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Abstract: The multitemporal acquisition of images from the Sentinel-1 satellites allows continuous
monitoring of a forest. This study focuses on the use of multitemporal C-band synthetic aperture
radar (SAR) data to assess the results for forest type (FTY), between coniferous and deciduous forest,
and tree species (SPP) classification. We also investigated the temporal stability through the use of
backscatter from multiple seasons and years of acquisition. SAR acquisitions were pre-processed,
histogram-matched, smoothed, and temperature-corrected. The normalized average backscatter
was extracted for interpreted plots and used to train Random Forest models. The classification
results were then validated with field plots. A principal component analysis was tested to reduce
the dimensionality of the explanatory variables, which generally improved the results. Overall, the
FTY classifications were promising, with higher accuracies (OA of 0.94 and K = 0.86) than the SPP
classification (OA of 0.66 and K = 0.54). The use of merely winter images (OA = 0.89) reached, on
average, results that were almost as good as those using of images from the entire year. The use of
images from a single winter season reached a similar result (OA = 0.87). We conclude that multiple
Sentinel-1 images acquired in winter conditions are feasible to classify forest types in a hemi-boreal
Swedish forest.

Keywords: SAR; backscatter; forest classification; C-band; Sentinel-1

1. Introduction

Accurate and complete information about forests is required to fully understand the
carbon balance and forest cover changes over time. Satellites are suitable for supporting
this by acquiring images frequently and globally [1]. At a global level, the main charac-
teristics to know about forests are their status and extent [2]. In order to keep this kind
of information updated, the role of satellite images is beneficial for monitoring land use
and its changes [3]. At a local level (regional or property) more detailed information is
necessary to assess the status of a forest. Some information is provided by National Forest
Inventories (NFIs) and, at property level, by local field plots implemented in management
plans. The forest species composition is important when assessing, e.g., forest biodiver-
sity and ecosystems considering also functions and processes, structures and services [4].
Knowledge about forest species composition can support the establishing of management
plans to reach different goals, e.g., game and hunting, maximizing volume production,
or enriching biodiversity and conservation [5]. As reported by the Forest Resources As-
sessment in 2020 [2], public interest is focused on forest change, e.g., degradation and
deforestation, although many forests have changed in other ways. These other changes
may not be immediately visible to the general public, such as in composition and density.
Climate change is expected to cause substantial shifts in tree species distribution and forest
structure [6]. Such impacts stress the need for continuous monitoring of forest changes that
are predicted to be more rapid in the future [7].
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The use of remote sensing (RS) techniques in forestry has increased rapidly during
the last decades, to obtain information about forests at large scales (e.g., the boreal forest).
RS tools can provide updated information to estimate quantitative variables such as tree
height, volume and diameter. Furthermore, RS can be used to estimate qualitative data such
as tree species, biodiversity [4], habitat loss and degradation, and the spread of invasive
species [8]. RS images have long been used in forestry, earlier mainly relying on aerial
photographs [9], but more data are now becoming available from other sources. Airborne
platforms are still frequently used to provide ecological parameters at high resolution, e.g.,
leaf area index, species composition, canopy cover and gap closure [10]. In a review paper,
Yu et al. [11] provided a solid comparison between different RS sources when used to re-
trieve forest variables (e.g., height, volume and diameter) at plot level. Fassnacht et al. [12]
noticed that the number of tree species classification studies using RS has increased over
the past 40 years, with emphasis on laser data and optical multispectral systems. Radar
sensors have been used less, although these can provide data at intermediate resolution
(from meters to tens of meters) and as long time series [11]. Radar data have been used in
research related to forestry at least since the 1990s [2,13]. The Copernicus Earth Observa-
tion program by the European Space Agency (ESA) has facilitated the use of continuous
synthetic aperture radar (SAR) data through the Sentinel satellites, starting in 2014. They
guarantee a continuous data flow of images suitable for forestry applications. SAR can
be used to create two- and three-dimensional reconstructions covering large areas [14].
The information provided by SAR (e.g., radar backscatter) is related to the Earth’s surface,
trees and vegetation canopy [12,15]. The wavelength of a SAR sensor determines the pen-
etration of the transmitted microwaves [15,16]: longer wavelengths (e.g., L- and P-band)
penetrate deeper into the vegetation canopies, whereas shorter wavelengths (e.g., C- and
X-band) are reflected by small objects such as leaves and branches. SAR data are able to
retrieve information about the forest continuously, to monitor surface cover and forest
biomass [17], and to detect changes in the forest status [18], e.g., deforestation and land
degradation [19], and the detection of natural hazards [20,21]. Many SAR studies have
focused on the discrimination of land types [22,23], and fewer have addressed tree species
classification, although SAR images with different wavelengths can sometimes be used
complementarily [24].

