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Abstract: This paper presents a solution to the problem of simultaneous localization and mapping
(SLAM), developed from a particle filter, utilizing a monocular camera as its main sensor. It imple-
ments a novel sample-weighting idea, based on the of sorting of particles into sets and separating
those sets with an importance-factor offset. The grouping criteria for samples is the number of
landmarks correctly matched by a given particle. This results in the stratification of samples and
amplifies weighted differences. The proposed system is designed for a UAV, navigating outdoors,
with a downward-pointed camera. To evaluate the proposed method, it is compared with different
samples-weighting approaches, using simulated and real-world data. The conducted experiments show
that the developed SLAM solution is more accurate and robust than other particle-filter methods, as it
allows the employment of a smaller number of particles, lowering the overall computational complexity.

Keywords: SLAM; autonomous navigation; particle filter; monocular camera; IMU; UAV

1. Introduction

After over two decades of extensive work, the robotics research community has proposed
a multitude of advanced simultaneous localization and mapping (SLAM) approaches [1,2].
Solving the SLAM problem robustly is a necessary element to achieve full autonomy in the
field of robotics. Among the most important elements of the simultaneous localization and
mapping procedure, one can list surroundings perception with data extraction and association,
robot pose estimation, local map building and maintaining global map coherence, so that
the so-called loop closure can be performed in a previously visited area. A vast number of
different solutions to all SLAM components has been proposed using numerous state-of-the-
art frameworks. To classify different approaches, it is useful to categorize SLAM systems in
accordance with the type of sensor used, the class of mathematical back-end synthesizing the
pose and map information and the method of map representation.

A wide variety of sensors have been employed in SLAM: monocular cameras, stereo
cameras, laser range finders, sonars, global positioning system (GPS) receivers, inertial
measurement units (IMUs), etc. Some of those sensors can be used only for position
estimation, others only to gather information about the environment, while devices such
as cameras can be utilized for both purposes. The type of the chosen sensor determines
the character of data that will be processed during the SLAM procedure, which influences
subsequent stages of a SLAM framework design task.

The second vital aspect of the simultaneous localization and mapping, according to
which different SLAM approaches can be distinguished, is the mathematical apparatus
that is employed during the pose and map estimation step. For the sake of brevity, we will
only address the basic distinction of filtering versus batch optimization. Filter methods
characterize the map and the current pose information as a probability density function
(PDF) using a variant of a Kalman filter (e.g., an extended Kalman filter (EKF) [3,4] or an
unscented Kalman filter (UKF) [5]) or a particle filter (PF) [6,7]), a detailed description
of which is presented later. A common feature of all filter methods is the lack of explicit
storage of information about previous system states, which is commonly referred to as
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online or recursive state estimation. This stochastic modeling approach is referred to as the
Markov chain. On the other hand, the optimization SLAM algorithms, known also as batch-
or grid-based methods, perform a global or semi-global error minimization procedure
from a set of previous poses and measurements. Also the keyframe-based SLAM should
be mentioned here, as it is the most commonly used [2] optimization method for a visual
SLAM. Keyframes are a small subset of distinctive camera frames recorded along the
sensor trajectory. Only those characteristic keyframes are processed in the pose-map error
minimization, which is performed using global bundle adjustment (BA) [8].

In [9], the authors proved that the optimization approach of the global BA approach
offers better performance than the recursive filtering when comparing accuracy, computa-
tional complexity and robustness in large scale applications. However, the authors did not
include a particle filter method in their testing, justifying the omission by an assumption
that it is wasteful to employ a particle filter for unimodal distributions estimation. However,
categorizing the SLAM procedure, where an algorithm has to evaluate not only the robot or
sensor pose but also the state of rarely static surroundings, as a strict unimodal distribution
estimation can be considered an oversimplification. Particle filters provide a more robust,
multimodal modeling approach. Moreover, PFs computational complexity, contrary to
Kalman filters, does not scale cubically [10] in terms of the number of observed landmarks.
It is linear—similar to batch SLAM algorithms. Therefore, we consider particle filters as a
valid and reasonable solution to the concurrent localization and mapping problem.

Another useful means of the classification of SLAM methods is the map building
approach, which can be done using two separate but interdependent criteria. To begin
with, the map can be built either directly or indirectly. The first method is based on
analyzing the surroundings using unprocessed sensor readings, while the latter identifies
specific features in the environment according to a chosen extraction approach, which
can be different geometric shapes (e.g., points [11], corners [12] and lines [13]) or more
complex objects [14]. The way that the map elements are picked is directly associated
with the resulting map type. A given SLAM procedure can produce either a dense map
of the environment where every part of an observed area—for example every registered
pixel—is associated with a distinct element of the map. This approach is commonly used in
SLAM systems that utilize sensors which are capable of determining full three-dimensional
measurements of the environment, like rangefinders [15] or RGBD cameras [16]. On the
other hand, the registration of a sparse map is a process wherein the map is constructed
around salient scene elements (characteristic points, regions or shapes), that can be correctly
associated in subsequent sensor observations.

