied by obvious over-segmentation. Compared
with the REM algorithm, the RECM algorithm increases the calculation time by 0.01 ms,
but it improves the segmentation effect and weakens the over-segmentation phenomenon.
The result shows that establishing the ground gradient relationship helps reduce the false
prediction of the ground points. The subsequent JCP module not only further improves the
segmentation effect, but also dramatically increases the security performance. Although the
IoUg dropped by about 1% after adding the JCP module, it remained at a high level. In the end,
the Recallg and the Recallmo reach 98.07% and 96.04%, respectively. It is an impressive effect
for traditional methods. In short, the RECM algorithm increases the ground segmentation
effect by approximately 4% compared with the most straightforward REM algorithm, and the
JCP module increases the segmentation effect by approximately 5% again on the basis of
RECM. It is indicating that each module plays an uplifting role in the segmentation.

We select two representative cases in the test scenario, as shown in Figure 9. Each
group’s left and right pictures can be viewed as a good comparison. In particular, the color
description of the benchmark image can be found in Figure 8.
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The first group has a few static “major obstacle” and much soil. The contour of the
ring-shaped elevation map can be seen very intuitively in the b→1. The REM algorithm
only calculates the relative height difference of the internal points of the individual grid,
resulting in the presence of ground points in each grid. Therefore, there are many false
detections, which is also the main reason that leads to over-segmentation. In the RECM
algorithm, the adjacent grids are no longer isolated, and most false detections can be
corrected, as shown in c→1. JCP inherited this advantage and smoothed the junction
between the ground and non-ground, making the ground look more coherent (d→1).
However, when facing some low and flat obstacles, such as the soil in the d→2, it is
impossible to filter them out of the ground only by the height and distance characteristics,
so our method cannot detect these obstacles.

The second group is a scene where multiple obstacles coexist, the defects of the REM
algorithm are exposed again. The occlusion of the front right by dynamic obstacles resulted
in the lack of ground points, so the bottom of the car and the building are mistakenly
divided into the ground (b→3). In actual driving, the AVs may not take avoidance measures
in time because of these missed inspections. It is an extremely dangerous mistake for AVs.
Although RECM can make up for some errors because it reconstructs the ground height,
the car in the park is still incompletely detected. JCP reclassifies the “low confidence
points” on the edge of “non-ground”, ideally separate the ground and obstacle (d→3),
and dramatically improves the detection distance of obstacles (d→4).

(a)  (b)  (c)            (d)  

4 4 4 4

Figure 9. Segmentation result of each module in different scenes. Grounp 1 is the ordinary road scene; Grounp 2 is the
residential road scene. (a) Benchmark; (b) REM; (c) RECM; (d) RECM + JCP.

3.3. Comparative Experiment with Other Methods

We take the works in [15,23,34] as our experimental references. They are representative
studies in this field and have shown promising results: the work in [15] first segments the
point cloud by the local angle and height features of the front and back points, and then
improves the segmentation effect through the horizontal clustering. The work in [23]
establishes a LiDAR depth image, and then quickly filters out ground points based on the
angle formed by the LiDAR center and the next point on the depth image. The work in [34]
initializes the Markov random field (MRF) with the seed points obtained in advance. Then,
the authors use the max-flow/min-cut algorithm to cut the deep image of the point cloud.
We test all methods on the three datasets to analyze their segmentation effect, security,
time delay, and stability. Because some algorithms in the references are susceptible to
parameters, we use the best parameters for different datasets instead of the parameters
given in their articles.
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3.3.1. Structured Road Test

We selected 00-10 sequences from the Semantickitti dataset for this test. Semantickitti
is a typical traffic dataset, which includes not only daily urban traffic but also residen-
tial traffic.