Recently, various studies have used short wave SAR at C-band to investigate the
interactions between the backscatter and trees’ leaves, crown structure and canopy struc-
ture [25]. Dostálová et al. [26] explored how the signal reflection was affected by different
species, branch geometry, and canopy structure. Frison et al. [27] demonstrated that there is
a correlation between the radar backscatter coefficient of different polarizations and season-
ality, and this is especially related to the phenology of the different species. Furthermore,
Rüetschi et al. [28] reported an opposite behavior between coniferous and deciduous trees
regarding annual monitoring of the backscatter in the winter and summer, i.e., leaf-on and
leaf-off conditions. When performing classification, grouping of species into forest types
delivered higher accuracy results compared to single tree species. Dostálová et al. [29] in-
vestigated the use of smoothed backscatter time series to perform forest type classification
in various climatic regions and biomes in central and northern Europe. Rüetschi et al. [28]
analyzed the application of a time series of dual-polarization acquisition over mixed forests
in northern Switzerland to perform both forest type and species classification. Recent stud-
ies have shown the potential of using Sentinel-1 data for forest type classification [28–30],
but they pointed out a need for improvements for boreal and hemi-boreal forests.

The objective of this paper is to evaluate the accuracy of area-based forest type and
tree species classification using C-band SAR backscatter. We also want to investigate how
the temporal stability of the backscatter may affect the prediction of tree species. Can the
forest classification be improved with the use of acquisitions from multiple seasons and
multiple years?
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2. Materials and Methods
2.1. Study Areas

The study area is located in the Remningstorp forest estate and the nearby Eahagen
natural reserve in southern Sweden (58◦30′N, 13◦40′E) (Figure 1). According to the man-
agement plan of 2008, the prevailing tree species in the area are Norway spruce (Picea
abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and birch (Betula L. spp.), with a lesser
presence of other deciduous species. The estate has been used as a test site by the Swedish
University of Agricultural Science (SLU) since the mid-1980s. Eahagen is a nature reserve
neighboring the estate that provided additional broadleaved tree species; among these,
the species considered for this study were pedunculate oak (Quercus robur L.) and birch.
Both the estate and the reserve have forest stands with rather high homogeneity in terms
of species composition (single dominant species ≥80% in volume).

Remote Sens. 2021, 13, x FOR PEER REVIEW 3 of 21 
 

 

forest classification be improved with the use of acquisitions from multiple seasons and 
multiple years? 

2. Materials and Methods 
2.1. Study Areas 

The study area is located in the Remningstorp forest estate and the nearby Eahagen 
natural reserve in southern Sweden (58°30′N, 13°40′E) (Figure 1). According to the 
management plan of 2008, the prevailing tree species in the area are Norway spruce (Picea 
abies (L.) Karst.), Scots pine (Pinus sylvestris L.) and birch (Betula L. spp.), with a lesser 
presence of other deciduous species. The estate has been used as a test site by the Swedish 
University of Agricultural Science (SLU) since the mid-1980s. Eahagen is a nature reserve 
neighboring the estate that provided additional broadleaved tree species; among these, 
the species considered for this study were pedunculate oak (Quercus robur L.) and birch. 
Both the estate and the reserve have forest stands with rather high homogeneity in terms 
of species composition (single dominant species ≥80% in volume). 

 
Figure 1. Study site location and plot distribution. The field plots in red show where measurements and information were 
collected on the ground; the photo-interpreted plots are yellow and were subjectively placed to extend the dataset, 
especially of minor classes. 

2.2. Field Data 
The field plots used for evaluation consisted of two field inventories where the first 

was carried out in Remningstorp between June and August of 2016. The sampling design 
was systematic sampling with a random starting point, with circular field plots of 12 m 
radius, distributed in a grid. This inventory mainly consisted of Norway spruce, Scots 
pine and birch stands. For the second inventory, carried out in the adjacent Eahagen 

Figure 1. Study site location and plot distribution. The field plots in red show where measurements and information were
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2.2. Field Data

The field plots used for evaluation consisted of two field inventories where the first
was carried out in Remningstorp between June and August of 2016. The sampling design
was systematic sampling with a random starting point, with circular field plots of 12 m
radius, distributed in a grid. This inventory mainly consisted of Norway spruce, Scots
pine and birch stands. For the second inventory, carried out in the adjacent Eahagen
nature reserve during the same period, the location of the plots’ center was flexible, to find
plots dominated by a single tree species within homogenous stands [31,32]. The overall
number of field surveyed plots was 105 and the 62 plots with at least 80% of growing stock
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belonging to a single species were selected for this study [33]. The training data consisted
of 115 visually interpreted plots from aerial photos, acquired between 2017 and 2018, on
the same area using the forest management plan to extract ancillary data (species, growing
stock) aiming for similar proportions of each species [34,35]. The virtual 12 m plots were
located in areas of the stands dominated by a single tree species, with plot centers at least
30 m apart.