As different reviews show [1,17,18], although the development of SLAM systems
offers a wide range of opportunities for modern autonomous systems, the simultaneous
localization and mapping domain has yet to achieve complete success. Hence, the commu-
nity needs to address various potential solutions to concurrent localization and mapping
problems. Our manuscript presents a novel framework for an indirect, monocular SLAM,
based on a Rao–Blackwellized particle filter. We incorporate a distinctive approach to-
wards particle weighting, where the weights are stratified proportionally to the number
of landmarks matched in a given camera frame. This approach offers better accuracy
and robustness than standard resampling methods. Thus, it allows to lower the computa-
tional complexity of the SLAM algorithm by decreasing the number of particles needed
for adequate performance. Furthermore, our algorithm has been examined using both
simulation and real-world data, registered from a quadcopter. The presented approach was
tested in various set-ups and all the results were consistent. The paper contains selected
results of the simulations and experiments. The remainder of this article is outlined as
follows: In Section 2, the related work in the field of particle filter SLAM is discussed; in
Section 3, a detailed explanation of the proposed algorithm is presented; simulation and
real experimental results are provided in Section 4 to validate the adopted approach. The
conclusions of the paper are included in Section 5. This manuscript is a continuation of our
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previous works in the field of particle filter SLAM [19] but offers a new approach to the
filtering algorithm.

2. Related Work

The earliest idea of a SLAM framework employing a Rao–Blackwellized particle filter
was briefly discussed in [20]. The authors advocated the use of Bayesian inference in order
to achieve autonomous localization and mapping capabilities. Undoubtedly, the most
well-known solution to a Rao–Blackwellized particle filter SLAM was presented in [6],
where lidar was used to build a grid map. Many later systems have been designed upon
FastSLAM (both 1.0 and 2.0 [7]) frameworks—especially those utilizing rangefinders as
main sensors [21–23].

Rapid progress in computer vision and computational capacity led to the proliferation
of cameras in the field of robotics. Among the first systems that employed a particle filter
and a camera to perform simultaneous localization and mapping, one should list [24]. The
algorithm described in that manuscript processed edges, found with the Sobel mask, as
landmarks, but did not benefit from the fact that different observations can be treated as
probabilistically independent if one knows the camera position and orientation. As a result,
10,000 particles had to be used to estimate the state of the camera pose, together with only
15 landmarks. In [25], the authors implemented an algorithm that allowed one to sequen-
tially approximate the full 6DoF posterior of a camera, together with up to eight, tracked
3DoF scene points. This method was successfully validated using 500 particles; however, a
small set of previously known landmarks was required for it to work properly. Another
system, developed by Sim et al. [26], is an early example of a Rao–Blackwellized particle
filter framework that was constructed using a camera as the main sensor. With the usage
of the SIFT algorithm [27], the authors’ indoor mobile robot was able to successfully track
more than 11,000 landmarks. Later, Eade and Drummond [15] constructed an algorithm
capable of camera-tracking with as little as 50 particles and implemented the ingenious
idea of inverse depth [28] as a third element of a 3DoF landmark-state vector. In [29], the
authors extracted landmarks using speeded-up robust features (SURF) [30] and applied a
global optimization algorithm to achieve optimal matching for its scene points.

While the earliest formulations of Rao–Blackwellized particle filters in a FastSLAM-
like framework assumed that map elements are estimated using EKFs, other monocular
SLAM approaches implemented alternative nonlinear Kalman filtering strategies, namely
the UKF. In [31], the authors exploited the spatial structure of the environment and de-
veloped an algorithm that searched for and extracted locally planar objects as landmarks,
whilst Lee [32] introduced a template prediction mechanism to compensate for camera
motion. Both mentioned systems employed UKFs for landmark storage to overcome the
issue concerning Jacobians approximations in EKFs.

The profound analysis presented in [9] marked a milestone in the SLAM systems
domain, as more researchers have tended to shift towards keyframe simultaneous local-
ization and mapping approaches over the last decade. Still, there have been numerous
examples of efficient PF SLAM methods implemented since. One of them was proposed
in [33] as a tool for pose-tracking for augmented reality. The algorithm implemented
an idea to discard outliers indirectly—not during the data association-and-gating phase
but after the particle-weighting procedure, as incorrect matches lower sample weights
significantly, thus minimizing chances for a given particle to be resampled. The authors
used both lines and points, extracted with a Harris corner detector [34] and Hough line
transform, respectively. A different particle filter-based solution to the SLAM problem
was outlined in [35] for an indoor aerial vehicle. Asserting that the robot was designed to
navigate only inside manmade structures, that system exploited the abundance of straight
lines in the camera images and facilitated human-like procedures to predict landmark
depths. The ranging strategy assumed that the monocular camera altitude was known,
and used this information to process relative poses of observed geometric structures in
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order to synthesize a simultaneous localization-and-mapping algorithm, similar to the
FastSLAM approach.

As mentioned before, the monocular camera-observation model suffers greatly from
a lack of depth information. Contrary to monocular-camera algorithms, RGBD-camera-
based-SLAM approaches are able to directly initialize landmark depths using single-sensor
reading. One paper [36] presents a remarkable stereo-camera-particle-filter-SLAM solution,
where the authors proposed a smart procedure for outlier identification by landmark-
position correlation analysis. Moreover, landmarks are efficiently detected and matched
using the SURF algorithm. To tackle the unknown depth issue otherwise, one can place a
pattern of known dimensions inside the camera field of view. In [37], the authors proposed
the insertion of a chessboard inside the first few camera frames to allow an accurate depth
estimation as well as a reduction of camera pose uncertainty for a monocular-camera-based
SLAM system. To calculate the depth of subsequently observed landmarks, the described
algorithm delayed their initialization until a triangulation procedure could be carried out.

In reference to SLAM being strictly a perception problem, one would intuitively seek
its refinement in the modification of a given observation model. However, Zhou and
Maskell proposed an improvement to the FastSLAM framework based on the motion
model revision. In [38], the estimation of system dynamics is partitioned into two sub-
models. The camera location was calculated with a particle filter, and its velocity with a
Kalman filter. This idea allowed one to reduce the particle filter’s dimensionality, as well as
to achieve a better accuracy than one would with an analogous solution constructed upon
the classic FastSLAM framework.