Table 2 lists the specific segmentation results on each sequence. Obviously, the method
in [23] performs the worst in all methods, and the segmentation evaluation indicators
are the lowest. In addition, the average value of Recallmo is only 87.58%, indicating that
there will be apparent over-segmentation when using this algorithm. In contrast, the other
methods obtain relatively good segmentation results. The method in [15] has the highest
Recallg and the lowest Delayt, indicating that it is feasible to segment the point cloud
through the joint features of the angle and height. The Recallg of the proposed method
ranks second while maintaining a low time delay. Compared with the method in [15],
our Recallg has dropped by less than 0.6%, but our average IoUg has increased by 3%,
indicating that there are fewer False Positive predictions for class “ground”. At the same
time, our method has the highest Recallmo, with a value of 96%, which proves that our
method has the most reliable security guarantee. It is worth mentioning that, benefiting
from using global depth features instead of local features, the segmentation indicators of
the method in [34] are relatively close to our method. Nevertheless, its time delay is about
three times ours, so it is unsuitable for some high-frequency LiDAR.

Table 2. The evaluation results on the Semantickitti dataset.

Method

Sequences
Scenes

00 01 02 03 04 05 06 07 08 09 10
MeanResidential Highway City Residential City Residential City Residential Residential City City

Area Scene Traffic Area Traffic Area Traffic Area Area Traffic Traffic
IoUg(%)

Chu [15] 79.96 70.63 83.84 64.53 76.89 76.63 54.84 81.88 68.68 77.98 72.59 73.49
Bogoslavskyi [23] 73.81 67.28 79.26 61.12 73.50 74.81 53.27 76.00 76.24 74.17 67.68 69.56

Huang [34] 82.47 72.58 85.72 67.46 78.29 80.00 54.42 84.80 71.49 79.82 75.06 75.65
Our 82.92 74.69 86.32 67.71 79.69 80.76 54.83 84.56 72.07 80.88 77.12 76.50

Recallg(%)

Chu [15] 99.17 99.59 98.37 98.17 99.71 98.80 97.53 98.99 98.92 98.76 96.66 98.61
Bogoslavskyi [23] 96.29 96.25 96.36 96.73 98.54 95.14 93.89 96.34 96.55 96.96 95.35 96.22

Huang [34] 98.94 97.84 97.48 98.27 99.43 98.41 95.93 98.69 98.76 97.15 95.05 97.81
Our 98.80 99.11 98.12 98.63 99.29 98.44 96.00 98.66 98.78 97.80 95.11 98.07

Recallmo(%)

Chu [15] 94.25 92.47 90.70 88.61 92.82 91.28 95.23 93.53 94.08 92.65 90.56 92.38
Bogoslavskyi [23] 89.83 73.23 88.53 89.26 80.94 91.35 93.00 89.40 89.14 90.86 87.79 87.58

Huang [34] 95.60 95.50 93.38 92.42 94.78 93.76 95.97 95.30 95.44 94.63 93.32 94.55
Our 96.92 97.46 94.12 93.12 97.52 94.45 98.44 95.60 97.26 96.39 95.12 96.04

Delayt(ms)

Chu [15] 6.41 11.02 7.02 7.66 7.42 6.79 7.46 6.54 6.60 6.91 6.11 7.27
Bogoslavskyi [23] 10.23 8.60 10.52 10.44 10.51 10.06 10.15 10.09 10.15 10.51 10.28 10.12

Huang [34] 24.32 23.37 25.42 25.79 25.54 25.57 25.80 24.16 25.13 25.57 24.77 25.04
Our 8.09 8.97 7.90 9.59 8.78 8.71 8.92 7.81 8.51 8.80 8.61 8.61

Figure 10 captures the segmentation effect of some scenes. Group 1 is the scene of the
vehicle speeding on the highway, and we mark out the areas that are worthy of attention.
We can see that all methods can completely segment the car from the point cloud for scenes
with a small number of obstacles, as shown in box 1. However, [23,34] both have serious
segmentation problems in other regions. The method in [23] hardly detects obstacles with
gradual changes in depth. As shown in c→2, almost the entire railing is regarded as the
ground, and this over-segmentation phenomenon is undoubtedly fatal for Avs driving
at high speeds. On the contrary, the method in [34] relies on the histogram to determine
probability in the graph cut algorithm, which will cause serious under-segmentation.
As shown in d→3, the entire road ahead is viewed as an obstacle. This error will cause
the AVs to make brake suddenly, which is very dangerous for high-speed road sections.
In contrast, our method and that in [15] have the expected segmentation effect in this scene.