All the selected plots contained more than 100 m3/ha in volume, which is above the sat-
uration level where SAR backscatter correlates with the stem volume at C-band [17,36–38].
The growing stock distribution for the field plots is illustrated in Figure 2. The target
species are listed in Table 1 and regrouped into forest type (FTY) and into species (SPP)
categories for the two classifications. The distribution of the plots is shown in Figure 1. A
total of 177 plots were used with 62 field plots and 115 interpreted plots.
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Figure 2. Growing stock distribution derived from the field plots in the different forest stand types
(pure stands).

Table 1. Dominant tree species distribution in the study plots.

Tree Species Scientific Name FTY SPP Field Plots Interpreted Plots

Norway spruce Picea abies (L.) Karst. Coniferous Spruce 28 14
Scots pine Pinus sylvestris L. Coniferous Pine 13 38

Birch Betula L. spp. Deciduous Birch 8 27
Oak Quercus robur L. Deciduous Oak 13 36

2.3. Satellite Data

Sentinel-1 acquisitions from January 2017 to December 2019 were downloaded from
the Copernicus Open Access Hub and the Alaska Satellite Facility. The images were
acquired from the same satellite orbit (73) in the interferometric wide swath mode and
provided as ground range detected data in 10 m resolution and mean incidence angle
of 39◦. The multi-seasonal time series was selected to use the temporal signatures [28]
and understand the temporal and phenological behavior of backscatter [39,40]. A total of
180 images were downloaded in both VH and VV polarizations. The number of images
included for each year is reported in Table 2.
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Table 2. Number of acquisitions from 2017 to 2019 downloaded and used as input for the pre-
processing, divided per year.

Year No. of Acquisitions

2017 61
2018 61
2019 58

Total 180

2.4. Pre-Processing of Satellite Images

The satellite images were processed with the Sentinel Application Platform (SNAP)
from ESA [41]. First, the SAR acquisitions were radiometrically calibrated to σo values,
subset to the study area, and the terrain corrected using an external laser terrain model. To
reduce the influence of changing weather and environmental conditions (e.g., temperature
or precipitation) that may have occurred during the acquisitions [42], the images underwent
histogram matching using a summer image as reference (21 July 2018). The images were
filtered using a Sigma Lee filter with a 5 × 5 moving window, which is effective in noise
removal and enough to preserve the image spatial resolution avoiding blurring in edges
and point targets. A sigma value of 0.9 was used, indicated in the literature as suitable
for general applications [43–45]. As a last step, temperature correction was applied to the
images. The radar backscatter is sensitive to variations in the environmental conditions,
especially those driven by temperature [42]. To estimate the influence of temperature,
a linear regression model (with parameters α0, α1, α2, α3, α4) was used to predict the
backscatter values for forest pixels in the images (represented by the mean backscatter of
all forest plots). Daily mean temperatures were provided by the Swedish Meteorological
and Hydrological Institute for the station near the study area. The moving averages of 3, 5
and 7 days (t3, t5 and t7, respectively) were computed and used in addition to the daily
means to estimate the average backscatter level σ̂avg of the scene (1). The estimated average
backscatter could then be subtracted from each image i, with the remaining signal, the
normalized backscatter (σ̂o

norm), being correlated to the tree species. The mean plot values
were then extracted for all images and polarizations (Figure 3).

σ̂o
avg,i ∼ α0 + α1t1,i + α2t3,i + α3t5,i + α4t7,i (1)Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 21 

 

 

 
Figure 3. Pre-processing of the S-1 SAR data. 

2.5. Classification and Validation 
The mean plot values were used with the interpreted plot references as training data 

to create two Random Forest (RF) models, one to classify FTY and one for SPP [12,46]. The 
models were used to predict and assess the field plots (used as test data). We used the R 
package randomForest to perform the classifications with the split decision parameters 
mtry = 13 when using only one polarization, and mtry = 19 when combined, and a forest 
size of 500 trees (ntree = 500). All other parameters were used with the default values. 

The predictions were validated with the field references and expressed as a confusion 
matrix with user’s accuracy (UA), producer’s accuracy (PA) and overall accuracy (OA) 
[34]. The UA describes the proportion of correctly classified sample plots, essentially as 
how often the class on the map will be present in the field. The PA describes the 
proportion of field plots that were correctly classified and, hence, describes how often real 
features on the ground are correctly shown on the classified map. Finally, the overall 
accuracy is the proportion of the data correctly classified over the total number of 
observations. The Cohen’s kappa (K) coefficient was computed to give a robust measure 
of agreement calculation for qualitative variables to better account for reliability and 
validity of the classification [26,28,29,47,48]. Cohen’s K considers both inter-rater and 
intra-rater reliability among the observations and observer [47]. Landis and Koch [49] 
proposed the following guidelines to interpret K coefficient: value < 0 indicates no 
agreement, 0–0.20 as slight, 0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as 
substantial, and 0.81–1 as almost perfect agreement. 

