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Abstract: The consolidation of unmanned aerial vehicle (UAV) photogrammetric techniques for 
campaigns with high and medium observation scales has triggered the development of new 
application areas. Most of these vehicles are equipped with common visible-band sensors capable 
of mapping areas of interest at various spatial resolutions. It is often necessary to identify vegetated 
areas for masking purposes during the postprocessing phase, excluding them for the digital 
elevation models (DEMs) generation or change detection purposes. However, vegetation can be 
extracted using sensors capable of capturing the near-infrared part of the spectrum, which cannot 
be recorded by visible (RGB) cameras. In this study, after reviewing different visible-band 
vegetation indices in various environments using different UAV technology, the influence of the 
spatial resolution of orthomosaics generated by photogrammetric processes in the vegetation 
extraction was examined. The triangular greenness index (TGI) index provided a high level of 
separability between vegetation and nonvegetation areas for all case studies in any spatial 
resolution. The efficiency of the indices remained fundamentally linked to the context of the 
scenario under investigation, and the correlation between spatial resolution and index incisiveness 
was found to be more complex than might be trivially assumed. 

Keywords: vegetation indices; visible-band; unmanned aerial vehicle (UAV); empirical line 
method; spatial resolution; pixel-based 
 

1. Introduction 
The last decade has witnessed a rapid consolidation of photogrammetric techniques 

following the advancement of increasingly powerful structure from motion—multiview 
stereo (SfM-MVS) algorithms for feature matching between images [1,2]. At the core of 
this exponential growth has been the widespread and frequent use of unmanned aerial 
vehicles (UAVs) for high- and medium-scale observation campaigns [3]. Indeed, for these 
scales of investigation, UAVs platforms can provide higher spatial resolution products 
compared to traditional aerial or satellite observations [4]. Today, varieties of UAVs, 
characterised by different flight mechanics and take-off weights, and equipable sensors 
are continuously put on the market, providing a wide choice for operators in the sector 
even at minimal costs [5]. On the other hand, their versatility and transversality have 
triggered new application areas [6–8]. 

In most cases, these UAVs are equipped with inexpensive cameras, capable of 
acquiring images in the visible bands (RGB). Although they are not metric cameras, several 
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studies had investigated their peculiarities, highlighting the possibility of obtaining results 
that are quite comparable to metric ones both in terms of geometric calibration of the lenses 
and photogrammetrically returnable products [9,10]. Recently, the integration of inertial 
measurements unit (IMU) and increasingly accurate global navigation satellite system 
(GNSS) receivers in vehicles, capable of real-time kinematic (RTK) or postprocessing 
kinematic (PPK) measurements, turn georeferencing strategies often independent of 
laborious and expensive field measurement operations [11,12]. Despite this, the scientific 
community was still engaged in finding optimised methodologies to mitigate the various 
uncertainties from lens distortions in the inertial measurement unit and the sensor’s interior 
and exterior orientation parameters. However, several recent works attested to the validity 
of these products according to the scientific community’s accuracy standards [13,14]. 

In various application areas, it is often advantageous to perform algorithms to extract 
vegetated areas and learn about their characteristics automatically [15,16]. In these 
contingencies, extraction can be easily achieved by using professional multiband sensors 
that include a band dedicated to the near-infrared (NIR) part of the spectrum 
(approximately between 760–900 nm), which commercial RGB cameras cannot capture. 
Furthermore, the use of these sophisticated but above all costly sensors compared to 
commercial RGB cameras makes operations unprofitable and constrained. The RGB 
cameras are often preferred among different sensors due to their low-cost availability, low 
power requirements, ease of use, and flexibility in implementation [17]. 

Therefore, this study concerns the investigation of vegetation indices (VIs) generated 
from visible bands taken from available and user-friendly sensors [18,19].  

In this study, after studying the performances of several VIs in the visible in various 
environments using different UAV technologies, the impact of the spatial resolution in the 
visible-VI’s vegetation extraction was evaluated. Indeed, as stated in Agapiou et al. [20] 
and Niederheiser et al. [21], spatial resolution was a key characteristic for vegetation 
mapping in remote sensing imagery in heterogeneous landscapes. In this regard, Räsänen 
et al. [22] compared multisensor and multiresolution products and analysed their 
vegetation mapping efficiency in terms of classification performance. As Kwan et al. [23] 
attested, the very high spatial resolution of UAV imagery often causes noise effects due 
to an increase in detectable targets, so it is essential to investigate the optimal resolution 
in each scenario in order to efficiently map vegetation. 

The manuscript is organised as follows: Section 2 describes the areas surveyed, the 
acquired data, and the technologies used. A description of the methodologies adopted to 
process these data is presented in its subsections. The analysis of the results obtained is 
addressed in Section 3, with a discussion in Section 4. Finally, the conclusions report the 
findings and future proposals for investigation. 

1.1. Related Works 
UAV images and photogrammetric outcomes permit us to obtain a lot of precise 

measurements about vegetation in a fast and easy way, define any characteristics, extract 
it from the entire product, and manage it for other purposes [24]. For example, for the 
generation of digital elevation models (DEM), it is necessary to exclude vegetated areas 
through masking operations; in other cases, it is considered useful to monitor any 
temporal changes, as crop yield estimation, landcover land-use monitoring, urban growth 
monitoring, drought monitoring, etc. [6,25]. Several authors argue that the NIR part of the 
spectrum has been widely exploited in remote sensing applications [26,27], implementing 
numerous VIs. These indices are formulated based on different mathematical equations 
that can detect healthy vegetation, taking into account atmospheric effects and ground 
reflection noise [16,28]. One of the most well-known and widely used VIs is the so-called 
normalised difference vegetation index (NDVI). NDVI is calculated using the near-
infrared and red-band reflectance values of multispectral images [25]. Although several 
VIs available for vegetation extraction, a challenge remains regarding selecting the most 



Remote Sens. 2021, 13, 3238 3 of 26 
 

 

appropriate for specific applications. This, of course, depends mainly on the scenario 
under investigation [29].  

On the other hand, other authors have proposed to investigate the advantages of 
using common sensors in the visible bands and then to evaluate their performance 
compared with previous sensors [30,31]. The need to structure pre-processing and 
postprocessing methodologies for geometric and radiometric contents in order to make 
these at least comparable with more sophisticated sensors has therefore emerged [32]. 

Consumer cameras often have the problem of not being radiometrically calibrated 
[4,33]. Indeed, to provide remote sensing data with a quantitative value, it is necessary to 
calibrate them both geometrically and radiometrically and then make an absolute 
atmospheric correction [34]. Precisely, the calibration allows the recovery of the existing 
relationship between the pairs of position and radiance on the ground and the coordinate 
and brightness of the image, respectively. 