Further examples of particle-filter SLAMs also include non-pure-visual systems, where
data from range finders are fused with images. Chen et al. [39] implemented a system
wherein an urban search-and-rescue robot navigates using 2D lidar in a feature-based 3D
map, constructed with a monocular camera. This allows for the obtaining of a real scale of
the surroundings, as well as the maintenance of full, 6DoF motion and mapping capabilities.
In [40], the authors propose a system wherein one robot performs the camera SLAM while
others reuse the resulting map for simultaneous localization-and-map-scale estimation.

Among additional instances of PF-based systems in the field of robotics, recent works
not related directly to the SLAM problem should be listed as well. The manuscript by
Acevedo et al. [41] characterizes an algorithm which employs a particle filter to enable a
group of networking robotic entities to search for a moving target. In [42], PF is used as a
framework to solve 6DoF, visual pose-tracking, where Rao–Blackwellization is introduced
by decoupling the translation and orientation data. In a paper by Di Yuan et al. [43], a
PF-based system for redetection in the object-tracking approach for accurate localization in
difficult conditions is described. In [44], the authors describe a self-localization technique
that employs a PF, based on particle swarm optimization, that requires fewer particles to
function correctly than comparable benchmark approaches.

3. Materials and Methods

Although the method that we propose in this paper can be easily adjusted to any
monocular camera configuration, our SLAM framework was designed and validated under
the assumption it will serve as a secondary navigational system for a surveillance UAV
with its monocular camera pointed downward. Based on inertial-measurement-unit (IMU)
measurements and subsequent camera frames, we were able to synthesize the registered
data into a correct trajectory, together with a sparse map of the observed area.
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3.1. Motion Model

To minimize the number of reference frames needed, our system directly estimates
the pose (position and orientation) of a camera sensor, rather than the pose of a UAV itself.
The state vector xk during time step k consist of nine variables:

xk =



x
y
z

vx
vy
vz
φ
θ
ψ


(1)

where x, y, z represent a localization in Cartesian coordinates, vx, vy, vz are orthogonal
components of a velocity vector and φ, θ and ψ are the roll, pitch and yaw orientation
angles respectively. We choose the east-north-up (ENU) coordinate system as the global
reference frame, where x is east, y is north and z is up. The source of camera orientation,
relative to the ENU frame, is obtained from the onboard IMU.

While the camera itself has six degrees of freedom (6DoF), the bearing-only observa-
tion model causes monocular SLAM to be a 7DoF problem, where a map representation
can be determined only up to a scale. To mitigate the issue of scale ambiguity and drift,
which is an inherent problem of single-camera SLAM frameworks, we chose to select
the onboard IMU as an additional sensor. It is used as the source of a stream of metric
measurements that are control signals for trajectory prediction. The employment of an
inertial measurement unit implicates the usage of a constant velocity (CV) motion model as
the most appropriate. The discretized motion equation describing the camera movement
relationships is given below:

xk = f(xk−1, uk) + wk (2)

where xk is the predicted state vector containing estimates of the platform’s kinematic
parameters, xk−1 is the state vector estimated during the previous time step k − 1, f is
the state-transition nonlinear vector function, uk represents IMU readings, and wk is the
additive Gaussian process noise which can be described by a zero-mean multivariate
normal distribution N(0, Qk) where Qk denotes the process covariance matrix.

3.2. Sensor Model

As previously stated, a single camera is the main sensor utilized for map building in
our SLAM system. Monocular cameras are common components of off-the-shelf UAVs.
Among their advantages which can be considered the most beneficial in the field of robotics
are their small size and low cost, as well as low power consumption. Moreover, the update
rates and resolutions of these cameras are sufficient to track environmental changes during
motion at velocities up to tens of meters per second. These features are the reason that
monocular cameras are widely used for localization, structure from motion, mapping,
SLAM etc. However, one can also identify consequential drawbacks of the single-camera
usage. The main disadvantage, which has to be addressed when analyzing the monocular
sensor model, is the lack of depth information. In other words, the perspective projection
that transforms 3D real-world points into 2D camera pixels coordinates is lossy and causes
a pose calculation problem for extracted real-world features. As landmark 3D positions
cannot be straightforwardly computed, the approach to resolve this difficulty needs to
be adopted. To address this issue, a given algorithm can either initialize a landmark
immediately after its first observation (where the uncertainty of measured depth is set
as significantly larger than for other coordinates), or delay the feature detection until
observations from different perspectives provide conditions for temporal view stereoscopy
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analysis, to estimate information about the landmark’s full, 3D pose. The first approach
is called an undelayed initialization, while the latter is commonly referred to as delayed
landmark initialization.

The adopted sensor model, together with the initialization strategy, starts with a
single-camera frame registration. The camera’s intrinsic parameters are known and can be
denoted as Kintr:

Kintr =

 fx s u0
0 fy v0
0 0 1

 (3)

where fx and fy represent focal lengths along the camera’s axis and are equal for a pinhole
camera model, u0 and v0 are principal point offset and s is the camera axis skew.