Group 2 is the scene where the experimental car following a car on a residential road.
Except for our method, the rest of the methods have problems in detecting the ground.
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The angle and depth features are invalid because the car hood is relatively flat, so the
methods in [15,23] both regard it as the ground (b→4, c→4). The method in [34] also fails
(d→4) because the ordinary elevation map considers the lowest point in the grid as the
ground, but the lowest point in this area happens to be on the hood. Our method can
correct the wrong ground height in this area to achieve the best segmentation effect (e→4).
We also noticed that the method in [15] is particularly sensitive to occlusion. Observe
the position in b→5, the building is considered as the ground because of the occlusion
generated by the front right car. Meanwhile, the segmentation of obstacles in [23] appears
intermittent. The method in [34] has defects in the connection processing between obstacle
points and ground points. As shown in d→6, it often produces “noise points” between
obstacles and the ground. In general, our method has the perfect segmentation results and
the slightest error detection in the test. For details, please zoom in and observe Figure 10.

(a) (b)

(c) (d)

(e)
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Figure 10. The ground segmentation effect of different methods on Semantickitti dataset. (a) Benchmark; (b) Chu [15];
(c) Bogoslavskyi [23]; (d) Huang [34]; (e) Ours. (It is recommended to zoom in to see the details).

Even though our strategy has a better segmentation effect than the other three methods
on this dataset, the test of urban roads alone is not enough. In order to demonstrate the
performance of our method convincingly, we next adopt a more rigorous test scenario.

3.3.2. Unstructured Road Test

Compared with urban traffic, the point cloud for unstructured roads is more irregular,
and the road conditions are bumpier. We choose the FarmMap and ForestMap in the
Koblenz dataset as the test scenarios for the first stage, then select the more challenging
FieldMap in the self-made dataset as the supplementary test scenario for the second stage.
Tables 3 and 4, respectively, show the test results.
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Table 3. The evaluation results on the Koblenz dataset.

Method
Environment FarmMap ForestMap Mean

IoUg(%)

Chu [15] 29.00 48.92 38.96
Bogoslavskyi [23] 26.47 28.10 27.28

Huang [34] 33.00 57.91 45.46
Our 34.97 64.57 49.77

Recallg(%)

Chu [15] 96.44 98.18 97.31
Bogoslavskyi [23] 95.17 95.02 95.10

Huang [34] 98.38 98.25 98.32
Our 99.32 98.89 99.11

Recallmo(%)

Chu [15] 70.28 80.56 75.42
Bogoslavskyi [23] 57.51 42.76 50.13

Huang [34] 78.11 88.25 83.13
Our 83.91 91.97 87.94

Delayt(%)

Chu [15] 9.56 6.43 8.00
Bogoslavskyi [23] 10.33 10.43 10.38

Huang [34] 26.86 24.43 25.65
Our 9.23 8.55 8.89

Table 4. The evaluation results on the self-made dataset.