Above all, data in the visible range are influenced by sensor characteristics, 
illumination, geometry, and atmospheric conditions [35]. Sensor calibration is achieved 
using known gain and offset coefficients to convert digital numbers (DNs) into sensor 
radiance and then, after normalisation, into sensor reflectance. 

Several methods took into account the effects of illumination and atmosphere on 
sensor radiance, including normalisation to a spectrally flat target or image average, 
radiative transfer models that simulate the interaction between radiation and the 
atmosphere, and surface empirical relationships between sensor radiance and ground 
reflectance [34]. Due to these calibration methods’ technical limitations, there is a need to 
identify a feasible and cost-effective radiometric calibration method when processing 
images collected by commercial digital cameras using UAVs [4].  

Low flight altitudes, generally below 150 m above ground result, due to regulatory 
restrictions on flight rules, in an increased number of collected images than those acquired 
from a satellite platform or piloted aircraft over the same area [36]. This leads to difficulties 
in performing in situ at-surface reflectance calibration measurements for all the images 
acquired by UAVs [37]. This requires the placement of numerous calibration targets in the 
field that homogeneously cover the area of interest. This results in longer timeframes of 
field activities and a significant effort in the field, considering the difficulties encountered 
in more impervious scenarios [38]. 

For this purpose, to perform a radiometric calibration of the generated orthomosaics, 
the variability of the results obtained from applying the empirical line method (ELM) [39] 
was compared with different spatial resolutions. Calibration validations were attested by 
comparing the extractable spectral signatures about targets in vegetated, asphalt, and bare 
soil areas with those found in the literature. This allowed us to assess the calibration 
process’s accuracy and, therefore, the level of confidence in interpreting the derived 
products. 

2. Materials and Methods 
2.1. Acquired Datasets 

For the needs of the current study, three different datasets were selected, based on 
the following criteria: (1) having a different context, (2) being captured by different 
UAV/camera sensors, (3) having a different georeferencing strategy, and (4) capturing by 
different altitude above ground level (AGL) and (5) different ground sample distance 
(GSD). These five connotations among the three datasets allow us to prove the versatility 
and non-specificity of the workflow proposed in the research. A preview of these areas 
can be found in Figure 1. Case study (a) was a construction site not far from the village 
centre of Fasoula in the Limassol district in Cyprus (Figure 1a), where vegetation was 
randomly scattered. An out-of-town environment in Grottole in the province of Matera 
(Italy) was selected as case study (b) (Figure 1b), where high vegetation, bare soil, and, 
above all, a viaduct were visible. An abandoned archaeological area, named Punta Penna 
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because of the promontory on the sea where it stands, in Torre a Mare, the southernmost 
district of the city of Bari (Italy) was considered as the third case (c) (Figure 1c). It should 
be mentioned that water was visible in this dataset. 

 
Figure 1. Case study: (a) a construction site located in Fasoula (EL), Cyprus, (b) an out-of-town 
viaduct in Grottole (MT), Italy, (c) an abandoned archaeological area in Bari (BA), Italy. The icon to 
the left of the panels identifies the north orientation of the areas. 

Table 1 shows the characteristics and technologies used for each dataset.  
For the second dataset, a GNSS acquisition campaign of 11 ground control points 

(GCPs) was carried out, measured in network real-time kinematic (nRTK) mode with an 
average accuracy of 2 cm the three axes, in order to perform an indirect georeferencing of 
the photogrammetric products. For the rest of the case studies, a direct georeferencing 
was preferred, i.e., in the first case using the geo-tags of each image measured in RTK 
using the receiver on board the vehicle (average accuracy of about 10 cm), while in the 
other case using the same geo-tags but measured with a low-performance GNSS receiver 
(average accuracy of 3 m). 

Table 1. Overview of surveyed scenarios adopted technologies and acquired datasets. 

 Case Study (a) Case Study (b) Case Study (c) 
Location Fasoula (EL), Cyprus Grottole (MT), Italy Bari (BA), Italy 

Equipment 
DJI Phantom 4 Pro RTK 

RGB f-8.8, Model 
FC6310S 

DJI Mavic 2 Zoom 
RGB f-4.386, Model 

FC2204 

DJI Inspire 1 v.2 
ZenMuse X3 RGB f-3.61, 

Model FC350 

Images 174 images 
(5472 × 3648 pix) 

287 images 
(4000 × 3000 pix) 

87 images 
(4000 × 3000 pix) 

AGL/GSD 50 [m]/9.7 [mm/pix] 30 [m]/1.3 [cm/pix] 90 [m]/3.9 [cm/pix] 

Georeferencing Strategy DG with RTK on-board 
IG with 11 GCPs in 

nRTK 
DG with low-cost GNSS 

receiver 

2.2. Photogrammetric Processing 
The processing of the collected datasets was based on the workflow proposed in 

[14,40,41]. The different parameterisations for each dataset were detailed in this 
paragraph. Agisoft Metashape software (v.1.4.1, Agisoft LLC -St. Petersburg, Russia) was 
used during the work on Intel(R) Core (TM) i7-3970X CPU 3.50GHz hardware, with 16GB 
of RAM and an NVIDIA GeForce GTX 650 graphics card to return the photogrammetric 
products. 

Three chunks were generated, and the workspace was adjusted, as shown in Table 2. 
The first step was to correctly set up the workspace and remove any blurred images, 
which could compromise the final results. After launching the estimate image quality tool 
(Agisoft Metashape), the results obtained with a quality value beyond a threshold equal 
to 0.7 were included in the processing chain. Briefly, this tool provides information about 
the sharpest borders detected on the image and can be used to find blurred images. For 
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the third case study, it was necessary to manually fix the GPS/INS Offset value equal to 
(0.005 ± 0.005, 0.100 ± 0.01, 0.250 ± 0.01) m, concerning the lever-arm vector. In contrast, 
for the other cases, this was automatically computed and recorded in each geotag by the 
technology equipped on board each aircraft. No manipulations of the radiometric 
information were performed, varying illumination and contrast, so as not to compromise 
the original data. 

Table 2. Schematisation of settings used in photogrammetric processes. 