To extract distinctive scene points from images, we use the SURF algorithm [21].
The SURF detector outputs a set of pixel coordinates in a given image frame, where the
determinant of a Hessian matrix reaches its maximum value. It is worth noting that
SURF points are scale and rotation invariant. Exemplary extraction procedure results are
presented in Figure 1.
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To represent extracted scene points in the ENU coordinate frame, we use the concept
of anchored modified-polar points, which can also be referred to as inverse-distance points
(IDP) [45]. A single IDP point is defined by a six-element vector:

pmi
k =



x0
y0
z0
ε
α
ρ

 (4)

where pmi
k is the state of the i-th landmark observed by the p-th particle at the time k. The

first three elements of the state vector (x0, y0, z0) are the ENU coordinates that encode the
position of the particle from which the landmark was originally observed (the point pp0 in
Figure 2.). These coordinates are frequently referred to as the anchor point. Next, ε and
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α are respectively the elevation and azimuth angles at which the observation was made,
while ρ = 1

d is the inverse of the distance between the camera and the scene point.
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Figure 2 presents the idea of IDP landmark parametrization. The usage of anchored
modified-polar points allows one to initialize landmarks in the map immediately. Still, the
monocular-camera, salient-feature extraction step provides only two-dimensional mea-
surements of three-dimensional objects’ locations, where the distance d remains unknown.
To resolve the issue of being unable to recover the true localization of the environment
features, we choose the strategy of setting an initial inverse depth, of every registered
landmark, as a preset value with reasonably large uncertainty. As the camera is pointed
downwards, the starting depth value is either assumed equal to the UAV’s altitude or is
calculated using positions of nearby, previously seen scene points. The standard deviation
of such observation is selected in a way so as to include infinite distance (inverse depth
equal to 0) in the 3σ region. Using the undelayed initialization scheme allows one to
comply with the adopted discrete-time Markov chain approach, and satisfies the property
of a memoryless process, such that the currently processed state is sufficient to estimate the
probability distribution of future states.

The first step of the initialization of a newly observed landmark is to transform its
coordinates, expressed in pixels of the image plane, using the pinhole camera model. The
inverse camera projection is performed in accordance to the equation below: xcam

ycam
1

 = Kintr
−1

 u
v
1

 (5)

where u and v are pixel coordinates in a registered image frame while xcam and ycam are
coordinates in the standard reference frame of the camera. Next, by transforming the
resultant vector so that it is expressed in the global reference frame (ENU), the optical ray
pointing from the camera center pp0 to the extracted scene point is obtained: xenu

yenu
zenu

 = enuRcam

 xcam
ycam

1

 (6)

where enuRcam encodes the rotation from the camera reference frame to ENU coordinates.
The usage of IDP parametrization implies the lack of need for the employment of 3D
coordinates in a homogeneous form, as the obtained vector is subjected only to rotation.
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The information that is conventionally contained in translation—when using 3D Euclidean
points as landmark representation—is encoded in the anchor point pp0.

Next, the vector’s ENU coordinates are expressed using a modified-polar point convention: ε
α
ρ

 =

 atan2
(

zenu,
√

xenu2 + yenu2
)

atan2(yenu, xenu)
1
d

 (7)

where ε and α are respectively the elevation and yaw angles and ρ is the inverse depth. The addi-
tion of the anchor point results in the acquiring of the complete IDP landmark parametrization:

pmi
k =


pp0

ε
α
ρ

 =



 x0
y0
z0


atan2

(
zenu,

√
xenu2 + yenu2

)
atan2(yenu, xenu)

1
d


(8)

As landmarks are stored using separate EKFs, the initialization procedure has to
comprise the calculation of the landmark covariance matrices as well. A covariance matrix
pPi

k that describes the uncertainty of a transformation of the 2D point extracted from an
image frame to its IDP representation is given by the following formula:

pPi
k =

(
pHi

k

)−1
Rp

k

[(
pHi

k

)−1
]T

+



0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 σ2

ρ

 (9)

where Rp
k is a two-by-two sensor-noise matrix, describing the accuracy of the scene point

localization in the image plane, and
(pHi

k
)−1 follows the ordinary EKF notation and denotes

a Jacobi matrix of the inverse observation function that describes the transformation from
pixel coordinates to the ENU coordinate system.

(pHi
k
)−1 is given by the following formula:

(
pHi

k

)−1
=



0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


pJi

k
enuRcamKintr

−1

 1 0
0 1
0 0

 (10)

where pJi
k is the Jacobi matrix of a function that transforms the vector pointing from the pp0

to the i-th landmark from 3D ENU Cartesian coordinates into modified spherical coordinate
system representation and is equal to:

pJi
k =


xenuzenu(xenu

2+yenu
2+zenu

2)
−
√

xenu2+yenu2

yenuzenu(xenu
2+yenu

2+zenu
2)

−
√

xenu2+yenu2

√
xenu2+yenu2

xenu2+yenu2+zenu2

−yenu
xenu2+yenu2

xenu
xenu2+yenu2 0

0 0 0

 (11)

During camera movement, in subsequent time steps, the sensor model is able to
retrieve the bearings of extracted features from consecutive, multiple views. The SLAM
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algorithm gradually estimates real 3D poses of landmarks, using standard EKF update
equations given below:

pyi
k = z[i]k − h

(
pm[i]

k

)
(12)

pSi
k =

pHi
k

pPi
k−1

(
pHi

k

)T
+ Rp

k (13)

pKi
k =

pPi
k−1

(
pHi

k

)T(pSi
k

)−1
(14)

pmi
k+1 = pmi

k +
pKi

k
pyi

k (15)

pPi
k =

(
I6x6 − pKi

k
pHi

k

)
pPi

k−1 (16)

where pyi
k is the measurement innovation (of the i-th landmark seen by the p-th particle),

z[i]k is the measurement itself and h is the nonlinear vector function that describes the
projection of a predicted scene point location from the 3D ENU coordinates to the image
plane. It is the inverse of the transformation described in the Equation (5) through (11).
Furthermore, pSi

k, pHi
k and pKi

k are respectively the residual covariance, the Jacobian of
the vector function h, and the Kalman gain—calculated for a given particle-landmark
pair—during time step k.