Since the satellite images are covering the same area for three years, the mean plot 
values across different images were assumed to be correlated. We therefore applied a 
Principal Component Analysis (PCA) to reduce the dimensionality and investigate the 
impact of using multiple images. The PCA was performed in R using the prcomp function 
of the stats package [50–52] on the VH and VV polarization separately, and then in 
combination. The first two principal components were used as input to another RF 
classification, performed as described above. 

Figure 3. Pre-processing of the S-1 SAR data.



Remote Sens. 2021, 13, 3237 6 of 20

2.5. Classification and Validation

The mean plot values were used with the interpreted plot references as training data
to create two Random Forest (RF) models, one to classify FTY and one for SPP [12,46]. The
models were used to predict and assess the field plots (used as test data). We used the
R package randomForest to perform the classifications with the split decision parameters
mtry = 13 when using only one polarization, and mtry = 19 when combined, and a forest
size of 500 trees (ntree = 500). All other parameters were used with the default values.

The predictions were validated with the field references and expressed as a confusion
matrix with user’s accuracy (UA), producer’s accuracy (PA) and overall accuracy (OA) [34].
The UA describes the proportion of correctly classified sample plots, essentially as how
often the class on the map will be present in the field. The PA describes the proportion
of field plots that were correctly classified and, hence, describes how often real features
on the ground are correctly shown on the classified map. Finally, the overall accuracy
is the proportion of the data correctly classified over the total number of observations.
The Cohen’s kappa (K) coefficient was computed to give a robust measure of agreement
calculation for qualitative variables to better account for reliability and validity of the
classification [26,28,29,47,48]. Cohen’s K considers both inter-rater and intra-rater reliability
among the observations and observer [47]. Landis and Koch [49] proposed the following
guidelines to interpret K coefficient: value < 0 indicates no agreement, 0–0.20 as slight,
0.21–0.40 as fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1 as almost
perfect agreement.

Since the satellite images are covering the same area for three years, the mean plot
values across different images were assumed to be correlated. We therefore applied
a Principal Component Analysis (PCA) to reduce the dimensionality and investigate
the impact of using multiple images. The PCA was performed in R using the prcomp
function of the stats package [50–52] on the VH and VV polarization separately, and then
in combination. The first two principal components were used as input to another RF
classification, performed as described above.

2.6. Seasonality

Since the differences are greater in the winter season [28,29], to investigate the temporal
stability we created RF models for FTY based only on winter images from one (w2 or w3),
two (w2 and w3), and three seasons (w2, w3 and w1) (Table 3). The last time span (w4) was
not considered due to the lower number of images. The subsets comprised winter images
ranging from 1 November to 1 April, adapting the approach used by Rüetschi et al. [28].
Each FTY classification was validated as described in the previous section.

Table 3. Winter season subsets and number of images. Only w2 and w3 are considered full winter seasons.

Subset First Date Last Date Number of Images

w1 1 January 2017 1 April 2017 15
w2 1 November 2017 1 April 2018 25
w3 1 November 2018 1 April 2019 23
w4 1 November 2019 31 December 2019 6

3. Results
3.1. Backscatter Trend

Figure 4 shows the temporal signature for deciduous and coniferous forest types, for
the VH-polarization (Figure 4a) and VV-polarization (Figure 4b). Comparing the σ̂o

norm
values across time, similar trends were evident for both polarizations over the entire period.
The σ̂o

norm values were higher for deciduous compared to coniferous forest, with the biggest
difference in the VH-polarization. The coniferous and deciduous forests had an opposite
seasonal trend resulting in a separation of the two temporal signatures during winter.
For the tree species, to better understand the trend of the signal, a moving average of
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window size 5 for each species is shown in Figure 5. The σ̂o
norm values over time showed

the same trend observed for Figure 4, with the biggest difference among signals in the
VH-polarization (Figure 5a).
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3.2. Forest Type Classification

The overall accuracy results for the RF classification models for forest type (FTY),
according to the polarization used, are presented in Table 4. The use of only VH-polarization
images resulted in higher OA, compared to using VV or VH + VV [29]. The use of dual-
polarizations, also present in the literature [26,28,53], accomplished good results, especially
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after applying the PCA. In general, the OA improved after performing the PCA, with
the exception of FTY predicted with only VH-pol data. The backscatter was prominently
separated on average, although having a certain overlap at the plot level (Figure 6). The
separation was similar for both polarizations, with the VH-polarization covering a larger
range. The classification of FTY using the VH + VV combination after PCA is illustrated as
a map over the study area in Figure 7.