REFERENCE SETTINGS 

Coordinate System 
(a) WGS84 (EPSG:4326) 
(b) WGS84 (EPSG:4326) 

(c) WGS 84/UTM zone 33N (EPSG:32633) 

Camera Positioning Accuracy 
(a) 0.1 m 
(b) 2 m 
(c) 3 m 

Camera Accuracy, Attitude 10 deg 
Marker Accuracy (Object Space) 0.02 m 
Marker Accuracy (Image Space) 0.5 pixel 

PROCESSES PLANNED 

Estimate Image Quality 
(a) [max, min]: 0.911702, 0.826775 
(b) [max, min]: 0.911062, 0.802699 
(c) [max, min]: 0.871442, 0.808870 

Alignment Cameras 

Accuracy: High 
Generic Preselection: Yes 

Reference Preselection: Yes 
Key Point Limit: 0 
Tie Point Limit: 0 

Adaptive Camera Model Fitting: No 

Gradual Selection 
Reconstruction Uncertainty: 10 

Projection Accuracy: 3 
Reprojection Error: 0.4 

Optimise Cameras K3, K4, P3, P4: No 

Build Dense Cloud Quality: High 
Depth Filtering: Aggressive 

Build DEM Source data: Dense Cloud 
Interpolation: Enabled 

Build Orthomosaic 
Blending Mode: Mosaic 

Surface: DEM 
Enable hole filling: Yes 

The sparse point cloud reconstruction was started in the next step, initiating the 
camera alignment processes as indicated in Table 2. The point clouds obtained were 
subjected to filtering by indicating thresholds (Table 2), already validated in Saponaro et 
al. [42], regarding reconstruction uncertainty, projection accuracy, and reprojection error. 
This allowed the bundle block adjustment (BBA) algorithms, which ran in Optimize 
Cameras, to transfer initial corrections to the models. 

According to the designed strategy (Table 1), a direct or indirect georeferencing of 
the models was performed, and a final BBA was performed to readjust the model. The 
primary source of error in georeferencing comes from executing the linear transformation 
matrix on the model [33]. The mitigation of potential nonlinear deformation components 
of the model and the minimisation of the sum of the reprojection error and the reference 
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coordinate misalignment were performed by reinitiating the estimated point cloud 
optimisation camera parameters based on the known reference coordinates.  

The point cloud densification algorithms were started as the last step, DEMs were 
calculated on these and image orthorectifications were generated based on the computed 
elevations. In general, orthorectification is transforming from a central projection of the 
original image to a parallel projection [34]. Consequently, displacement due to the tilt of 
the sensor and to the terrain relief was corrected. The blending mode has two options 
(mosaic and average) for the mosaicking step to select how pixel values from different 
(overlapping) images will be combined in the final texture layer. In this study, the selected 
mosaic options are shown in Table 2. Blending pixel values using mosaic mode does not 
mix image details of overlapping photos but uses only images where the pixel in question 
is located within the shortest distance from the image centre [33]. Four orthomosaics were 
exported for each scenario investigated: beginning from the highest resolution and then 
doubling, tripling, and quadrupling the resolution. Further down-sampling would not 
justify the use of UAV technology [43]. In particular, the Agisoft Metashape software 
made it possible to export the orthomosaics at the chosen resolution, resampling each time 
by bilinear interpolation. 

2.3. Empirical Line Method 
Prevailing environmental conditions highly influence UAV imagery at the time of data 

acquisition [10,18]: the atmospheric composition (e.g., water vapour and aerosols) and solar 
illumination patterns are the most impacting on the radiometric camera calibration. 

Consequently, while images of the same scene acquired from the same sensor at 
different times may have different properties [33], images acquired from the same sensor 
and campaign may also contain noise due to lens distortions, systematic sensor errors, as 
well as variation in camera sensitivity across the same image [38]. 

Therefore, it is essential to carry out a radiometric calibration of the 
photogrammetrically returned orthomosaics to be considered quantitatively and 
qualitatively comparable. 

The orthomosaics were imported into the open-source software QGIS (3.16.5 
‘Hannover’) [44]. Following the procedures adopted in [29], high and low reflectance 
targets were manually identified as represented in Figure 2, avoiding points with 
equivocal exposure.  
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Figure 2. Example of high (top) and low (bottom) reflectance targets selected for each case study. 
(a), (b) and (c) represent the three scenarios as proposed in Table 1. The round icon identifies the 
north orientation of the areas. 

Consequently, we considered the adequacy of the target sites against the criteria 
proposed in [34]: (a) high spatial homogeneity, concerning the spatial resolution of the 
image dataset, i.e. ideally, each target should cover an area of about 5 × 5 pixels in the 
reference images; (b) representativeness of the dynamic range of the radiance in the re-
gion; (c) low adjacency effects of targets located at an adequate distance from other volu-
metric scattering disturbances; (d) low slope effects, i.e., targets with flat or Lambertian 
surfaces; (e) low temporal variability of the spectral response, i.e., targets with stable spec-
tral response that do not show rapid changes due to short-term dynamic phenomena. 

Using the raw digital number (DN) values per band extrapolated from each target, a 
linear relationship was constructed by empirically associating to the DNs the extreme per-
centage values (range 0–100%) of reflectance, low and high, respectively. The method of 
calibrating the DN of each band is called empirical line method (ELM). Precisely, ELM is 
a non-rigorous but basic approach to calibrate the DN of images to approximate units of 
surface reflectance in case no further spectroscopic information is available on the ground 
[39], as in our work. It then constructs a relationship between sensor radiance and surface 
reflectance by calculating those nonvarying spectral targets and comparing these meas-
urements to the respective image DNs [4]. Thus, prediction equations were derived that 
can contemplate changes in illumination and atmospheric effects. Due to the low altitude 
at which the measurements were taken and the unavailability of precise information, the 
impact of atmospheric effects was deliberately ignored [29]. 

The ELM for the RGB UAV sensed data could be estimated using the following linear 
equation: 

(λ) = A * DN + B (1) 

where (λ) is the reflectance value for a specific band (range 0–100%), DNs are the raw 
digital numbers of the orthophotos, and A and B are terms which can be determined using 
a least-square fitting approach [29]. Although it is widely used with reasonable results, 
radiometric corrections using ELM can introduce noise, and caution should be exercised 
in its application. Indeed, most digital cameras have built-in algorithms that use a curvi-
linear function to transform electromagnetic radiation into digital signals in order to sim-
ulate the way human eyes perceive grey. Therefore, consumer cameras are designed to 
take pictures that look good, not to capture scientific data for research. Therefore, the re-
lationship between surface reflectance and raw image DNs remains poorly decipherable 
for these cameras [4]. Goodness-of-fit measures, such as the coefficient of determination 
(R2), were used to assess the accuracy of the ELM correction so that the regression’s suit-
ability could be quantitatively proven [34]. 