3.3. Sequential Importance Resampling (SIR) Particle Filter

A particle filter is a mathematical tool capable of the accurate estimation of non-linear,
non-Gaussian and multimodal distributions. Among different PF variants, the sequential
importance resampling (SIR) approach is suited best for SLAM applications, and most of the
previously mentioned works use it to address the simultaneous localization on the mapping
problem. Our SLAM algorithm is built upon a SIR PF as well. The filtering operation is
conducted by drawing a weighted set of samples that are generated in accordance with a
predefined distribution from a set of particles from a previous time step. To address the
issue of a particle filter degeneracy, a resampling procedure is run periodically to exclude
samples with the lowest weights—i.e., less probable hypotheses.

To achieve a robust and efficient filtering procedure, the proposal’s distribution of
samples has to match the desired distribution as closely as possible. Therefore, particles rep-
resenting poses of the camera are sampled at a frequency equal to the IMU data sample rate.
This process is performed in accordance to the motion model described by Equation (2),
and its PDF is assumed to be in the following form:

p(xk|xk−1, uk) (17)

Performing SLAM, rather than simple navigation, indicates the inclusion of a set of
extracted landmarks in the filtering process. The straightforward approach of recovering
the momentary camera pose and the map of its surroundings with a particle filter is given
by the joint posterior:

p
(

xk, m[1:M]
k

∣∣∣xk−1, uk, zk

)
(18)

where m[1:M]
k is a set of all M landmarks observed up to time k. The number of particles re-

quired to estimate the PDF accurately grows exponentially, as every newly added landmark
increases the number of dimensions of the state space that has to be sampled. Therefore,
for SLAM systems designed to navigate robustly and effectively through large areas, a
change in this approach is necessary. To solve the issue of a rapid increase of the number of
required particles, PF SLAM systems commonly benefit from the fact that the estimations
of observed scene points can be treated as conditionally independent, if the robot trajectory
is assumed to be known. The application of this relationship results in a special case of the
Rao–Blackwellization (RB) of a particle filter and is based on marginalizing landmarks out
of the state vector [20]. The standard RB PF is the mathematical basis of the adopted SLAM
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framework. The consequence of state-vector size reduction is a decrease in the number of
samples needed to perform a SLAM routine accurately. The resulting joint posterior is:

p
(

xk, m[1:M]
k

∣∣∣xk−1, uk, zk

)
= p(xk|xk−1, uk)p

(
m[1:M]

k

∣∣∣xk, zk

)
(19)

and can be further factored out as:(
xk, m[1:M]

k

∣∣∣xk−1, uk, zk

)
= p(xk|xk−1, uk)

M

∏
i=1

(
mi

k

∣∣∣xk, zk

)
(20)

The implementation of this conceptual solution to Rao–Blackwellized SLAM is per-
formed by the division of the estimation task among different filters. The main particle
filter models the camera trajectory with a number of weighted samples, while landmark
positions are estimated using EKFs, whose accuracy determine particle weights. Every
particle has to maintain a separate EKF for every observed scene point. This implicates the
computational complexity of O(MN) for N-particle distribution, describing the pose of a
camera and an M-landmark map.

3.4. Weighting Approach

The samples in a particle filter are weighted according to the likelihood functions
that describe the accuracy of camera readings, given the predicted landmarks and sensor
locations. The weight of a particle is inversely proportional to the innovation of observed

landmarks y
[1:Lp

k ]

k in a time step k which is measured in pixels, in the image frame:

wp
k ∼ wp

k−1 p
(

y
[1:Lp

k ]

k

∣∣∣∣x[p]k

)
(21)

where Lp
k is the number of landmarks matched by the particle p at a time k. The weight of

a given particle can be further calculated using the following formula:

wp
k = wp

k−1

∣∣∣∣2πS
[1:Lp

k ]

k

∣∣∣∣−1/2
exp

[
−1

2

(
y
[1:Lp

k ]

k

)T(
S
[1:Lp

k ]

k

)−1
y
[1:Lp

k ]

k

]
(22)

where S
[1:Lp

k ]

k is the innovation covariance matrix constructed for all landmarks that were
matched with the previously seen scene points at a time step k. The particle cloud encoding
exemplary estimates in a particle filter in the local body frame is shown in Figure 3.
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For our algorithm to include particular landmarks in the sample-weight calculation,
they have to be correctly associated with previously extracted scene points. The matching
procedure consists of two steps. After the visual association of image features, which
is based on a comparison of SURF descriptors (and was described in previous sections),
we proceed to spatial gating, using the Mahalanobis distance to remove spatial outliers.
This step introduces a potentially error-prone dependency. Namely, landmark matches
have to be gated in accordance with measurement residuals y[i]k+1 for all the potential
associations—for every particle. As the set of samples represents the complete PDF of a
camera pose, the differences between predicted and observed landmark positions vary
between particles, while the matching threshold remains constant. Consequently, the
number of landmarks that pass the gating criterion may differ within the particle set. Hence,
using the Mahalanobis distance as a straightforward solution to the outliers issue introduces
distinctive ambiguities during the particle weighting and resampling procedures. While
every observation is assumed to be independent and normally distributed, Equation (22)
could be rewritten as:

wp
k = wp

k−1

Lp
k

∏
i=1

∣∣∣2πS[i]
k

∣∣∣−1/2
exp
[
−1

2

(
y[i]

k

)T(
S[i]

k

)−1
y[i]

k

]
(23)