Table 5 presents the results of the FTY classification before PCA using the VH + VV
combination as input, and Table 6 presents the results after PCA The first two columns in
both tables list the number of plots used for the validation of the RF models.

Table 4. Overall accuracy values for forest type (FTY) classifications, according to the polarization
used, before and after the PCA.

Polarization OA before PCA OA after PCA

VH 0.94 0.92
VV 0.73 0.84

VH + VV 0.89 0.94

Table 5. FTY classification results using VH + VV polarization data. Producer’s accuracy (PA), user’s
accuracy (UA), overall accuracy (OA) and Cohen’s kappa coefficient (K) are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Coniferous Deciduous

Coniferous 36 5 0.88
0.89 0.75Deciduous 2 19 0.90

UA 0.95 0.78

Table 6. FTY classification results after PCA derived from VH + VV polarization data. PA, UA, OA
and K are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Coniferous Deciduous

Coniferous 37 4 0.90
0.94 0.86Deciduous 0 21 1.00

UA 1.00 0.84
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The accuracy (PA, UA, OA and K) improved after PCA, with K increasing from 0.75 to
0.86. The K indicated a substantial and almost perfect agreement between the observed
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and classified values, before and after PCA, respectively. Both classifications, before and
after PCA, achieved high values for PA and UA for the coniferous FTY, equal to or higher
than 0.88 (Tables 5 and 6). For the deciduous FTY, the accuracy results were lower but still
encouraging and higher than 0.78 (Tables 5 and 6).

3.3. Species Classification

Compared to FTY, the SPP classification achieved lower values in accuracy. The overall
accuracy results for the RF classification models for tree species (SPP), according to the
polarization used, are presented in Table 7. The highest OA was obtained when using
the VH-polarization only, compared to VV and VH + VV. After applying the PCA, the
accuracies improved for all polarizations. The classification of SPP using the VH data after
PCA is illustrated as a map over the study area in Figure 8.

Table 7. Overall accuracy values for tree species (SPP) classifications, according to the polarization
used, before and after the PCA.

Polarization OA before PCA OA after PCA

VH 0.55 0.66
VV 0.35 0.48

VH + VV 0.50 0.53
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The confusion matrices for SPP classification using VH data before and after PCA
are presented in Tables 8 and 9. The accuracies were slightly lower compared to the FTY
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classification, mainly caused by misclassification between spruce and pine. A similar
ambiguity could be seen between oak and birch.

Table 8. SPP classification results using VH polarization. PA, UA, OA and K are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Birch Oak Pine Spruce

Birch 1 7 0 0 0.13

0.55 0.39
Oak 0 11 1 1 0.85
Pine 2 0 11 0 0.85

Spruce 0 1 16 11 0.39

UA 0.33 0.58 0.39 0.92

Table 9. SPP classification results from principal components derived from VH polarization data. PA,
UA, OA and K are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Birch Oak Pine Spruce

Birch 3 5 0 0 0.38

0.66 0.54
Oak 1 12 0 0 0.92
Pine 3 0 9 1 0.69

Spruce 0 2 9 17 0.61

UA 0.43 0.63 0.50 0.94

Despite overall higher values in accuracy (UA, PA, OA and K), misclassified spruce
plots had an impact not only on pine, but also on the deciduous species. For both Cohens’ K
values reported in Tables 8 and 9, the degree of agreement between observed and classified
values was generally classified as fair and moderate. Among the SPP classifications, the
VV-polarization performed poorly, but also the VH + VV combination did not surpass the
VH-polarization either in OA (0.53), or the Cohen’s coefficient (K = 0.39).

3.4. Seasonality

Overall, the use of the whole set of images available (three full years) achieved a high
level of accuracy. We investigated the temporal stability creating RF models for classifying
the FTY based on single or multiple sets of winter images. The OA values are reported in
Table 10. In general, the models did not achieve the same level of accuracy as reported in
Table 5 for FTY. The use of multiple seasons helped to increase the accuracy for the VH and
VV polarization compared to the use of a single season, whereas no major improvement
was noted for the VH + VV combination. After performing the PCA, the accuracy values
did not improve as observed before.

Confusion matrices and additional results from all RF combinations (with respect to
polarizations, seasons, FTY and SPP) are reported in Appendix A.

Table 10. Overall accuracy for FTY classification using images from winter seasons.