The A and B values of Equation (1) were estimated and used in the raster calculator 
in QGIS software to perform each band’s radiometric calibration. To validate the con-
sistency of the performed calibrations, 15 points per scenario were manually identified 
among vegetation, bare soil, and asphalt. Their spectral signatures were compared with 
those commonly accepted in the literature. 

2.4. Vegetation Indices 
Once the orthomosaics were radiometrically calibrated, various visible vegetation in-

dices were computed with pixel values ranging between 0 and 1. The ten (10) VIs used in 
this work and their formulas are shown below. In particular, referring to the study carried 
out in [29], the following vegetation indices were assessed to all case studies:  
• Normalized green–red difference index (NGRDI) [45] 



Remote Sens. 2021, 13, 3238 8 of 26 
 

 

−  +  ⁄ , (2) 

• Green leaf index (GLI) [46] 2 ∗ −  −  2 ∗ + + ⁄  (3) 

• Visible atmospherically resistant index (VARI) [47] −  +  −  ⁄  (4) 

• Triangular greenness index (TGI) [48] 0.5 ∗ [ − −  − − −  ] (5) 

• Red–green ratio index (IRG) [49] −  (6) 

• Red–green–blue vegetation index (RGBVI) [50] ∗  − ∗ / ∗  + ∗  (7) 

• Red–green ratio index (RGRI) [51] /  (8) 

• Modified green–red vegetation index (MGRVI) [50] −  +  ⁄  (9) 

• Excess green index (ExG) [52] 2 ∗ −  −   (10) 

• Colour index of vegetation (CIVE) [53] 0.441 ∗ − 0.881 ∗ + 0.385 ∗ + 18.787 (11) 

where  is the reflectance at the blue band,  is the reflectance at the green band,  
is the reflectance at the red band,  is the wavelength of the blue band,  is the wave-
length of the green band, and  is the wavelength of the red band. 

As can be seen in Equation (5) to calculate the TGI index, the peak wavelength sensi-
tivity of the RGB camera was required. Therefore, the index calculation still depends on 
the assumption that the user knows the peak wavelength sensitivity of the camera used. 
Low-cost RGB cameras were not supplied with the specifications of the mounted CMOS 
sensors, as in our cases [17]. It was therefore chosen to set default values for all cases to = 480 nm, = 560 nm, and = 655 nm. 

The results were then analysed and compared using 150 random points automati-
cally identified in the orthomosaics [54,55]. 

2.5. Classification Algorithm Feedback 
The raster files concerning the radiometrically corrected RGB bands and the maps 

concerning the VIs, which were the most significant in terms of results as subsequently 
explained in paragraph 3.3, were imported into the Sentinel Application Platform (SNAP) 
software [56]. Actually, this is a common open-source architecture for ESA Toolboxes 
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ideal for the exploitation of earth observation data. As its name implies, it is mainly de-
signed for processing data concerning Copernicus Sentinel missions [56], but it is func-
tional for different operations on different data as well [54,55].  

SNAP integrates a multitude of tools for exploring and processing multisource data. 
For the purposes of this work, this platform offers the possibility to run supervised clas-
sification algorithms. Among these, random forest (RF) is a widespread supervised clas-
sification and tree regression technique [57]. Specifically, the RF algorithm randomly and 
iteratively samples data and variables to generate a large set, called a forest, of classifica-
tion and regression trees [58]. The classification output describes the statistics of many 
decision trees, resulting in a more robust model than can be obtained from a single deci-
sion tree produced by a single execution of the technique [57]. Thus, the regression output 
from RF effectively represents the average of all regression trees grown in parallel without 
pruning [59]. The iterative nature of RF gives it a distinct advantage over other methods 
in that the data is effectively bootstrapped, thus feeding random subsets of the training 
data, to obtain more robust predictions and reducing the correlation between trees [60]. 

For each scenario, containers of vectors were generated for the training areas about the 
classes’ vegetation, asphalt, and bare soil. For each class, 10 areas were manually drawn 
uniformly distributed over the whole scenario and including the radiometric heterogeneity 
of each class. Subsequently, 30 pins were placed for each class, which will act as validation 
points, i.e., pixels whose membership of a class is certified and whose classification predic-
tion is verified. The RF algorithms were carried out using the generated training areas and 
using only the RGB bands as resources first, after which the information from the most sig-
nificant vegetation maps, calculated in the previous step, was added. From the results ex-
tracted for each scenario, at the different resolutions, according to the criteria defined in [61], 
the confusion matrices and F-scores [62] for each class were arranged. 

The F score proves to be an efficient metric of the accuracy of a test [62]. It is calculated 
from the combination of precision and recall of the test: precision is the number of true 
positive results divided by the number of all positive results, including those not correctly 
identified, while recall is the number of true positive results divided by the number of all 
samples that should have been identified as positive. The score takes values in the range 
from 0 to 1, where the latter represents perfect accuracy and recall, while in the opposite 
case accuracy is poor and reorganisation of the classification process is inevitable. 

3. Results 
Based on the photogrammetric processing chain described in Section 2.2, four ortho-

mosaic solutions were exported for each scenario investigated. The spatial resolutions 
(m/pixel) established were reported in Table 3. Imported into the open-source platform 
QGIS, each orthomosaic underwent the same processing workflow. 

Table 3. List of spatial resolution solutions generated per scenario. The GSD values below represent 
an approximation to the nearest millimetre of the effective values. 

 Case Study (a) Case Study (b) Case Study (c) 
Orthomosaic [m/pix]    

{1} min.res. {1} 0.001 {1} 0.017 {1} 0.036 
{2} min.res.x2 {2} 0.019 {2} 0.035 {2} 0.071 
{3} min.res x3 {3} 0.029 {3} 0.052 {3} 0.107 
{4} min.res.x4 {4} 0.039 {4} 0.070 {4} 0.142 

3.1. Radiometric Calibration of the Raw Orthophotos 
Figure 3 shows the empirical lines obtained and the respective equations after the 

implementation of the ELM method. The coefficient of determination R2 for each re-
gressed empirical line showed an optimal prediction condition among the manually cho-
sen points. Comparing the R2 values obtained at varying spatial resolutions, the values 
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are somewhat comparable. There is a slight, but not significant, decrease only in the solu-
tion {4}, thus indicating an increase in prediction errors. Future investigations could ex-
amine stronger down-sampling cases, thus identifying possible limitations of the meth-
odology in finding these regression lines.  
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Figure 3. Regression lines obtained by applying ELM: DNs values in abscissa related to percentage 
reflectance values inordinate. Scenarios (a), (b) and (c) are represented in spatial resolutions {1}, {2}, 
{3} and {4} in the three bands (B1, B2, B3), red, green and blue respectively. In each graph, the re-
gression equation and the coefficient of determination R2 can be observed. 
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The values of coefficients A and B, as given in equation (1), derived from the regres-
sion line equations in Figure 3, were used for the radiometric calibration of each band of 
each resolution solution listed in Table 3.  