The magnitude of y
[1:Lp

k ]

k+1 depends on the deviation from the true trajectory of the
camera for a given particle. Due to the nature of the computation and system parameters,
every product factor of the resulting weight wp

k is significantly smaller than one. Thus, every
matched landmark 1 : Lp

k causes wp
k to decrease. Consequently, although the number of

matched landmarks is, in general, proportional to the accuracy of the trajectory estimation
process, it is not unusual that, for two given particles whose poses resulted in matching a
different number of landmarks, the one with more matches would have a lower importance
factor. This is caused by the gating step, as the negative impact of the magnitudes of
landmark-pose innovations on wp

k is often lesser than the presence of additional product
factors. A natural way to include the missed landmarks in the weight calculation would be
to introduce a probability of incorrect association Pia into the Equation (23):

wp
k = wp

k−1(1− Pia)
Lp

k

Lp
k

∏
i=1

∣∣∣2πS[i]
k

∣∣∣−1/2
exp
[
−1

2

(
y[i]

k

)T(
S[i]

k

)−1
y[i]

k

]
Pia

Lmax−Lp
k (24)

where Lmax is the maximum number of matched landmarks by any of the particles during
a given time step. The tested value of Pia ranged between 0.2 and 0.001 [46]. However,
simulations shown in the next section suggest that this idea is insufficient to solve the
beforementioned problem—the weights of particles which matched fewer landmarks were
often still larger, as the sole adjustments of the Pia did not allow one to tune the weighting
process accurately. To efficiently address this issue, we introduce the weight stratification
scheme. The idea behind this approach is based on adopting the number of matched
landmarks as a primary importance factor criterion. After initial weighting, samples are
divided into subsets according to the number of correctly matched scene points and their
weights are further adjusted. The adjustment is performed with the addition of offsets to
particle weights in a way that separates each of the subsets, creating disjunctive strata of
particles. The details of the stratification algorithm are described in the flowchart presented
in Figure 4. The graphical interpretation of this procedure is illustrated in Figures 5 and 6. In
this way, matching more landmarks by a given particle guarantees having a greater weight.
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The offset that separates the strata is equal to the following expression:

offset = (Lmax − Ls
k) ln Pia (25)

where Ls
k is the number of landmarks matched by particles in a given strata s.

Applying the algorithm results in the stratification of sample subsets. Of note is the
fact that the procedure is performed in such a manner that particle-weight ratios, in distinct
subsets, are preserved. The weights adjustment outcome is presented in the figures below.

After the stratification and normalization, the system performs the resampling proce-
dure, though only if the efficient number of particles Ne f f , calculated using the expression
below, is less than a quarter of the true number of particles.

Ne f f =
1

∑N
p=1(wp)2 (26)

This procedure allows one to replace samples of negligible weights with those repre-
senting the most probable state hypotheses only when significant disproportions in particle
weights occur.

3.5. Landmark Management

To perform large scale simultaneous localization and mapping, a SLAM architecture
has to address the issue of efficient landmark management. Particle-filter solutions are
especially vulnerable to rapid increases in the number of scene points used for mapping, as
every particle represents a unique map. Our SLAM system manages landmarks in a way
that minimizes memory usage. To achieve it, we run two separate data sets. One of them
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stores landmark data that is shared among all particles, such as scene-point coordinates
in an image frame, their SURF descriptors, and information on whether landmarks were
identified in the currently processed frame and if they were newly observed. Furthermore,
a unique ID is assigned to every scene point in the first set. The other database contains
information that can be referred to as particle-dependent: landmark positions, covariance
matrices, SURF-matching and Mahalanobis-gating results, the number of times landmarks
were seen and updated, as well as the number of times landmarks were not observed if their
pose indicated otherwise, last-observation and update times, the last angle of observation
and the observation-likelihood values.

Furthermore, robust operation requires a flexible approach to landmark initialization
and removal. The algorithm distinguishes four different states in which a landmark can be
after the data-association procedure. First, a new landmark is extracted and initialized if the
number of matched landmarks in the current frame is lower than the predefined threshold
of a desired number of landmarks per frame. This prioritizes already-seen scene points
over newly observed ones. In addition, scene points that were matched correctly are further
examined in terms of angle of observation. If the angle between the current camera pose
and the pose of the sensor during the last landmark observation is larger than a predefined
threshold, which provides sufficient triangulation conditions, the landmark is updated,
using EKF. Otherwise, the landmark is only marked as matched. This artificial limitation
of landmark-update frequency is necessary, due to the properties of the EKF covariance-
matrix-update equation. If a landmark is not observed, even though it is predicted to be
inside the current sensor Field of View (FOV), it is marked as unmatched. After processing
all observations, the variables that monitor the number of updates, correct matches and
failed observations are updated for all particles and their associated scene points.

The last part of landmark management is landmark removal. The removal assessment is
based on the algorithm described by the flowchart in Figure 7 and performed particle-wise.
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Only after a given landmark is removed by all of the particles is its data in the dataset
shared among deleted particles as well.
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In terms of accuracy, it is more useful to increase the number of scene points, rather
than the number of processed image frames per second [9]. Hence, we adjusted our
system such that the frames-per-second rate is artificially lowered to less than five, so that
the number of extracted, associated and initialized features during every frame could be
maximized without increasing the computational burden.