Method
Environment FieldMap

IoUg(%)

Chu [15] 17.92
Bogoslavskyi [23] 15.53

Huang [34] 15.72
Our 18.95

Recallg(%)

Chu [15] 93.29
Bogoslavskyi [23] 93.24

Huang [34] 97.88
Our 97.30

Recallmo(%)

Chu [15] 82.92
Bogoslavskyi [23] 80.14

Huang [34] 78.95
Our 82.94

Delayt(%)

Chu [15] 11.16
Bogoslavskyi [23] 16.87

Huang [34] 47.51
Our 15.62
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In the first phase of the test, the segmentation indicators of all methods dropped
significantly, especially in the farm environment. Because the soil occupies most of the
point cloud data in the farm scene, these methods in the experiment have almost no filtering
ability on the soil, so the IoUg becomes very low. The method in [23] not only has the lowest
Recallg and IoUg, but also the Recallmo has just reached 50%, which means that this method
is not suitable for the unstructured road at all. The method in [15] is slightly more robust; it
has better segmentation performance and improves Recallmo to 75%, which provides higher
security compared to [23], indicating that the angle feature has higher stability than the
depth feature. The method in [34] and our method are undoubtedly have the most robust
anti-interference ability because the IoUg indicator and the Recallmo indicator are much
higher than the other two methods. Like the structured road, although the segmentation
accuracy of [34] is close to ours, we have higher security and lower latency (Appendix A.1
shows the stability during continuous operation).

In the second phase, all methods become unstable due to the ups and downs of the
ground. The method in [34] has the highest Recallg, but the IoUg is very low, which is
a typical over-segmentation. The method in [15] has the highest IoUg, but the Recallg is
very low, indicating that there are apparent false detections in the ground predictions.
Although our method comprehensively achieves the best segmentation effect, the IoUg is
only 18.95%, meaning that there is also over-segmentation. In general, our method performs
better than other methods on unstructured roads. Combined with the segmentation effect
on structured roads, our method has the strongest robust performance.

Figure 11 shows the segmentation effect in an unstructured road environment. Be-
cause the vehicle cannot drive smoothly under such road conditions, the point cloud
becomes irregular. The first group is a scene of a sharp turn in the forest scene. It can
be seen from the point cloud that the ground is tilted, which makes it very unreliable to
extract the angle feature from the point cloud. Therefore, the method in [15] has false
detection at the ground tilt (b→1). The method in [23] becomes very unstable under these
road conditions. There is much wrong segmentation around, intermittent false detection
points appear on the ground, the detection of plants on the left is incomplete, and even
the shrubs on the right are regarded as ground (c→2). The method in [34] and our method
show reliable segmentation performance, the ground and obstacles around the AVs are
perfectly divided, but [34] once again make mistake for the front road (d→2).

The second group is a field scene. Facing this irregular intersection, the method in [15]
and that in [23] are helpless, and neither the ground on the left nor the right is detected
(b→3, c→3). Although the method in [34] detects the ground on the right, it regards the
shadow on the left as an obstacle (d→3). Our result is a qualified ground segmentation. It
does not produce false detections on the ground and detects the main boundary on both
sides. This way, it can ensure the AVs drive logically on bumpy roads and provide usable
boundary information.

Although the segmentation effect of our method on the unstructured roads is not as
good as that on the structured roads, our method still shows solid environmental adapt-
ability, indicating that the proposed can be migrated to different terrain environments (the
test videos of our method on each dataset can be found in Appendix A.2). Whether it is
a sloping ground or a bumpy ground, we rarely detect the road surface as an obstacle,
and our method can always catch the most “major obstacle”, ensuring accuracy and safety
at the same time.
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Figure 11. The ground segmentation effect of different methods on unstructured road. (a) Benchmark; (b) Chu [15];
(c) Bogoslavskyi [23]; (d) Huang [34]; (e) Ours. (It is recommended to zoom in to see the details.)