OA before PCA OA after PCA

VH VV VH + VV VH VV VH + VV

1 winter season (w2 or w3) 0.85 0.73 0.87 0.82 0.69 0.83
2 winter seasons (w2 + w3) 0.89 0.76 0.85 0.82 0.65 0.84

3 winter seasons (w2 + w3 + w1) 0.89 0.79 0.87 0.81 0.71 0.85
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4. Discussion

The evaluation of accuracies showed that the adopted approach is suitable for classify-
ing FTY and SPP. The highest OA result was obtained from merely the VH-polarization, con-
firming that this polarization contained most of the information related to tree species [29],
however, the models based on dual-polarization also performed well. We expected that
the use of both polarizations and the whole three-year period would provide the most in-
formation to achieve the best classification result, but the OA for the VH + VV combination
reported in Table 4 was lower than the OA obtained from VH-polarization only. In general,
comparing the classification results before and after PCA (Table 4), an improvement in the
accuracy values can be observed for both FTY and SPP, which may be connected to the
reduction in the input dimensions, but still managing not to overfit the models [46].

The classification of FTY showed that our results are comparable to several past studies,
using fully polarimetric C-band SAR data [25,40,54,55]. Compared to more recent dual-pol
studies with similar approaches, both the OA and Cohen’s coefficient matched the results
in these works, where the OA ranged between 0.77 and 0.86 and K = 0.42–0.73 [28,29]. A
more detailed comparison is reported in Table 11. One of the study sites analyzed by
Dostálová et al. [29] was the same as that used in this study, but their results showed a
lower accuracy, mainly due to poor reference forest type data. When SAR have been
combined with optical data [55], accuracies have been reported in the same range as the
ones we obtained.

Table 11. Results comparison with previous studies in the literature.

Site Location
Coniferous Deciduous

OA K
UA PA UA PA

Rüetschi et al. [28] Switzerland (CH) 0.84 0.88 0.88 0.84 0.86 0.73
Dostálová et al. [29] Neusiedl Lake (AT) 0.46 0.73 0.77 0.69 0.85 0.69

Remningstorp (SE) 0.72 0.67 0.38 0.42 0.77 0.60
Krycklan (SE) 0.69 0.69 0.19 0.21 0.65 0.42

Bjerreskov et al. [55] * Denmark (DK) 0.95 0.95 0.96 0.96 0.95 -
Present study (Table 6) Remningstorp (SE) 1.00 0.90 0.84 1.00 0.94 0.86

* input data are from the fusion of multi-temporal Sentinel-1 and 2 data.

As expected from previous works in the literature [26,28,29,55], the SPP classification
did not reach the same level of accuracy as the FTY classification. There are not many
studies concerning species classification, but our results (Table 8) are in line with previous
studies, where the OA ranged from 0.63 [55] to 0.72 [28]. The coniferous tree species showed
a bigger difference in normalized backscatter between each other than the deciduous
(Figure 5a,b).

The use of multiple seasons and multiple years of acquisitions influenced the predicted
accuracy to varying degrees. Our efforts concentrated on the use of single and multiple
winter periods in order to take advantage of the leaf-off and leaf-on conditions. The use of
PCA on the winter images did not improve the accuracy or Cohen’s coefficient. Yet, the
use of multiple winter seasons reached, on average, higher results in accuracy than with
the use of only a single season. Still, the use of VH-polarization alone reached the same
results in average OA, compared to the use of dual-polarization. The Cohen’s coefficient
changed similarly to OA, but with values in the range of K = 0.43–0.76 without the use of
PCA, and K = 0.32–0.68 when RF was performed after PCA (Figures A1 and A2).

Compared to previous works, the difference in the results was large and may have
been the outcome of the application of different approaches and models. We used the
mean plot value compared to previous studies, where the single pixel was selected as
spatial unit [26,28,29,55]. Some studies that combined C-band SAR with additional data
sources were able to reach higher classification accuracy [28,55], showing that the use of
data from different sources (i.e., laser, optical, etc.) and multitemporal data involving SAR
is promising, although further exploration is needed.
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The radar backscatter is influenced by the acquisition configuration, and to reduce
unintended effects from different configurations, we used the same incidence angle, orbit
and polarization for all images. The temperature was the only weather factor considered
and for which the data was corrected. The relationship with the radar backscatter when
classifying forests has been investigated previously [28]; e.g., for their deciduous species
(oak and beech) the backscatter was increasing with the decrease in temperature, and
spruce’s backscatter was decreasing with the decrease in temperature, showing that the
two different forest types react differently when the temperature varies. There is also a
factor related to interspecific and intraspecific variability to consider. Different trees have
different phenology and different geometric characteristics, even within the same species or
the same population. For example, the timing of leaf development and start of the growing
season varies within single species.