To confirm the radiometric correction, the reflectance values of each calibrated raster 
were extracted, and the spectral signatures of points falling in vegetated areas, in asphalt, 
and bare soil were constructed (Figure 4). 
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Figure 4. Spectral signatures of 15 control points manually captured from radiometrically cali-
brated rasters. The points are distributed among five points in vegetated areas, five in asphalt ar-
eas, and five in bare ground areas. The results are shown in scenarios (a), (b) and (c) in spatial res-
olutions {1}, {2}, {3} and {4}. In abscissa the band number, inordinate the percentage reflectance 
value recorded. 
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Figure 5. Distribution of random points analysed for examining the yields of vegetation indices in 
scenarios (a), (b) and (c). The distribution for scenario (c) subjected to the masking operation of the 
water zones, called (cmask), was also represented. 

 
Figure 6. Counting of points in vegetated and non-vegetated areas. Points removed due to incorrect 
reflectance values were shaded in grey. 

3.3. Statistics 
Given the distinction between points in vegetated and non-vegetated areas (Figure 6), 

the two statistical populations for each VI, for each resolution solution and scenario, were 
subjected to a t-test with a 95% confidence level to interrogate their significance for subse-
quent statistical inferences. Therefore, the latter presented acceptable and not acceptable re-
sults in terms of significance relative to the chosen confidence level. In particular, the not 
acceptable results already attested to a complete inability to separate vegetated and non-
vegetated areas since the mean values of the indices cannot be defined independent. 
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−  max ( )  (12) 

represents the adopted descriptor of the propensity of each vegetation index to attesting 
separability in the extraction of the above classes. The results were presented in Table 4. 
Blue indicates negative normalised difference value, while red indicates positive value 
per vegetation index for each spatial resolution. Lighter colours thus indicate a low degree 
of separability. The acronym NA identifies not acceptable results, defined above, due to 
differences between the means of the indices that are not significant for the 95% confi-
dence level adopted in the t-test. 

Overall, the limit values of the normalized difference range from a minimum of 
−675.3% to 304.9% for all indices in solution {1}, from −482.1% to 3123.2% in {2}, from 
−350% to 6337.3% in {3} and finally from −654.8% to 595.3% in solution {4}. The extreme 
values of these ranges were found in the TGI index in all analysed resolutions. In general, 
the remainder were more moderate values. The overall analysis of the ratio between not 
acceptable and acceptable values returned by the t-test was 0.45 in case {1}, 0.40 in {2}, 
0.325 in {3} and 0.35 in {4}. The optimal resolution for obtaining a greater number of veg-
etation indices at a 95% confidence level of the t-test was identified in {3}.  

The results obtained in the (a) case of Fasoula (Cyprus) showed a higher mean ac-
ceptability ratio in the t-test equal to 0.175. Regular surfaces, low vegetation, and clearly 
distinguishable feature point certainly make orthomosaics more workable for vegetation 
indices. Subsequently, a somewhat comparable average acceptability ratio was found in 
the scenario (cmask). In this case, a ratio of 0.2 was recorded between acceptable and not 
acceptable values in all resolutions. In particular, the masking of the water areas from the 
orthomosaic improves their interpretability by the indices, returning acceptable values of 
separability between the classes investigated. Case (c) showed a mean ratio of 0.65 be-
tween the analysed resolutions. Particularly remarkable were the values assumed by the 
IRG index (cmask), compared with the corresponding NA results in case (c). For the follow-
ing statistics, it was therefore preferable to focus on the (cmask) case.  

Last, case (b) was characterised by an average acceptability ratio of 0.5. Only the latter 
scenario showed a linear improvement in the acceptability ratio as the spatial resolution 
decreases. 

The highest magnitude was recorded in case (c){3}, so without masking, about the 
TGI index with a value of 6337.3%. Besides, this index presented the acceptability ratio 
equal to 0, showing itself to be functional in all cases and taking on very consistent values. 

The ExG index looked functional in each scenario (ratio equal to 0) and at each reso-
lution adopted: the most significant scores were presented in scenarios (b) and (cmask). 
Noted a percentage deviation of more than 20% between scenarios (c) and (cmask). 

The VARI index was not acceptable for all cases analysed, except for case (b) at reso-
lution {4}, thus presenting the highest ratio of 0.9375 among the indices. Moreover, it did 
not have a score such that it can be considered functional in the separability between clas-
ses. As already resulted in [29], the CIVE (ratio 0.0625) index obtained the lowest score for 
all the resolution solutions in each scenario; among them, the scenario (cmask) is the most 
reactive. The NGRDI behaved similarly to the VARI index and was only acceptable in 
resolutions {2} and {3} of scenarios (a) and (c), with insignificant scores below 15%. Its 
acceptability ratio was 0.75. 

Scenario (c) did not respond to the MGRVI (ratio 0.4375), RGRI (r. 0.4375), RGBVI (r. 
0.375), IRG (r. 0.3125), and GLI (r. 0.4375) indices, while significant scores were obtained 
in both (cmask) and (a), except for the RGRI index in the latter scenario. Noteworthy values 
were recorded in scenario (cmask) for the IRG index. 
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Table 4. The normalised difference (%) between the mean value  for each index over vegetated 
areas and nonvegetated areas. Blue indicates negative normalised difference value, while red, positive 
value per vegetation index for each spatial resolution. Lighter colours thus indicate a low degree of 
separability, while the acronym NA identifies not acceptable values due to failure of the t-test. 