4. Discussion

The above experiments prove that the method proposed in this paper can obtain accu-
rate segmentation results in various scenes and run in real-time. Compared with the simple
elevation map method, our advantage is that we can correct the wrong ground height
through the conjunction between the grids. On the one hand, the corrected ground height
reduces the serious over-segmentation in the coarse segmentation stage. On the other hand,
it generates more high-confidence points used to re-classify the low-confidence points in
the fine segmentation stage. We mainly use height difference and distance features, which
are stable even if the point cloud is rotated. Our method is more sensitive to obstacle
detection and robust than methods based on local point cloud features, such as angle or
depth. It generates fewer False Positive predictions for “ground” even if the ground is
inclined or the vehicle is bumpy. On rugged roads, the Euler angles of the car change con-
stantly, and the angle characteristics and depth characteristics become irregular. Therefore,
the segmentation performance of the method in [15] and that in [23] on the unstructured
road drops rapidly. Compared with the MRF conditional random field method, our method
has better real-time performance because optimizing the energy function in MRF is a time-
and memory-consuming process. In addition, there are significant differences between
global and local features in unstructured roads, so our segmentation effect is better than
method [34] in the face of irregular point clouds.

Although our method can achieve a good segmentation effect in most cases, we
also found that there are several limitations: (1) The coarse segmentation stage only
uses the height characteristics of the point cloud, making almost all soils with the same
height as the road are divided into the class “ground”, which is very obvious in the open
field experiments. (2) Our method cannot solve or even deepen the under-segmentation
situation because the application premise of our fine segmentation is that the result of
coarse segmentation is over-segmented. (3) The two modules in our method use the same
thread, which cannot give full play to the performance of the hardware. Using dual threads
can further reduce the time delay.
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5. Conclusions

Based on previous work, this paper divides the segmentation of the LiDAR point
cloud into two stages—from coarse to fine. The first stage uses improved local point cloud
features and ground features to quickly classify the original point cloud. The ring-shaped
conjunction elevation map (RECM) algorithm has excellent segmentation capabilities for
dense point clouds. As the establishment of the gradient connection corrects the wrong
ground height, it also has a good detection ability for non-ground points in sparse point
clouds. In the second stage, we map the point cloud to the image, use the image dilation
algorithm to generate the “low-confidence points”, and finally use the jump convolution
process (JCP) to re-classify their categories and smooth global points. We compared the
other three methods on the three datasets, including urban and field driving environments.
The results show that the proposed method has a more accurate segmentation effect, a more
reliable safety, a more efficient performance, and a more robust environmental adaptability
than others.

We noticed in our experiments that it is challenging to distinguish the road surface and
the soil only by the height and distance information of the point cloud, and relying on the
angle relationship of the point cloud often leads to incorrect predictions. Therefore, finding
some deep features suitable for irregular point clouds will be our next research direction.
In addition, we noticed that the application of convolutional neural networks (CNN) is
gradually expanding. However, deep learning directly on the 3D point cloud requires
good hardware support, and the anti-interference performance of the convolutional neural
network is abysmal, so we think that applying the convolutional neural network to the
2.5D depth image projected by LiDAR may become an auxiliary method for segmenting
point clouds.
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Appendix A

Appendix A.1. Stability of Running Time

We intercept 1000 consecutive scans on the self-developed autonomous driving plat-
form to test the stability of our method. Figure A1 shows the processing time of our
program. Although the curve fluctuates, the peak value of 128-beam LiDAR does not
exceed 20 ms, indicating that our method can be applied to actual scenarios.

http://www.semantic-kitti.org/
http://robots.uni-koblenz.de/datasets
http://robots.uni-koblenz.de/datasets
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Figure A1. The running time of our method on 1000 consecutive scans.

Appendix A.2. Experiment Videos

Three video clips of experimental tests are available on YouTube.
Urban test: https://youtu.be/mV3TtKd1UGw (accessed on 1 August 2021).
Forest test: https://youtu.be/2X9P2Zj3AIQ (accessed on 1 August 2021).
Field test: https://youtu.be/uy4Wf3W-4_g (accessed on 1 August 2021).
These webs can be accessed permanently.

