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Abstract: Deep learning is now receiving widespread attention in hyperspectral image (HSI) classi-
fication. However, due to the imbalance between a huge number of weights and limited training
samples, many problems and difficulties have arisen from the use of deep learning methods in
HSI classification. To handle this issue, an efficient deep learning-based HSI classification method,
namely, spatial-aware network (SANet) has been proposed in this paper. The main idea of SANet is
to exploit discriminative spectral-spatial features by incorporating prior domain knowledge into the
deep architecture, where edge-preserving side window filters are used as the convolution kernels.
Thus, SANet has a small number of parameters to optimize. This makes it fit for small sample sizes.
Furthermore, SANet is able not only to aware local spatial structures using side window filtering
framework, but also to learn discriminative features making use of the hierarchical architecture and
limited label information. The experimental results on four widely used HSI data sets demonstrate
that our proposed SANet significantly outperforms many state-of-the-art approaches when only a
small number of training samples are available.

Keywords: hyperspectral image classification; feature learning; spatial-aware network; deep learning

1. Introduction

Hyperspectral images (HSIs) usually contain abundant spectral information [1–4].
Such rich spectral information makes it possible to distinguish subtle spectral differences
of different materials. Consequently, HSI classification has been widely used in a variety of
applications, including environmental management [5], agriculture [6], and surveillance [7].
Over the past few decades, a large number of methods have been proposed to predict the
class label of each pixel in HSI. However, it is still a challenging issue in HSI [4,8–15]. One
of the most challenging issues is the limited available training samples. The reason for this
is that it is difficult and time consuming to collect a large number of training samples [4,16].

The early research on HSI classification mainly focuses on exploring spectral features
directly from spectrum, such as methods based on dimensionality reduction [17,18] and
band selection [19]. However, due to the spatial variability and spectral heterogeneity
of land covers, spectral-only methods usually fail to provide better performance. It is
well known that neighborhood pixels in HSI are highly correlated [20]. As a result, a lot
of efforts have been dedicated to integrate the spatial and spectral information for HSI
classification [21]. In the past few years, a wide variety of spectral-spatial methods have
been developed [20,22,23]. For example, extended morphological profiles (EMPs) is pro-
posed to integrate spectral and spatial information in HSI [24]. In addition, a discriminative
low-rank Gabor filtering method is also used to extract spatial-spectral features of HSI [25].
In [26], edge-preserving filtering (EPF) is used for obtaining spectral-spatial features of HSI
for the first time. Random fields technology has also been widely used for incorporating
spatial information into HSI classification, such as Markov random field (MRF) [27] and con-
ditional random field (CRF) [28]. Moreover, sparsity has been used as a constraint to extract

Remote Sens. 2021, 13, 3232. https://doi.org/10.3390/rs13163232 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7225-1958
https://orcid.org/0000-0002-4487-6384
https://doi.org/10.3390/rs13163232
https://doi.org/10.3390/rs13163232
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13163232
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs13163232?type=check_update&version=2


Remote Sens. 2021, 13, 3232 2 of 19

spectral-spatial features in different ways [29–37]. Recently, segmentation-based strategy is
used to produce more spatially homogeneous classification maps [38–41]. Zehtabian et al.
propose an approach for the development of automatic object-based techniques used for
HSI classification[41]. Zheng et al. design a spectral-spatial HSI classificaion method that
is based on superpixel segmentation and distance-weighted linear regression classifier to
tackle the small labeled training sample size problem [41]. Although these methods can
extract spectral-spatial features for HSI classification, low-level features are more sensitive
to local changes occurred in HSI, especially in the case of small training samples [42].