[%]  CIVE ExG MGRVI RGRI RGBVI IRG TGI VARI GLI NGRDI 

{1} 

(a) NA 21.7 12.1 −6.0 19.7 −42.4 −564.1 NA 22.5 NA 
(b) −0.3 40.0 NA NA NA −63.1 −675.3 NA NA NA 
(c) −0.1 16.3 NA NA NA NA 304.7 NA NA NA 

(cmask) −0.5 47.3 21.3 −18.5 36.8 −207.2 304.9 NA 32.6 NA 

{2} 

(a) −0.1 26.7 14.2 −6.2 26.6 −39.4 −482.1 NA 24.7 13.7 
(b) −0.3 46.3 NA NA NA NA 3123.2 NA NA NA 
(c) −0.1 15.6 NA NA NA NA 137.1 NA NA −12.3 

(cmask) −0.5 44.0 23.3 −19.6 41.5 −316.1 282.0 NA 38.3 NA 

{3} 

(a) −0.1 27.9 14.7 −5.4 29.8 −40.1 −350.0 NA 28.3 14.1 
(b) −0.3 43.7 NA NA 26.3 −101.5 2201.4 NA 25.9 NA 
(c) −0.1 14.4 NA NA NA NA 6337.3 NA NA −13.8 

(cmask) −0.6 45.5 21.8 −19.6 34.5 −310.4 326.7 NA 27.9 NA 

{4} 

(a) −0.1 31.4 11.8 −7.1 25.2 −46.7 −654.8 NA 23.9 NA 
(b) −0.3 48.9 17.4 NA 32.7 −100.7 531.1 5.7 NA NA 
(c) −0.1 14.1 NA NA NA NA 398.5 NA NA NA 

(cmask) −0.6 47.2 26.1 −17.9 48.4 −190.4 595.3 NA 47.9 NA 

In general, the case study (cmax) (archaeological area with water masking) tended to 
give high differences between vegetated and non-vegetated areas regardless of the ap-
plied vegetation index, indicating that postprocessing of the images by removing areas of 
ambiguity, such as water, optimises interpretability in the analysis. It was not possible to 
identify the most challenging environment to work with and try to discriminate vegeta-
tion from other areas at any resolution solution. The general trend suggested that as the 
sampling frequency increases, lower resolutions reduce ambiguities or noise in vegetated 
areas, thus improving discriminability. From Table 4, it can be deduced that within the 
same trend, some resolutions work better than other lower resolutions and are therefore 
optimal in describing the radiometric information. 

Based on the results of Table 4, a performance comparison between indices was set 
up, i.e., a normalised difference for all case studies between all vegetation indices refer-
enced to the NGRDI index. The results of this analysis were shown in Figure 7 for each 
scenario in the various spatial resolution solutions. The normalised difference indicated 
the percentage difference between: −

 (13) 

where each mean value was normalised to the maximum value of each index among veg-
etated points, therefore, in Figure 7, high values imply that the VIi index performed better 
than the NGRDI index; on the contrary, negative values suggest that the specific index 
performed worse. Trivially, vegetation indices around zero have comparable performance 
with the reference index. 
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Figure 7. Normalised difference (%) for all case studies among all vegetation indices concerning the 
NGRDI index is considered the reference. 
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From the results in Figure 7, it was observed that the IRG index performed positively 
in comparison to the NGRDI index for all case studies in any resolution solution. In most 
cases, the VARI index also exhibited positive behaviour relative to the reference index, 
except for scenario (a) in resolution {1} in which it takes on a negative but near-zero value 
of −0.48%. However, the IRG and VARI performance did not show efficiencies of more 
than 10%, and in the case of the VARI index, this is almost as good as the NGRDI index. 
On the other hand, given the considerations from Table 4, the VARI index cannot be con-
sidered completely efficient. With its acceptability ratio of 0.3125, the IRG index was 
shown to be non-functional in scenario (c). Therefore, it is based on Figure 7, efficient for 
this work. The latter presents a slightly decreasing efficiency in the case study (a), increas-
ing in case (b) and peaking at resolution {3} in case (cmax). 

An irregular performance was that of the TGI vegetation index as it provided for case 
(a) returns of over 60%, up to a maximum of 121% in the different resolutions, while for 
cases (b) and (cmax) very negative values, except case study (b) at the first resolution {1} 
where it even reached a value of 144%.  

The remainder of the calculated vegetation indices, on the other hand, show negative 
returns compared to the reference index: not excessively high values of less than −20%. It 
was not possible to describe a normal behaviour of the efficiency of the indices as the 
adopted resolution varies. In this regard, Agapiou [29] stated that for each case study, the 
optimal index is not unique, which is also in line with the previous results in Table 4. Thus, 
it is not possible to deduce a direct relationship between the resolution of the orthomosaic 
and the index returned. 

3.4. Supervised Classification Responses 
After performing the supervised classification procedures using the RF algorithms, 

the validation metrics were extracted. In particular, considering the comparison between 
the labelling assigned and that predicted by the software in the 90 pins placed, for each 
scenario, at each resolution and for each classification mode (RGB bands, adding the TGI 
band, adding the IRG band), the confusion matrices were extracted and from these the F-
Scores were computed. In Table 5, the F-Scores were summarised for each class: vegeta-
tion (V), asphalt (A) and bare soil (B). In the present examination of the third scenario, the 
unmasked data (c) was preferred in order to analyse the performance of the classification 
algorithms at a basic level of image processing, i.e., only radiometrically corrected. 

In view of the results shown in Table 4 and Figure 7 in Section 3.3, a reasonable in-
terest in the vegetative indices TGI and IRG and their behaviour was inferred. While the 
TGI index was taken on significant values in Figures 7, these were not positive in all cases. 
On the other hand, the IRG index, although with much smaller values, always presents 
effective values. The classifications were therefore carried out by first using only the radi-
ometrically corrected RGB bands, then the TGI and IRG vegetation maps were used as 
additional resources separately. In Table 4, the TGI index showed the maximum accepta-
bility ratio, i.e., it was continually functional with always significant values. While the IRG 
index did not work for scenario (c), it reactivated for scenario (cmask) such that the interest 
in the results obtainable from the classification in (c) increases. 

Given the considerations stated in paragraph 3.1, a coarse radiometric calibration 
such as that by ELM does not allow a clear distinction to be made between and in the 
image components. This translates in the classification into a reduction of the ability to 
distinguish classes such as asphalt and bare ground, which in several cases may have 
spectral similarities (e.g., as in the case of very old asphalt). As can be observed in Table 
5, the low F-score values (minimum case of 0.33 for A in (c), {1}, +IRG band) are attributa-
ble to these two classes, while the class concerning vegetation presents values always 
higher than the minimum 0.67, found in case (a), spatial resolution {4}, +IRG band mode. 
The highest F-score value of 0.98 was computed for four cases of vegetation at resolutions 
{2}, {3}, {4} in the classifications with vegetation indices and all in scenario (b). While the 
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algorithms are facilitated in this scenario by the high presence of vegetation, the resolution 
{1} is found to be less effective due to the presence of noise and distortions in the pixels. 

Table 5. Summary of the F-score values calculated for the cases under study, at various spatial resolutions and for each 
class: V identifies vegetation, A stands for asphalt while B represents bare soil. Colours tending towards blue identify low 
F-score values for each resolution in the three classification modes, conversely, colours tending towards red identify high 
F-score values. In bold are the average values of the F-scores per case study and classification mode. 