References
1. Roriz, R.; Cabral, J.; Gomes, T. Automotive LiDAR Technology: A Survey. IEEE Trans. Intell. Transp. Syst. 2021. [CrossRef]
2. Pendleton, S.D.; Andersen, H.; Du, X.; Shen, X.; Meghjani, M.; Eng, Y.H.; Ang, M.H. Perception, planning, control, and

coordination for autonomous vehicles. Machines 2017, 5, 6. [CrossRef]
3. Dai, Y.; Lee, S.G. Perception, planning and control for self-driving system based on on-board sensors. Adv. Mech. Eng. 2020, 12.

[CrossRef]
4. Li, Y.; Ibanez-Guzman, J. Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and

perception systems. IEEE Signal Process. Mag. 2020, 37, 50–61. [CrossRef]
5. Xu, F.; Liang, H.; Wang, Z.; Lin, L.; Chu, Z. A Real-Time Vehicle Detection Algorithm Based on Sparse Point Clouds and

Dempster-Shafer Fusion Theory. In Proceedings of the 2018 IEEE International Conference on Information and Automation
(ICIA), Wuyishan, China, 11–13 August 2018; pp. 597–602.

6. Rummelhard, L.; Paigwar, A.; Nègre, A.; Laugier, C. Ground estimation and point cloud segmentation using spatiotemporal
conditional random field. In Proceedings of the 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14
June 2017; pp. 1105–1110.

7. Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Mahoney, P. Stanley: The robot that won the DARPA
Grand Challenge. J. Field Robot. 2006, 23, 661–692. [CrossRef]

8. Zermas, D.; Izzat, I.; Papanikolopoulos, N. Fast segmentation of 3d point clouds: A paradigm on lidar data for autonomous
vehicle applications. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore,
29 May–3 June 2017; pp. 5067–5073.

9. Goga, S.; Nedevschi, S. An approach for segmenting 3D LiDAR data using multi-volume grid structures. In Proceedings of the
2017 13th IEEE International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania,
7–9 September 2017; pp. 309–315.

10. Chu, P.; Cho, S.; Sim, S.; Kwak, K.; Cho, K. A Fast Ground Segmentation Method for 3D Point Cloud. JIPS 2017, 13, 491–499.
11. Narksri, P.; Takeuchi, E.; Ninomiya, Y.; Morales, Y.; Akai, N.; Kawaguchi, N. A slope-robust cascaded ground segmentation in

3D point cloud for autonomous vehicles. In Proceedings of the 2018 21st International Conference on intelligent transportation
systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 497–504.

12. Sun, Z.; Li, Z.; Liu, Y. An improved lidar data segmentation algorithm based on euclidean clustering. In Proceedings of the
11th International Conference on Modelling, Identification and Control (ICMIC2019), Tianjin, China, 13–15 July 2019; Springer:
Singapore, 2020; pp. 1119–1130.

13. Jiao, Y.; Ma, J.; Zhong, B. Point cloud parallel de-noising algorithms based on scale change. Eng. J. Wuhan Univ. 2021, 54, 227–282.
14. Cheng, Z.; Ren, G.; Zhang, Y. Ground Segmentation Algorithm Based on 3D Lidar Point Cloud. In Proceedings of the 2018 Interna-

tional Conference on Mechanical, Electrical, Electronic Engineering & Science (MEEES 2018), Chongqing, China, 26–27 May 2018;
pp. 16–21.

15. Chu, P.M.; Cho, S.; Park, J.; Fong, S.; Cho, K. Enhanced ground segmentation method for Lidar point clouds in human-centric
autonomous robot systems. Hum.-Centric Comput. Inf. Sci. 2019, 9, 17. [CrossRef]

https://youtu.be/mV3TtKd1UGw
https://youtu.be/2X9P2Zj3AIQ
https://youtu.be/uy4Wf3W-4_g
http://doi.org/10.1109/TITS.2021.3086804
http://dx.doi.org/10.3390/machines5010006
http://dx.doi.org/10.1177/1687814020956494
http://dx.doi.org/10.1109/MSP.2020.2973615
http://dx.doi.org/10.1002/rob.20147
http://dx.doi.org/10.1186/s13673-019-0178-5