The past few years have witnessed a surge of interest in deep learning [2,43]. Mo-
tivated by its success in natural image processing, a growing number of deep learning
methods are designed for HSI classification [4,44,45]. In the early stages, stacked autoen-
coders (SAEs) and deep belief networks (DBNs) have been used for HSI classification
in [46,47], respectively. This research attempts to intuitively feed the vector-based input
into unsupervised deep learning models. However, this strategy suffers from spatial in-
formation loss. In order to address this issue, convolutional neural networks (CNNs) are
used to learn effective spectral-spatial features residing in HSI [4]. For instance, Cao et al.
adopted the CNN to extract deep spatial features [48]. In [49], 3D CNN is also adopted
to extract spectral-spatial features. Furthermore, a 3D generative adversarial network
(3D-GAN) is also applied in HSI classification [50], where adversarial samples are used as
training samples. Although remarkable progress has been made in deep learning-based
HSI classification, there still exist some important issues should be dealt with [4,12]. One
of the most important issues is the imbalance between lots of weights and a small num-
ber of available samples [4,12,51]. That is, the training samples are usually very limited
while deep learning models usually require a large number of samples to train [4,11,21].
Although some methods have been designed to deal with this problem, it is still an open
problem. For example, RPNet has been proposed in [52], but the discrimination ability of
random patches are not guaranteed.

As it is well known, one of the essential theories of deep learning is to learn effective
features using a hierarchical architecture [11,21]. Furthermore, existing research shows
that incorporating prior domain knowledge into deep learning models can promote their
performance and reduce sample complexity [53]. Consequently, designing a deep learning
method by incorporating the prior knowledge of HSI is a feasible way to promote the
classification performance. In HSI classification, structure-preserving is one kinds of well
known prior information, which has been widely used to extract spatial information by
using filtering technology [26,54–56]. However, traditional smoothing filters, whose centers
are aligned with the pixels being processed, usually lead to edge blurring and loss of spatial
information [57]. Recently, side window filtering (SWF), which aligns the window’s side or
corner with the pixel being processed, is proposed to handle an edge blurring problem in
traditional filters [57]. As a result, SWF may outperform traditional smoothing filters in
HSI analysis and classification.

Based on the discussion above, this paper will present a deep learning model called
a spatial-aware network (SANet) for HSI classification. The proposed method can learn
spectral-spatial features with a small amount of training samples. In summary, the major
contributions of proposed SANet are twofold.

• This paper incorporates, for the first time in the literature, a side window filtering
framework into deep architecture for HSI classification. We utilize SWF to effectively
discover the spatial structure information in HSIs.

• This paper proposes an effective deep learning method. There are only a very small
number of parameters that need to be determined. Thus, the proposed method can
efficiently learn the spectral-spatial features by using a small number of training
samples.

This paper is organized in the following manner: Section 2 gives a detailed description
of the SANet for HSI classification. Section 3 validates the effectiveness of the proposed
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SANet on four typical data sets. The comprehensive comparison with several state-of-the-
art methods is also presented. Finally, conclusions are drawn in Section 4.

2. Methodology
2.1. Spatial-Aware Network for Feature Learning

Figure 1 details the overall flowchart of our proposed SANet, where only six hidden
layers are shown for clarity. In contrast to the traditional deep learning methods, which
adopt an end-to-end approach to learn, there is no back propagation during the imple-
mentation of SANet. Instead, by using the predefined convolutional filters (side window
filters), SANet can extract deep features efficiently. By convolving side window filters and
integrating them into a deep hierarchical architecture to form SANet, we not only retain the
characteristics of side window filtering but also give play to the powerful feature learning
ability of deep learning. As shown in Figure 1, SANet has a hierarchical architecture, which
includes F layer, P layer, and R layer, where the F layer combines their inputs with differ-
ent filters to extract spatial features, P layer outputs the structure-preserving responses,
and R layer processes their inputs by a supervised dimension reduction method, thereby
increasing discriminability and reducing redundancy. These three layers can form one
spectral-spatial feature learning unit. The detailed descriptions are as follows.

Figure 1. Schematic diagram of the proposed SANet, where only six hidden layers have been given
for simplicity.

F1 Layer: Let X ∈ Rm×n×b be the original HSI, where m, n, b are the row number,
column number, and band number, respectively. Let Xi represent the ith band of the input
HSI, and Xi(x, y) is the reflectance value at the position (x, y). Xi can be filtered using
different side windows with different radius. Figure 2 shows the definition of continuous
side window, where (x, y) is the position of the pixel being processed, θ denotes the
window orientation, r represents the radius of the window (can be predefined by users),
and ρ ∈ [0, r]. By changing θ and ρ, different side windows can be obtained, where the
pixel being processed should be on the side or corner of the window.