Each loop of the presented particle filter algorithm starts after sensor-data acquisition.
First, particle motion prediction is performed, which is characterized by a linear time complex-
ity O(N), where N is the number of particles. Next, the matching, gating and update is carried
out for every newly registered landmark. Those procedures also have linear time complexity
O(M), where M is the number of landmarks. However, as every sample represents a unique
map, landmarks processing has to be performed for every particle resulting in the O(MN)
complexity. The stratification and resampling steps have linear time complexity O(N). Hence,
the overall algorithm complexity can be reckoned as O(MN).

4. Results

To evaluate the feasibility of our approach, we conducted a series of experiments,
using a simulation environment, as well as analyzing real-world data collected by a UAV.
Information gathered in both approaches was processed offline, with software developed
in MATLAB. We aimed at comparing five gating and weighting approaches to the particle-
filter SLAM problem:

1. Our novel weights stratification.
2. Adding a penalty for unmatched landmarks, in accordance to the Equation (24).
3. Weighting particles using only the lowest number of matched landmarks (so that all

the samples are evaluated using an equal number of landmarks).
4. Using no gating, as in [33].
5. Gating without addressing the issue of difference in the number of matched landmarks

between particles.

However, the significantly poorer performance of the last two methods led to their
exclusion from the undertaken evaluation.

4.1. Simulation

Simulations were predominantly used to examine the overall cohesion of different
solutions. First of all, this type of approach allowed the SLAM procedure to be performed
in precisely defined conditions, e.g., exactly known UAV trajectory, camera orientation,
sensor noise, etc. Availability of the reference trajectory is of particular value, as it enables
the calculation of positioning errors.

The robotics simulator chosen to generate data for the evaluation of the performance
of the compared methods was the Gazebo open-source software [47]. Gazebo was adopted,
as it is the most-known robotic simulator, accepted as the de facto software platform
for robotics [48–50]. The experiment configuration was built upon a set of two sensors
following a predefined trajectory. The camera was pointed directly downwards and the
IMU provided 3D accelerations and angular velocities. To achieve similarity between the
real world and the simulation environment, we used an aerial photograph, taken from a
UAV, and stretched it over the ground plane in Gazebo. The exemplary simulation setup is
presented in Figure 8, where the sensor is marked with a red ellipse.
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Figure 8. Simulation environment.

An exemplary map-building process (Figure 9) that emerged during one of our SLAM-
algorithm runs is presented below. The landmarks are shown as either green circles (those
scene points which were updated at least once) with a blue 1σ ellipsoid uncertainty region
or as green stars (those scene points that were not yet updated). Ellipsoids in magenta
denote landmarks being updated at the given time step. If the landmark is seen (correctly
matched) in the currently processed frame, its edge is red, and if a landmark is newly
observed, the marker is red.
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We tested the listed approaches, using a scenario in which the UAV was flying at
an altitude of 30 m. The trajectory of the drone was chosen in a way that created four
areas in which there was a possibility for a loop closure. The flight took about 75 s, during
which the vehicle traveled almost 900 m. An example of a SLAM procedure’s results, for
simulations conducted using the above-discussed scenario, is presented in Figure 10, where
the reference track is marked in black and all other colored lines represent the paths of
single particles. The areas where a potential loop-closing procedure can be performed are
marked with blue ellipses.
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In the example above, the achieved root-mean-square (RMS) error of the trajectory,
using only 20 particles, is less than 3.3 m.

To evaluate the performance of different approaches to gating and weighting procedures,
we performed a set of simulation runs for each approach, after which we averaged the results.
The data collected during the tests are presented in Table 1. The indexes of the weighting and
gating approach match the order of the list in the first paragraph of this section.

Table 1. Comparison of simulation results.

Number of particles 20 40 80

Weighting and gating approach 1 2 3 1 2 3 1 2 3

Percent of correct loop closures

loop 4 90 0 20 80 10 30 90 30 30

loop 3 90 0 20 80 10 30 100 60 30

loop 2 100 0 30 100 10 30 100 60 40

loop 1 100 0 50 100 20 60 100 80 70

Number of resamplings 62.11 - 37.5 68.5 29 50.33 68.22 63.67 53

Root mean squared error [m] 20.34 - 34.23 13.545 29.95 28.68 7.80 17.33 15.97
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The compared methods were analyzed in terms of overall accuracy—trajectory RMS
error—as well as the ability to correctly close the loop. The loop closure was considered
successful if there were landmark matches for scene points which had not been seen during
the previous 5 s of observation. It was convenient to analyze this condition using a plot, an
example of which can be seen in Figure 11, where all four successful loop closures are visible.

Remote Sens. 2021, 13, x FOR PEER REVIEW 18 of 27 
 

 

In the example above, the achieved root-mean-square (RMS) error of the trajectory, 
using only 20 particles, is less than 3.3 m. 

To evaluate the performance of different approaches to gating and weighting proce-
dures, we performed a set of simulation runs for each approach, after which we averaged 
the results. The data collected during the tests are presented in Table 1. The indexes of the 
weighting and gating approach match the order of the list in the first paragraph of this 
section 

Table 1. Comparison of simulation results. 

Number of particles 20 40 80 
Weighting and gating approach 1 2 3 1 2 3 1 2 3 

Percent of correct 
loop closures 
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loop 3 90 0 20 80 10 30 100 60 30 
loop 2 100 0 30 100 10 30 100 60 40 
loop 1 100 0 50 100 20 60 100 80 70 

Number of resamplings 62.11 - 37.5 68.5 29 50.33 68.22 63.67 53 
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The compared methods were analyzed in terms of overall accuracy—trajectory RMS 
error—as well as the ability to correctly close the loop. The loop closure was considered 
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Figure 11. The average number of landmarks which were consequently matched after more than 5 s for the correct closure 
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of all four loops.