Remote Sens. 2021, 13, 3239 20 of 21

16. Wang, X.; Zou, L.; Shen, X.; Ren, Y.; Qin, Y. A region-growing approach for automatic outcrop fracture extraction from a
three-dimensional point cloud. Comput. Geosci. 2017, 99, 100–106. [CrossRef]

17. Tsai, Y.S.; Wang, Y.F. Dynamic Road Surface Detection Method Based on 3D Lidar. J. Comput. 2019, 30, 323–332.
18. Douillard, B.; Underwood, J.; Kuntz, N.; Vlaskine, V.; Quadros, A.; Morton, P.; Frenkel, A. On the segmentation of 3D LIDAR point

clouds. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011;
pp. 2798–2805.

19. Chen, T.; Dai, B.; Wang, R.; Liu, D. Gaussian-process-based real-time ground segmentation for autonomous land vehicles. J. Intell.
Robot. Syst. 2014, 76, 563–582. [CrossRef]

20. Chen, T.; Dai, B.; Liu, D.; Song, J. Sparse Gaussian process regression based ground segmentation for autonomous land vehicles.
In Proceedings of the The 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May 2015;
pp. 3993–3998.

21. Liu, K.; Wang, W.; Tharmarasa, R.; Wang, J.; Zuo, Y. Ground surface filtering of 3D point clouds based on hybrid regression
technique. IEEE Access 2019, 7, 23270–23284. [CrossRef]

22. Bogoslavskyi, I.; Stachniss, C. Fast range image-based segmentation of sparse 3D laser scans for online operation. In Proceedings
of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016;
pp. 163–169.

23. Bogoslavskyi, I.; Stachniss, C. Efficient online segmentation for sparse 3d laser scans. PFG J. Photogramm. Remote. Sens. Geoinf. Sci.
2017, 85, 41–52. [CrossRef]

24. Ben-Shabat, Y.; Avraham, T.; Lindenbaum, M.; Fischer, A. Graph based over-segmentation methods for 3d point clouds. Comput.
Vis. Image Underst. 2018, 174, 12–23. [CrossRef]

25. Yuan, X.; Mao, Y.; Zhao, C. Unsupervised Segmentation Of Urban 3D Point Cloud Based On Lidar-image. In Proceedings of the
2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), Dali, China, 6–8 December 2019; pp. 2565–2570.

26. Chu, P.M.; Cho, S.; Park, Y.W.; Cho, K. Fast point cloud segmentation based on flood-fill algorithm. In Proceedings of the
2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Daegu, Korea, 16–18
November 2017; pp. 656–659.

27. Zhou, B.; Huang, R. Segmentation Algorithm for 3D LiDAR Point Cloud Based on Region Clustering. In Proceedings of the 2020
7th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), Guangzhou, China, 13–15
November 2020; pp. 52–57.

28. Yang, H.; Wang, Z.; Lin, L.; Liang, H.; Huang, W.; Xu, F. Two-Layer-Graph Clustering for Real-Time 3D LiDAR Point Cloud
Segmentation. Appl. Sci. 2020, 10, 8534. [CrossRef]

29. Guo, C.; Sato, W.; Han, L.; Mita, S.; McAllester, D. Graph-based 2D road representation of 3D point clouds for intelligent vehicles.
In Proceedings of the 2011 IEEE Intelligent Vehicles Symposium (IV), Baden-Baden, Germany, 5–9 June 2011; pp. 715–721.

30. Byun, J.; Na, K.I.; Seo, B.S.; Roh, M. Drivable road detection with 3D point clouds based on the MRF for intelligent vehicle. In Field
and Service Robotics; Springer: Cham, Switzerland, 2015; pp. 49–60.