In practice, there are only a limited quantity of side windows that can be used, where
Figure 3 shows eight side windows. These side windows correspond to θ = k× π

2 (k ∈ [0, 3])
and ρ = {0, r}. Letting ρ = r, we can obtain four side windows, which are shown in
Figure 3a,b. If we set ρ = 0, we can get another four side windows, which can be found
in Figure 3c. In this paper, eight side windows shown in Figure 3 are used for exploring
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the spatial information in HSI. Note that we can design more side windows with different
sizes, shapes, and orientations by changing r, θ, and ρ.

Figure 2. Definition of the SWF.

(a) (b) (c)

Figure 3. (a) The left and right side windows; (b) the up and down side windows; (c) the northwest,
northeast, southwest, and southeast side windows.

Figure 4. Multiscale filtering on band i, where 8× r̂ feature maps have been derived from one band.

Note that the side window technique can be embedded into a wide variety of filters,
such as Gaussian filter, median filter, bilateral filter, and guided filter. In this paper, box
filter is used for simplicity. Then, the output is given by

X
F1,θ,ρ,rj
i (x, y) = F̂(Xi(x, y), θ, ρ, rj), (1)

where F̂ stands for filtering operation, rj is the radius of the window, and j = 1, 2, . . . r̂ (r̂
is the total number of the radius). Here, different rj corresponds to different scales. On
each scale, eight side windows (L, R, U, D, SW, SE, NE, NW denoted in Figure 3) have been
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used in this paper. Thus, we can obtain eight feature maps on each scale. Note that only
one scale is used in Figure 1 for illustration purposes only. The filtering results on the i-th
band are denoted by XF1

i . Figure 4 shows the multiscale filtering on the ith band. We can
carry out this operation on all of the bands. Thus, the total number of the feature maps is
N = r̂× b× 8. Finally, the output of this layer is denoted by XF1 ∈ Rm×n×N .

P1 Layer: In this layer, the MIN pooling is operated over different maps belonging
to the same scale. That is, we keep only the minimum output over eight feature maps
belonging to the same scale at each position. That is,

P
P1,rj
i (x, y) = min

θ=k× π
2 (k∈[0,3]),ρ∈{0,rj}

X
F1,θ,ρ,rj
i (x, y), (2)

where P
P1,rj
i (x, y) is the element of P

P1,rj
i in the xth row and yth column. Hence, one scale

band is formed by eight feature maps with the same scale in the output of F1 layer (see
Figure 5). Finally, we can obtain the feature map PP1 ∈ Rm×n×br̂.

Figure 5. MIN pooling on the rth scale corresponding to band i. For the ith band, each scale can
produce one feature map.

R1 Layer: In this layer, feature fusion is carried out to reduce the redundant infor-
mation residing in high-dimensional PP1 . Thus, this layer is also called feature fusion
layer. This feature fusion operation can not only reduce redundancy but also speeding up
the following feature learning. In theory, any feature fusion methods can be used in this
layer. For simplicity, linear discriminant analysis (LDA) is adopted in this paper. It can
not only reduce the dimension of the data but also able to increase the discriminability of
the learned spectral-spatial features. Therefore, the stacked feature maps in PP1 are fused
together as follows:

YR1(x, y) = (PP1(x, y))TA, (3)

where A is the LDA projection matrix learned from the training samples and consists of S
projection directions. Finally, the output of this layer can be denoted by YR1 ∈ Rm×n×S.