A final consideration was related to the backscatter saturation threshold of biomass.
Figure 2 shows the growing stock distribution for the field plots in the different forest
stand types. The C-band SAR backscatter reaches the saturation point of biomass earlier
compared to longer wavelengths [17,36,38]. The growing stock for each tree species sur-
passed the established saturation threshold of 100 m3/ha, making the signal less sensitive
to volume variation. For the final classification and accuracy assessment, we assumed the
volume saturation did not therefore influence the results.

5. Conclusions

The paper evaluated the accuracy for forest type and tree species classification using
C-band SAR backscatter. We also assessed the influence of using multiple seasons and
multiple acquisition years on the predicted accuracy for the forest type classification. The
main findings were:

i. The proposed approach showed good results with the FTY classification overall
accuracy reaching 94%. We obtained high values for both producer’s and user’s
accuracy, ranging between 84 and 100%, which was convincing also compared to
similar studies [28,29,55]. Moreover, the RF model for the classification achieved
high values also in Cohen’s K, indicating a high degree of agreement between field
and predicted values. The accuracy results indicate that this method is suitable for
the creation and use of FTY maps (Figure 6) [12,56].

ii. Compared to the FTY classification, the results from the SPP classification showed
more errors compared to the field values, with a maximum OA of 66%. This result
was similar to comparable studies [28,55].

iii. The use of multiple winter seasons delivered better accuracies compared to the use
of single winter seasons. The VH polarization contained most of the information
and by using the VH + VV combination, the results improved slightly. The differ-
ences between forest types were biggest during the winters and by using winter
images the results were almost as high as using all year round images.

iv. The use of PCA generally improved the classifications of both forest type and tree
species, although this was not the case when using only winter images.

The classification of FTYs showed better results compared to the classification of
tree species, and to improve the accuracies of the SPP classification, the most promising
approach would be to combine SAR with other RS sensors [53,55,57,58]. Additionally, the
combination of radar data with different wavelengths or higher resolution could possibly
provide more information.

We used plots with only pure species in this study (with at least 80% of the volume).
The forest landscape was not composed only of pure stands but of clusters of trees of the
same species. Future research should address this topic, aiming at successful classifications
(both FTY and SPP) also in mixed stands, i.e., where there is not a dominant species. We
successfully assessed the use of C-band SAR data to perform forest type and tree species
classification, although there is still room for improving the classification accuracy by
experimenting new classification algorithms and new techniques.
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Appendix A

RF models and classifications’ results are here reported for further understanding of
the main text results.

Table A1. FTY classification results using VH polarization data. Accuracies metrics (PA, UA, OA and
K) are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Coniferous Deciduous

Coniferous 38 3 0.93
0.94 0.86Deciduous 1 20 0.95

UA 0.97 0.87

Table A2. FTY classification results using VV polarization data. Accuracies metrics (PA, UA, OA and
K) are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Coniferous Deciduous

Coniferous 27 14 0.66
0.73 0.46Deciduous 3 18 0.86

UA 0.90 0.56

Table A3. FTY classification results using the VH + VV combination. Accuracies metrics (PA, UA,
OA and K) are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Coniferous Deciduous

Coniferous 36 5 0.88
0.89 0.76Deciduous 2 19 0.90

UA 0.95 0.79
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Table A4. FTY classification results from PCA derived from VH polarization data. Accuracies metrics
(PA, UA, OA and K) are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Coniferous Deciduous

Coniferous 36 5 0.88
0.92 0.83Deciduous 0 21 1.00

UA 1.00 0.81

Table A5. FTY classification results from PCA derived from VV polarization data. Accuracies metrics
(PA, UA, OA and K) are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Coniferous Deciduous

Coniferous 32 9 0.78
0.84 0.67Deciduous 1 20 0.95

UA 0.97 0.69

Table A6. FTY classification results from PCA derived from the VH + VV combination. Accuracies
metrics (PA, UA, OA and K) are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Coniferous Deciduous

Coniferous 37 4 0.90
0.94 0.86Deciduous 0 21 1.00

UA 1.00 0.84

Table A7. SPP classification results using VH polarization. Accuracies metrics (PA, UA, OA and K)
are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Birch Oak Pine Spruce

Birch 1 7 0 0 0.13

0.55 0.39
Oak 0 11 1 1 0.85
Pine 2 0 11 0 0.85

Spruce 0 1 16 11 0.39

UA 0.33 0.58 0.39 0.92
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Table A8. SPP classification results using VV polarization. Accuracies metrics (PA, UA, OA and K)
are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Birch Oak Pine Spruce

Birch 2 5 1 0 0.25

0.35 0.19
Oak 1 9 3 0 0.69
Pine 0 2 11 0 0.85

Spruce 2 4 22 0 0.00

UA 0.40 0.45 0.30 -

Table A9. SPP classification results using the VH + VV combination. Accuracies metrics (PA, UA,
OA and K) are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Birch Oak Pine Spruce