 RGB Bands + TGI Band + IRG Band 
V A B V A B V A B 

(a) 

{1} 
0.77 0.67 0.60 0.87 0.91 0.74 0.70 0.54 0.45 

0.68 0.84 0.56 

{2} 
0.72 0.72 0.72 0.85 0.95 0.76 0.68 0.64 0.50 

0.72 0.85 0.61 

{3} 
0.7 0.65 0.54 0.78 0.81 0.57 0.70 0.65 0.54 

0.63 0.72 0.63 

{4} 
0.73 0.82 0.50 0.87 0.92 0.73 0.67 0.78 0.40 

0.68 0.84 0.62 

(b) 

{1} 
0.85 0.78 0.75 0.95 0.88 0.82 0.90 0.79 0.81 

0.79 0.88 0.83 

{2} 
0.94 0.70 0.62 0.98 0.81 0.85 0.87 0.73 0.82 

0.75 0.88 0.81 

{3} 
0.95 0.94 0.87 0.85 0.96 0.75 0.98 0.79 0.79 

0.92 0.85 0.85 

{4} 
0.94 0.86 0.85 0.98 0.92 0.95 0.98 0.97 0.95 

0.88 0.95 0.97 

(c) 

{1} 
0.79 0.42 0.65 0.82 0.51 0.68 0.77 0.33 0.73 

0.62 0.67 0.61 

{2} 
0.8 0.86 0.79 0.87 0.84 0.79 0.79 0.67 0.81 

0.82 0.83 0.76 

{3} 
0.87 0.84 0.87 0.93 0.70 0.76 0.84 0.60 0.81 

0.86 0.80 0.75 

{4} 
0.79 0.83 0.81 0.77 0.72 0.83 0.82 0.75 0.95 

0.81 0.77 0.84 

Focusing on scenario (a), it is evident that the launched classifications, at all the ana-
lysed resolutions, benefited from the TGI index while the IRG index produced limited 
negative effects with respect to the RGB base case. Contrary to the predictions dictated by 
Table 4 and Figure 7 that noticed the case {4}, the spatial resolution case {2} using the TGI 
index was the most efficient in terms of performance. Indeed, the lower resolution case {4} 
was almost comparable in terms of average performance but the RF algorithms imple-
mented in the SNAP software benefited from the better resolution of {2} to build better 
decision trees. 

In scenario (b), the values obtained in all cases were noteworthy, but those obtained 
using the vegetative indices stand out. It was not possible to identify a unique trend 
among these and at each resolution the F-scores vary producing for each class limited 
positive or negative effects. In general, the lower resolution produced more significant 
values, supporting the hypothesis that a reduction in resolution reduces the distortions 
and noise in pixels caused by SfM techniques. Among all cases, the RF algorithms pro-
duced the most effective results using the IRG information in solution {4}. In comparison 
with the results obtained in the previous section, this product can be considered consistent 
with the performance of the discussed statistics. 
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Finally, scenario (c) presented some emblematic values. In particular, although the F-
score values for the vegetation class were considered valid in all cases, the other two clas-
ses presented very fluctuating values, reaching values even lower than 0.5. From the point 
of view of the vegetation class extraction, the highest F-score value was shown by using 
the TGI index in the {3} solution, as also demonstrated in Table 4. In fact, this latter reso-
lution presented the highest performance values, proving to be optimal for the classifica-
tions of this scenario. Among these, the most efficient case for the three classes analysed 
was the one that used only the RGB bands during classification. This demonstrates, once 
again, that in this scenario the usable indices can only become more significant after a 
masking procedure. 

Figure 8 shows the most successful classification maps obtained. 

 
Figure 8. Most suitable results for the scenarios: (a), spatial resolution {2}, classification mode with vegetative index TGI; 
(b), spatial resolution {4}, classification mode with vegetative index IRG; (c), spatial resolution {3}, basic classification mode 
with RGB bands. 

4. Discussion 
The results shown in the previous section provide some useful considerations to pre-

pare an interesting discussion about vegetation extraction in orthomosaics, in various en-
vironments and at various spatial resolution solutions.  

The application of vegetation indices based on visible bands, perhaps of a nonmetric 
camera, highlights the potential for discriminating vegetated areas widespread and rou-
tine. Hence, to understand their limitations and efficiencies, the results presented in Table 
4 indicated the behaviour of different indices in performing high or low separability be-
tween vegetated and non-vegetated areas. In several cases, even some indices could not 
return significant values and therefore not acceptable at the 95% confidence level of the t-
test. As already documented in other recent works [18,25,29], it has been shown that there 
cannot be a single index performing in the same way for the various case studies. Conse-
quently, it was apparent that each index is suitable for particular environmental contexts. 
Thus, there is a need to generate an abundant collection of cases to statistically deduce 
any similarities between the various indices and the analysed contexts. 

In this regard, the values of the average acceptability ratios allowed us to deduce 
certain issues. The context of some orthomosaics can be quite complex, such as the case 
study (c). The results learned in Table 4 showed how the masking of highly ambiguous 
areas, such as areas with the presence of water, completely improves the interpretability 
of the images. This was also demonstrated by the results obtained in Table 5 about the 
efficiency of the classifications. Indeed, masking leads to the exclusion of false-positive 
points. Differences in the sensitivity of cameras to capture backscattered reflection values 
in specific wavelengths can be significant, as has been shown in the past by other studies 
[38]. In addition to the spectral complexity and heterogeneity of the scenario, some other 
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factors can affect the indices’ overall performance: e.g., inhomogeneous lighting (low-
clouds effect), sun exposure (shaded and partially sunny areas), and presence of dense 
vegetation. In scenario (b), photogrammetric processing of densely vegetated areas gen-
erated many noisy and distorted areas. Generally, these areas appeared as a constant 
source of reconstruction errors due to the low efficiency of SfM techniques in defining 
unambiguous points. The matching algorithms are weak in identifying stable tie points in 
vegetated areas, which generates artefacts and distortions that are challenging to resolve 
[13]. As shown in Table 4, this set off a loss of efficiency of extraction techniques in vege-
tated areas. In Table 5, however, it is shown how a lower spatial resolution can benefit the 
classification results, as distortions and noise are reduced in the subsampling. Scenario (a) 
proved to be more advantageous in applying the vegetation indices as it was character-
ised, albeit with a heterogeneous context, by different points and areas not subjected to 
high noise. On the other hand, only in this scenario is the TGI index considered very inci-
sive, given the observations deduced from Tables 4 and 5 and Figure 7. This supports 
what had already been stated: the efficiency of one vegetation index less being than an-
other is indeed linked to the context detected. Another important finding in this matter 
was that in cases where a ratio between combinations of visible bands was included in the 
formulation of indices (Equations (2)–(4) and (7)–(9)), these did not produce acceptable 
results in scenarios (b) and (c).  