Feature Learning in Deep Layers: Let YRh−1 denote the output of the Rh−1 layer. For
purpose of learning spectral-spatial features in higher layers, we can take YRh−1 as the
input data and perform the same operations with in F1 layer, P1 layer and R1 layer. In this
way, we can obtain spectral-spatial features from different layers as {YR1 , YR2 , . . . , YRh}. In
this paper, Fi, Pi, and Ri, which are carried out successively, form the ith spectral-spatial
feature learning unit. The number of the feature learning units represents the depth of
the proposed deep model. Consequently, we can learn deep spectral-spatial features with
increasing depth.
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2.2. Classification Layer

In this layer, the learned spectral-spatial features are fed into classifiers. Previous
studies have shown that different layers of deep model can extract different levels of
spectral-spatial features [58]. Low-level features always contain more detailed information,
and high-level features are more invariant. All of these features are very important for
HSI classification. It is reasonable to use both high-level and low-level features for robust
HSI classification. Based on this observation, {YR1 , YR2 , . . . , YRL} are concatenated for HSI
classification, where L is the number of the spectral-spatial feature learning units. Finally,
these concatenated spectral-spatial features are fed into SVM for classification.

The pseudocode of the SANet is detailed in Algorithm 1, where Tr consists of indexes
and labels of the training samples. For the sake of convenience, the original input HSI is
denoted by YR0 . As can be seen, the proposed SANet is easy to implement.

Algorithm 1 SANet

Require: X ∈ Rm×n×b, Tr = [Ix, Iy, L].
Ensure: Predicted Labels.

1: YR0 = X
2: for l = 1 : L do
3: for i = 1 : size(YRl−1 , 3) do
4: for r = 1 : r̂ do
5: Filtering on Fl layer, obtain XFl ,r

i ∈ Rm×n×8.
6: end for
7: end for
8: for i = 1 : size(YRl−1 , 3) do
9: for j = 1 : r̂ do

10: MIN pooling on each X
F1,rj
i , obtain P

Pl ,rj
i ∈ Rm×n.

11: end for
12: end for
13: Feature fusion on Rl layer, obtain YRl ∈ Rm×n×S.
14: end for
15: Concatenation of {YRl , YR2 , . . . , YRL}.
16: Using SVM for classification.

In summary, the proposed method is not only simple but also effective to make use of
the spectral-spatial information. In SANet, label information is used in each feature fusion
layer. Thus, the proposed method has high discriminability. In addition, the proposed
method has a small number of parameters to be determined. Consequently, the proposed
method is fit for HSI classification with a small number of training samples.

3. Experimental Results and Analysis

In this section, experimental results on four real HSI data sets will be given to com-
prehensively demonstrate the effectiveness of SANet. For comparison, we also present
experimental results of some state-of-the-art methods, including hybrid spectral convo-
lutional neural network (HybridSN) [59], convolutional neural network with Markov
random fields (CNN-MRF) [48], local covariance matrix representation (LCMR) [51], SP-
guided training sample enlargement and distance weighted linear regression-based method
(STSE_DWLR) [40], and random patches network (RPNet) [52], where CNN-MRF adopted
a data augmentation strategy. In this paper, three commonly preferred performance in-
dexes, including overall accuracy (OA), average accuracy (AA) and κ coefficient [60], are
used to evaluate the performance of different methods. In this paper, all experiments were
repeated 10 times, and the average OAs, AAs, and κ coefficients are reported to evaluate
the performances of different methods. Furthermore, full classification maps of different
methods are also given for visual analysis.
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3.1. Data Sets

In our experiments, four well-known publicly available data sets, including Indian
Pines, Pavia University, Salinas, and Kennedy Space Center, have been used to verify
the effectiveness of SANet. Figure 6 shows a brief summary of these HSIs. The detailed
information about them is given as follows.

3.1.1. Indian Pines

This image was gathered by the AVIRIS sensor over the Indian Pines test site in
northwestern Indiana. This image comprises 145× 145 pixels, with a total of 224 spectral
bands [61]. In addition, the spatial resolution is 20 meters per pixel (mpp). In our experi-
ments, 200 spectral channels are retained by removing four null bands and 20 corrupted
bands [62]. The name and quantity of each class are reported in the first column of Figure 6,
where 10,249 samples contain ground truth information, and they belong to 16 different
classes. HSI classification on this data set is challenging, due to the presence of mixed
pixels and imbalanced class distribution [63].