Moreover, the total number of resampling procedures which took place during the flight
was compared. Every set of the filter settings was evaluated 10 times. However, only those runs
which ended in the successful closing of all four loops are included in the mean calculations.

The overall filter performance, interpreted as the ability to follow a given path ac-
curately and evaluated using the amount of correctly closed loops, points to our novel
stratification method as the most reliable one. Even for as little as 20 particles, the algorithm
using our approach was able to reach the end of the trajectory accurately enough to close
the last loop almost every time. On the contrary, the approach, which limited weight
adjustment only to the addition of penalties in accordance to Equation (24,) resulted in the
inability to correctly follow the true trajectory, even once, when using 20 particles. The
increase in the number of particles improved its effectiveness, but even the employment of
80 particles led to successful closures of all loops in only 30% of runs. Although the third
approach performed slightly better than the previous one, it was still erroneous most of
the time. Similar conclusions can be drawn when analyzing the RMS errors, as the novel
stratification method proves to be significantly more accurate.

To present the manner in which different SLAM algorithms diverged from the refer-
ence trajectory, three examples are presented in Figures 12–14.
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4.2. Real-World Data

To evaluate the utility of our approach more profoundly, we compared the SLAM
procedures using real-world data from a UAV. The data were collected using the DJI
Matrice M100, with a Raspberry Pi as an onboard computer—shown in Figure 15. Images
were recorded using a Zenmuse X3 camera, while the onboard IMU was the source of
kinematic data—one significantly less accurate than the sensor simulated in the previously
described experiment.

The flight took place in the area where the aerial picture for the Gazebo simulation
was taken. It lasted about 35 s, during which the UAV’s altitude varied between 10 and
13 m above ground.

The mapping concept is similar to the one for the simulation experiment, however,
we assumed that the starting point of the UAV is point (0,0,0) in the local ENU coordinate
frame. As the data were registered outdoors, no ground-truth trajectory was available.
Hence, we compared the results of our SLAM algorithm to the data from an INS/GNSS
integrated navigation system installed onboard the UAV. Such a trajectory can be used to
detect significant errors (e.g., filter divergence), but the RMS trajectory error, calculated
with respect to it, can be treated as a crude estimate of positioning error only.
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Below, the results of comparisons between the SLAM procedures are presented. The
algorithm was examined using nine sets of parameters, analogously to the previous ex-
amination. However, only two potential loop closures are possible for the assumed flight
trajectory. Moreover, the beginning and the end of the trajectory are localized very close in
space. The data collected during the runs are presented in Table 2.

Table 2. Comparison of real-world data processing results.

Number of particles 20 40 80

Weighting and gating approach 1 2 3 1 2 3 1 2 3

Percent of correct loop closures
loop 2 0 0 0 20 - 30 60 0 40

loop 1 30 0 0 50 - 40 90 0 70

Number of resamplings - - - 85.5 - 72.5 76.25 - 67.17

Root-mean-square error [m] - - - 10.44 - 12.28 5.94 - 7.16

The most apparent conclusion is that the solution of the SLAM problem for this set
of data proved to be significantly more difficult than for the simulated data. However,
the results are similar, i.e. our stratified-filter approach performed more robustly and
more accurately than the others. It was the only filter variant to correctly identify the
turning-back maneuver—the first loop closure—using as few as 20 particles. Secondly, the
performance of the approach with penalties for unmatched landmarks was least effective.
We conducted an additional simulation to see whether this method would close at least the
first loop correctly with 160 particles. Still, every run of the algorithm was unsuccessful.

In Figure 17, the trajectories of single particles, together GNSS reference trajectory, are
shown, using horizontal projection for image clarity.
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In Figure 18, the average track for this run is presented. The altitude is shown
separately in the right subplot.
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5. Discussion

The simulations and experiments compiled for compare different weighting and
gating approaches for a PF SLAM provide consistent results that justify the implementation
of the described stratification algorithm. First of all, its accuracy, measured in terms of
RMSE, is superior. Secondly, the robustness of the algorithm is demonstrated by its having
the highest percentage of successful runs. Last but not least, the amount of resampling
procedures performed in different variants suggests that the method of data processing,
in the stratified approach, provided the largest amount of information, as it led to more
distinct differences in sample weights and more frequent resampling.

As mentioned earlier, the method of real-world data registration provided no ground-
truth trajectory. This can be considered an additional source of uncertainty, in terms of
accurate RMSE calculation, however, its impact should not be overestimated, because
the INS/GNSS trajectory was available. Still, the removal of such an uncertainty can be
pointed out as a future research direction, and we plan to implement our algorithm on a
platform which will be capable of performing real-time kinematic (RTK) surveying. This
will allow centimeter-level accuracy of positioning in providing reference trajectories.

6. Conclusions

This article discusses a particle-filter-SLAM algorithm that introduces a novel ap-
proach to the particle-weighting procedure.
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Theoretical analysis and experimental evaluation were conducted for multiple sim-
ulated and real-world flights. As a result, the usage of Mahalanobis gating with weight
stratification by the number of matched landmarks, was identified to be a beneficial and
desirable element of monocular-particle-filter-SLAM algorithms.

The experiments proved that, overall, performance of a particle filter’s simultaneous
localization-and-mapping algorithm is better when the presented approach is implemented.
The stratified particle filter is more robust and accurate than other filter variants. Furthermore,
the loop closure is performed more effectively and the particles are resampled more often.

Consequently, the application of the presented algorithm allows to reduce the number
of particles—lowering the computational complexity.
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