Recent studies [20] have shown that the optimal resolution for remote sensing appli-
cations was related to the spatial characteristics of the targets under examination and their 
spectral properties. Indeed, in [20] the high resolution of an orthomosaic was not always 
optimal for a given vegetation index in the various case studies. Using low-cost camera 
sensors, it is assumed that there are overlaps among channels that cannot independently 
record distinct ranges of wavelengths. As no information on this is available, however, it 
is not possible to measure its relevance. This issue first was transmitted to the radiometric 
information recorded in the pixels and subsequently to the formulation of the indices, 
whose components thus become correlated, as indeed observed.  

Considering Table 4, the resolution {3} presented a reasonable acceptability ratio for 
all scenarios and this was also revealed in Table 5 about the results of the classification. 
This was not consistent with the magnitude of separability of the examined indices and 
the efficiency concerning the NGRDI reference index (Figure 7). Actually, a reduction in 
the spatial resolution smoothens out any noises or distortions caused in the photogram-
metric generation of orthomosaics or derived from the poor quality of the starting images. 
In contrast, looking at Figure 7, it was therefore evident that each vegetation index does 
not have a unique behaviour when the resolution changes: each of them has an optimal 
resolution for each analysed context, thus indicating the complexity of extrapolating a di-
rect relationship between these parameters. 

Comparing the observations of Table 4 and Figure 7, only the IRG index presents 
profitable characteristics for all scenarios in each resolution solution. Although its effi-
ciency compared to the NGRDI was less than −5%, wide use of the ExG index cannot be 
excluded. This was indeed consistent in discriminating vegetated areas in any context and 
any resolution solution. 

A key step was to obtain an overview of the impacts of processing and statistics on 
pixel-based classification algorithms. Analysing the metrics computed from the confusion 
matrices (Table 5), no linear dependence between the spatial resolutions and the incidence 
of the bands used in the classification was noticeable. Indeed, this incidence itself depends 
on the analysed scenario and as highlighted in (c), some manipulations of the dataset at 
the base level can improve its interpretability by the classification algorithms. In all the 
analysed cases, the orthomosaics obtained from photogrammetric surveys can be consid-
ered valid tools for the vegetation extraction, while the distinction between non-vegeta-
tion classes was more difficult. Finally, this processing chain was a valid expedient for the 
extraction of vegetation classes, accessible to a wide range of users and application cases. 
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5. Conclusions 
A large body of literature notes the potential and versatility of UAVs. The use of these 

relatively low-cost platforms combined with the strong development of SfM-MVS tech-
niques can return a wide range of photogrammetric products, including high-resolution 
orthomosaics i.e., higher resolution than traditional aerial or satellite observations, of 
small and medium areas. In many applications mainly related to the monitoring of agri-
cultural areas, forests, etc., the ability to discriminate and extract vegetated areas is indis-
pensable. The use of sophisticated sensors capable of capturing spectral information in 
the near-infrared band would facilitate operations. However, in most cases, UAVs are 
equipped with low-cost sensors sensitive to the visible part of the spectrum (RGB), mak-
ing the detection of vegetated areas quite challenging. Furthermore, when working with 
radiometric information, the images’ radiometric calibration is indispensable to convert 
the raw digital numbers (DN) into reflectance values. In robust terms, calibration requires 
field campaigns of a spectroscopic survey of defined targets to obtain a good approxima-
tion of the backscattered radiance of the same targets later observed in the images. 

In this work, the ELM radiometric correction technique of orthomosaics generated 
from images acquired by UAV of three different case studies, with different contexts, RGB 
sensors, and different spatial resolution solutions has been explored. This easily applica-
ble procedure does not require any knowledge of ground targets or field campaigns with 
spectroradiometers and spectral reflectance targets. The calibrations applied to the vari-
ous cases screened returned spectral signatures of control points extracted in vegetation 
areas, asphalt, and bare soil in line with those widely accepted in other literature. 

Ten VIs, sensitive in the visible part of the spectrum, were computed based on the 
visible bands. The results were further manipulated to examine the performance of each 
index and then to quantify their impacts on the RF supervised classification procedures. 
From the results of this study, the following aspects can be highlighted: 
• The performance of each index varied for each case study, as already observed in 

other works. Therefore, to estimate the performance of the indices in general, it is 
essential to construct a broad case history covering as many contexts as possible. 

• The TGI index, able to return very significant and functional values in terms of sep-
arability between vegetated and non-vegetated areas, performs better than the 
NGRDI index, taken as a reference, only in a regular context without ambiguous ar-
eas. The IRG index, on the other hand, performs well in all scenarios but with mod-
erate performance. 

• High resolution of an orthomosaic was not frequently optimal for vegetation indices 
in the various case studies; by reducing the resolution, the noise in each pixel is 
smoothened out, improving the radiometric information. In fact, the classification al-
gorithms gave optimal results for {3} resolutions, demonstrating that very high-reso-
lution datasets are not always a guarantee of more precise results. 

• The masking of areas that are strongly characterised by ambiguity, such as those in 
the presence of water, improves their interpretability by the indices and increases 
their performance. 

• In areas with dense vegetation, the reduced ability of SfM-MVS techniques to estab-
lish and triangulate unambiguous junction points produces artefacts or obvious dis-
tortions that compromise VIs’ performance in extracting correct information. 

• Looking at the average performance of the RF classification algorithms, for each case 
analysed, it emerged that RGB orthomosaics can be considered a valid source for 
generic vegetation extraction. 
This study’s results can be applied to any RGB orthomosaic, taken from a low-alti-

tude system or aerial imagery. The large fleet of low-cost ready-to-fly (RTF) UAVs 
equipped mainly with inexpensive RGB sensors will continue to grow, and using the ap-
proach adopted in this work is an opportunity to exploit the masses of data that can be 
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acquired fully. In the future, targeted VIs will be developed to address specific needs, 
making vegetation extraction a simpler and more straightforward procedure.  

Given the considerations learned about the behaviour of the VIs at varying spatial 
resolution, more insights can be addressed in future studies about the variability of the 
same vegetation indices based on visible bands about multitemporal UAV acquisitions of 
the same scenario. 
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