Figure 6. Details of the Indian Pines, Pavia University, and Salinas HSI data sets. They include the false color images,
ground truths, and numbers of samples per class.

3.1.2. Pavia University

The second image was recorded by the ROSIS sensor during a flight campaign over
Pavia, northern Italy. The size of it is 610 × 340 × 115, and its spatial resolution is 1.3 mpp.
In our experiments, 103 out of the 115 bands are kept after having removed 12 noisy bands.
The total number of the labeled pixels is 42,776. In addition, these labeled pixels belong to
9 land-cover classes (see the second column of Figure 6).
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3.1.3. Salinas

The third HSI used in experiments was acquired by the 224-band AVIRIS sensor over
Salinas Valley, California. This image contains 512× 217 pixels with a spatial resolution of
3.7 mpp. After discarding the water absorption bands and noisy bands, there are 204 bands
have been used in the experiments. A total of 54,129 pixels labeled in 16 classes are used
for classification. Finally, the false color image and ground truth map are presented in the
third column of Figure 6.

3.1.4. KSC

The last dataset was also acquired by the AVIRIS, but over the Kennedy Space Center
(KSC), Florida, in 1996. Due to water absorption and the existence of low signal-noise ratio
channels, 176 of them were used in our experiments. There are 13 land cover classes with
5211 labeled pixels. A three-band false color image and the ground-truth map are shown
in Figure 6.

3.2. SANet Structure Analysis

The proposed SANet is a deep learning-based method. It can learn spectral-spatial
features in a hierarchical way. Thus, the setting of the structure parameters of SANet
plays an important role in feature learning. Here, we investigate how the depth and the
number of scales in each layer influence the classification performance. In this section,
only the experimental results on Indian Pines have been given, since we can make the
same conclusions on other data sets. Here, only 2% labeled samples per class are used as
training samples.

3.2.1. Depth Effect

The depth of representations is of central importance for deep learning methods. In
the proposed method, the depth determines the abstraction level of the learned spectral-
spatial features. Consequently, extensive experiments have been conducted to show the
relationship between the number of spectral-spatial learning units and the classification
performance. In these experiments, we change only the depth and fix other parameters
to investigate classification performance. Figures 7a and 8 show the quantitative results
and the classification maps with different depths. It is obvious that, with the increase of
the depth, we will obtain better performance. However, it does not mean the deeper the
better, which can be found from the curves in Figure 7a. Too deep layers could lead to over
smoothing problems. Consequently, the number of the spectral-spatial feature learning
units, which depicts the depth, is set to five for all data sets.
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Figure 7. Effect of using different numbers of (a) learning units and (b) scales.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Full classification maps of Indian Pines data set using different numbers of learning units.
(a) one unit; (b) two units; (c) three units; (d) four units; (e) five units; (f) six units; (g) seven units; (h)
eight units.

3.2.2. Scale Effect

Multiscale is also an important factor related to the classification performance of
SANet. The number of scales can also control the architecture or topology of the network.
In order to show how to determine the number of scales, we change only the scale number
in each layer and fix other parameters. As shown in Figure 7b, as the number of scales
grows, the classification accuracies have a trend of rising first and then declining. We can
see that SANet obtains the highest κ coefficient when the number of scale is 3. Figure 9
also gives the classification maps corresponding to different scales. It can be observed
that SANet obtains a better map when r̂ is set to 3. According to these observations, we
experimentally set the number of scales, r̂, as 3 for all data sets. In this paper, the radii of
side windows are set to {3, 5, 7}. A large scale number usually incurs high computational
cost. Thus, it is also a trade-off between accuracy and computational expense to set r̂ as 3.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Full classification maps of Indian Pines data set using different numbers of scales. (a) one
scale; (b) two scales; (c) three scales; (d) four scales; (e) five scales; (f) six scales; (g) seven scales; (h)
eight scales.