Birch 1 7 0 0 0.13

0.50 0.35
Oak 0 11 2 0 0.85
Pine 0 1 12 0 0.92

Spruce 0 2 19 7 0.25

UA 1.00 0.52 0.36 1.00

Table A10. SPP classification results from PCA derived from VH polarization data. Accuracies
metrics (PA, UA, OA and K) are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Birch Oak Pine Spruce

Birch 3 5 0 0 0.38

0.66 0.54
Oak 1 12 0 0 0.92
Pine 3 0 9 1 0.69

Spruce 0 2 9 17 0.61

UA 0.43 0.63 0.50 0.94

Table A11. SPP classification results from PCA derived from VV polarization data. Accuracies
metrics (PA, UA, OA and K) are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Birch Oak Pine Spruce

Birch 5 2 1 0 0.63

0.48 0.35
Oak 3 10 0 0 0.77
Pine 3 0 10 0 0.77

Spruce 7 3 13 5 0.18

UA 0.28 0.67 0.42 1.00
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Table A12. SPP classification results from PCA derived from the VH + VV combination. Accuracies
metrics (PA, UA, OA and K) are also reported.

Confusion Matrix

Reference
Classification

PA OA K
Birch Oak Pine Spruce

Birch 4 4 0 0 0.50

0.53 0.39
Oak 2 11 0 0 0.85
Pine 1 0 10 2 0.77

Spruce 1 3 16 8 0.29

UA 0.50 0.61 0.38 0.80

Table A13. Seasonality: accuracy indicators of RF model performed with VH polarization data.

w2 w3 w2 + w3 w1 + w2 + w3

Coniferous
PA 0.85 0.78 0.88 0.88
UA 0.95 0.94 0.95 0.95

Deciduous
PA 0.90 0.90 0.90 0.90
UA 0.76 0.68 0.79 0.79

OA 0.87 0.82 0.89 0.89
K 0.72 0.63 0.76 0.76

Table A14. Seasonality: accuracy indicators of RF model performed with VV polarization data.

w2 w3 w2 + w3 w1 + w2 + w3

Coniferous
PA 0.68 0.63 0.68 0.73
UA 0.90 0.90 0.93 0.94

Deciduous
PA 0.86 0.86 0.90 0.90
UA 0.58 0.55 0.59 0.63

OA 0.74 0.71 0.76 0.65
K 0.48 0.43 0.52 0.32

Table A15. Seasonality: accuracy indicators of RF model performed using the VH + VV combination.

w2 w3 w2 + w3 w1 + w2 + w3

Coniferous
PA 0.88 0.80 0.83 0.85
UA 0.95 0.94 0.94 0.95

Deciduous
PA 0.90 0.90 0.90 0.90
UA 0.79 0.70 0.73 0.76

OA 0.89 0.84 0.85 0.87
K 0.76 0.66 0.69 0.72

Table A16. Seasonality: accuracy indicators of RF model performed after PCA derived from VH
polarization data.

w2 w3 w2 + w3 w1 + w2 + w3

Coniferous
PA 0.78 0.80 0.80 0.78
UA 0.89 0.94 0.92 0.91

Deciduous
PA 0.81 0.90 0.86 0.86
UA 0.65 0.70 0.69 0.67

OA 0.79 0.84 0.82 0.81
K 0.56 0.66 0.63 0.60
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Table A17. Seasonality: accuracy indicators of RF model performed after PCA derived from VV
polarization data.

w2 w3 w2 + w3 w1 + w2 + w3

Coniferous
PA 0.63 0.59 0.56 0.66
UA 0.87 0.89 0.85 0.87

Deciduous
PA 0.81 0.86 0.81 0.81
UA 0.53 0.51 0.49 0.55

OA 0.69 0.68 0.65 0.71
K 0.39 0.38 0.32 0.42

Table A18. Seasonality: accuracy indicators of RF model performed after PCA derived from the
VH + VV combination.

w2 w3 w2 + w3 w1 + w2 + w3

Coniferous
PA 0.80 0.83 0.83 0.88
UA 0.92 0.92 0.92 0.90

Deciduous
PA 0.86 0.86 0.86 0.81
UA 0.69 0.72 0.72 0.77

OA 0.82 0.84 0.84 0.85
K 0.63 0.66 0.66 0.55
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Figure A1. Comparison of OA indicators among the different combination of polarization (VH, VV and VH + VV) and RF
model, with and without performing PCA.
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Figure A2. Comparison of Cohen’s K among the different combination of polarization (VH, VV and VH + VV) and RF
model, with and without performing PCA.
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