31. Choi, S.; Park, J.; Byun, J.; Yu, W. Robust ground plane detection from 3D point clouds. In Proceedings of the 2014 14th Interna-
tional Conference on Control, Automation and Systems (ICCAS 2014), Gyeonggi-do, Korea, 22–25 October 2014; pp. 1076–1081.

32. Zhang, M.; Morris, D.D.; Fu, R. Ground segmentation based on loopy belief propagation for sparse 3D point clouds. In Proceedings
of the 2015 International Conference on 3D Vision, Lyon, France, 19–22 October 2015; pp. 615–622.

33. Zhang, M.F.; Fu, R.; Guo, Y.S. Road segmentation method based on irregular three dimensional point cloud. J. Jilin Univ. (Eng.
Technol. Ed.) 2017, 47, 1387–1394.

34. Huang, W.; Liang, H.; Lin, L.; Wang, Z.; Wang, S.; Yu, B.; Niu, R. A Fast Point Cloud Ground Segmentation Approach Based on
Coarse-To-Fine Markov Random Field. IEEE Trans. Intell. Transp. Syst. 2021. [CrossRef]

35. Qi, C.R.; Su, H.; Mo, K.; Guibas, L.J. Pointnet: Deep learning on point sets for 3d classification and segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 652–660.

36. Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. arXiv 2017,
arXiv:1706.02413.

37. Meng, H.Y.; Gao, L.; Lai, Y.K.; Manocha, D. Vv-net: Voxel vae net with group convolutions for point cloud segmentation.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 8500–8508.

38. Ma, Y.; Guo, Y.; Lei, Y.; Lu, M.; Zhang, J. 3DMAX-NET: A multi-scale spatial contextual network for 3D point cloud semantic
segmentation. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24
August 2018; pp. 1560–1566.

39. Paigwar, A.; Erkent, Ö.; Sierra-Gonzalez, D.; Laugier, C. GndNet: Fast Ground Plane Estimation and Point Cloud Segmentation
for Autonomous Vehicles. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Las Vegas, NV, USA, 24 October–24 January 2020.

40. Zhu, X.; Zhou, H.; Wang, T.; Hong, F.; Ma, Y.; Li, W.; Lin, D. Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR
Segmentation. arXiv 2020, arXiv:2011.10033.

41. Behley, J.; Garbade, M.; Milioto, A.; Quenzel, J.; Behnke, S.; Stachniss, C.; Gall, J. Semantickitti: A dataset for semantic scene
understanding of lidar sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea,
27–28 October 2019; pp. 9297–9307.

http://dx.doi.org/10.1016/j.cageo.2016.11.002
http://dx.doi.org/10.1007/s10846-013-9889-4
http://dx.doi.org/10.1109/ACCESS.2019.2899674
http://dx.doi.org/10.1007/s41064-016-0003-y
http://dx.doi.org/10.1016/j.cviu.2018.06.004
http://dx.doi.org/10.3390/app10238534
http://dx.doi.org/10.1109/TITS.2021.3073151


Remote Sens. 2021, 13, 3239 21 of 21

42. Gao, B.; Pan, Y.; Li, C.; Geng, S.; Zhao, H. Are We Hungry for 3D LiDAR Data for Semantic Segmentation? arXiv 2020,
arXiv:2006.04307.

43. Häselich, M.; Jöbgen, B.; Neuhaus, F.; Lang, D.; Paulus, D. Markov random field terrain classification of large-scale 3D maps. In
Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO), Bali, Indonesia, 5–10 December 2014;
pp. 1970–1975.


	Introduction
	Methods
	Point Cloud Sorting
	Ring-Shaped Elevation Conjunction Map
	Jump Convolution Process

	Results
	Datasets and Evaluation Indicators
	Performance Verification of Each Module
	Comparative Experiment with Other Methods
	Structured Road Test
	Unstructured Road Test


	Discussion
	Conclusions
	
	Stability of Running Time
	Experiment Videos

	References