3.3. Comparison with State-of-the-Art Methods

In order to demonstrate the advantages of our SANet, we mainly consider the case of
a small training set in this section.
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3.3.1. Experimental Results on Indian Pines Data Set

The first experiment is conducted on an Indian Pines data set, where the number of
training samples per class is set to be 2% of labeled samples, and the remaining samples
are used for testing. Table 1 reports the quantitative results obtained by the proposed
SANet and five state-of-the-art methods. Note that the best results are highlighted in
bold font. We can observe that SANet achieves the best performance in terms of OA,
AA, and κ. In addition, the proposed method obtains the best results on most of the
classes. These experimental results also show that CNN-MRF achieves the lowest OA
and κ coefficient among six methods, mainly because CNN-MRF is directly trained with
a small number of training samples, which may lead to overfitting problems. The OA,
AA, and κ of the CNN-MRF approach are 77.39%, 69.10%, and 0.740, respectively, while
the results obtained by the proposed method are 93.97%, 91.95%, and 0.931, respectively.
This indicates that the average improvement is more than 15%. LCMR achieves better
results than HybridSN, STSE_DWLR, CNN-MRF, and RPNet, since it is a handcrafted
feature extraction method designed for a small training set. However, the performance of
the LCMR is still inferior to the proposed method. The main reason is that LCMR only
considers the spectral-spatial features on single scale, while the proposed proposed method
integrates multiscale spectral-spatial features using deep architecture.

Table 1. Classification accuracies of HybridSN, STSE_DWLR, CNN-MRF, LCMR, RPNet, and SANet
on the Indian Pines data set. The best results are highlighted in bold font.

No. HybridSN STSE_DWLR CNN-MRF LCMR RPNet SANet

1 17.78 97.78 46.67 96.67 14.67 97.56
2 70.29 82.47 70.33 91.54 86.90 92.49
3 71.87 85.23 67.75 84.06 69.43 89.82
4 70.69 82.28 43.36 77.72 26.21 78.58
5 83.30 79.41 78.94 93.51 83.62 88.88
6 97.76 97.23 85.69 95.58 90.69 98.36
7 48.15 60.00 36.30 100.0 70.74 99.26
8 99.57 100.0 92.46 100.0 84.81 99.94
9 0.000 13.68 69.47 74.21 41.58 62.11

10 79.22 83.74 63.03 83.61 78.68 88.63
11 91.77 96.13 87.88 92.44 95.92 96.26
12 54.73 79.35 59.52 83.80 48.43 89.35
13 78.11 98.41 71.05 97.15 89.10 99.30
14 96.53 97.89 95.05 96.71 92.17 99.95
15 63.76 98.44 57.27 93.04 55.63 91.64
16 75.82 88.79 80.77 80.44 29.67 99.01

OA 82.22 90.38 77.39 91.12 81.80 93.97
AA 68.71 83.80 69.10 90.03 66.14 91.95

κ 0.797 0.890 0.740 0.899 0.788 0.931

Apart from the quantitative comparisons, we also verify the effectiveness of the
proposed method from a visual perspective. Figure 10 presents the full classification maps
of different methods, and these maps are produced by one of the random experiments.
We can easily observe that the proposed method obtains the best performance. HybridSN,
STSE_DWLR, and CNN-MRF lead to oversmoothed classification maps. However, LCMR
and RPNet always result in noisy classification maps. Our method can not only preserve
the structures in accordance with the false color image (see Figure 6) but also produce
smoother results. The main reasons for its good performance are threefold. First, by
using a side window filtering principle, the edges and the boundaries of the HSI can
be preserved, and the homogeneous regions can be smoothed. Second, the SANet can
effectively exploit the spectral-spatial feature from different scales. Third, the LDA is used
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to remove the redundancy residing in the data, thus the proposed method can extract more
discriminative features.

(a) (b) (c)

(d) (e) (f)

Figure 10. Classification maps for the Indian Pines data set using different methods. (a) HybridSN;
(b) STSE_DWLR; (c) CNN-MRF; (d) LCMR; (e) RPNet; (f) SANet.

Furthermore, we analyze the effects of the number of training samples. We use 2%, 4%,
6%, 8%, and 10% randomly selected samples for each class in Indian Pines data set. We can
make the observation from Figure 11 that the performance of the compared methods and
the proposed method improve as the size of the training set increases. It is also noteworthy
that SANet performs the best, especially when the number of training sample is small. This
implies that the proposed approach is more suitable for HSI classification. Since the labeled
samples are often difficult and expensive to be collected in practice.
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Figure 11. Experimental results of different methods with various numbers of training samples on Indian Pines data set.
(a) OAs; (b) AAs; (c) κ coefficients.

Finally, the running times of different methods are presented in Table 2. These results
show that the proposed method has the low computational complexity, and the deep
learning-based methods are time consuming. We can also make the same conclusion on
other three data sets.
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Table 2. Running time of different methods on Indian Pines data set (S).

HybridSN STSE_DWLR CNN-MRF LCMR RPNet SANet

170.18 26.15 438 9.59 5.82 11.73

3.3.2. Experimental Results on Pavia University Data Set

The second experiment is performed on the Pavia University data set (see Figure 6).
In this case, 1% of labeled samples are randomly selected to form the training set. Table 3
presents the quantitative results with respect to different metrics. We again conclude that
SANet achieves the best performance compared with other state-of-the-art spectral-spatial
methods. As can be seen, except for the proposed method, deep learning-based methods
achieve the lower accuracies because of the limited training samples. Figure 12 visualizes
the classification results of all the methods. We can observe in Figure 12b that STSE_DWLR
leads to oversmoothing. In contrast, the proposed method can preserve the details of HSI.
Figure 13 shows the influence of training samples size (ranging from 1% to 3%, with a step
of 0.5% per class) on classification performance. Most of the compared methods achieve
similar accuracies when the number of training samples is large enough. In contrast, the
proposed method has obvious advantages in the case of small samples.

Table 3. Classification accuracies of HybridSN, STSE_DWLR, CNN-MRF, LCMR, RPNet, and SANet
on the Pavia University data set. The best results are highlighted in bold font.

No. HybridSN STSE_DWLR CNN-MRF LCMR RPNet SANet

1 90.78 99.84 93.79 95.82 91.40 98.55
2 99.84 99.98 98.51 99.53 97.94 99.85
3 71.80 99.83 65.04 92.23 86.48 92.54
4 73.95 74.82 95.95 98.25 91.23 92.38
5 98.05 99.62 96.66 97.81 95.51 99.69
6 99.86 100.0 93.15 99.14 93.83 99.21
7 99.62 99.98 64.00 94.75 81.66 96.95
8 92.24 97.97 80.21 92.97 87.40 95.93
9 59.23 43.48 93.55 89.36 96.03 94.87

OA 93.59 96.72 92.51 97.47 93.87 98.14
AA 87.26 90.61 86.76 95.54 91.28 96.67

κ 0.932 0.956 90.07 0.967 0.918 0.975

(a) (b) (c) (d) (e) (f)

Figure 12. Classification maps for the University of Pavia data set using different methods. (a) HybridSN; (b) STSE_DWLR;
(c) CNN-MRF; (d) LCMR; (e) RPNet; (f) SANet.
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Figure 13. Experimental results of different methods with various numbers of training samples on Pavia University data set.
(a) OAs; (b) AAs; (c) κ coefficients.

3.3.3. Experimental Results on the Salinas Data Set

The third experiment is performed on the Salinas data set. Similar conclusions can be
made from Table 4 and Figure 14, where 1% labeled samples are randomly selected per
class for training. These results also demonstrate that the proposed SANet delivers the
best performance in terms of OA, AA, and κ. Figure 14 also shows that HybridSN and
CNN-MRF yield oversmoothed classification maps, while STSE_DWLR, LCMR and RPNet
produce maps with much noise. Finally, Figure 15 shows the influence of the number of
training samples (ranging from 1% to 3%, with a step of 0.5% per class) on the performance
of the different methods. Similarly, we can conclude that the proposed method can achieve
the best results with limited training samples. Furthermore, we can also find that all the
methods show comparable performance only when enough training samples are available.
This is due to the fact that conventional deep learning methods usually require a large
number of training samples to obtain optimal parameter values.

Table 4. Classification accuracies of HybridSN, STSE_DWLR, CNN-MRF, LCMR, RPNet, and SANet
on the Salinas data set. The best results are highlighted in bold font.

No. HybridSN STSE_DWLR CNN-MRF LCMR RPNet SANet

1 99.80 99.23 99.73 99.89 99.03 100.0
2 99.97 99.69 98.13 99.31 99.73 99.94
3 99.49 99.80 98.72 99.76 99.38 100.0
4 99.49 99.17 88.47 97.36 98.80 99.94
5 99.81 97.16 99.89 98.38 99.01 98.62
6 100.0 99.81 99.74 99.40 99.63 99.87
7 99.66 99.36 99.69 99.36 99.48 99.85
8 96.30 99.50 93.57 97.94 92.30 99.72
9 98.65 99.46 99.59 99.78 99.26 100.0

10 99.37 97.45 95.55 98.39 97.85 97.20
11 98.32 94.74 99.75 99.91 96.16 99.70
12 99.94 99.95 99.86 99.95 99.98 100.0
13 91.36 95.46 98.84 98.62 98.81 98.82
14 86.37 91.95 98.03 95.12 95.68 94.91
15 88.99 96.42 85.82 95.97 89.41 98.99
16 100.0 99.01 99.25 97.51 98.43 99.21

OA 96.34 98.55 95.86 98.40 96.31 99.39
AA 97.48 98.01 97.20 98.54 97.68 99.17

κ 0.966 0.984 0.954 0.982 0.959 0.993
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3.3.4. Experimental Results on the KSC Data Set

The fourth experiment is performed on the KSC data set. Similar conclusions can
be made from Table 5 and Figure 16, where five labeled samples are randomly selected
per class for training. These results also demonstrate that the proposed SANet delivers
the best performance in terms of OA,and κ. Figure 16 also shows that HybridSN and
CNN-MRF yield oversmoothed classification maps, while LCMR and RPNet produce
maps with much noise. Finally, Figure 17 shows the influence of the number of training
samples (ranging from 5 to 25, with a step of 5 per class) on the performance of the different
methods. Similarly, we can conclude that the proposed method can achieve the best results
with limited training samples. Furthermore, we can also find that all the methods show
comparable performance only when enough training samples are available. The reason for
this is that conventional deep learning methods have high sample complexity.

(a) (b) (c) (d) (e) (f)

Figure 14. Classification maps for the Salinas data set using different methods. (a) HybridSN; (b) STSE_DWLR; (c)
CNN-MRF; (d) LCMR; (e) RPNet; (f) SANet.
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Figure 15. Experimental results of different methods with various numbers of training samples on Salinas data set. (a) OAs;
(b) AAs; (c) κ coefficients.
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(a) (b) (c)

(d) (e) (f)

Figure 16. Classification maps for the Center of KSC data set using different methods. (a) HybridSN;
(b) STSE_DWLR; (c) CNN-MRF; (d) LCMR; (e) RPNet; (f) SANet.

Table 5. Classification accuracies of HybridSN, STSE_DWLR, CNN-MRF, LCMR, RPNet, and SANet
on the KSC data set. The best results are highlighted in bold font.

No. HybridSN STSE_DWLR CNN-MRF LCMR RPNet SANet

1 98.03 79.84 98.05 91.56 82.38 93.76
2 54.79 83.91 56.06 89.24 75.08 99.16
3 61.43 92.71 66.25 97.81 71.83 92.95
4 30.12 93.00 31.06 85.38 76.03 69.51
5 50.13 90.45 48.17 84.55 90.00 77.95
6 68.21 98.17 72.00 91.12 76.70 93.62
7 99.90 98.80 99.86 93.80 99.90 96.80
8 79.46 80.68 79.28 88.29 88.12 86.29
9 81.86 87.50 81.03 83.05 86.82 90.70

10 68.92 97.44 70.07 99.42 88.67 97.42
11 77.42 87.83 79.37 91.98 93.77 94.20
12 77.11 98.49 76.65 97.01 87.53 95.04
13 100.0 100.0 100.0 100.0 97.14 100.0

OA 79.53 91.04 79.55 92.83 87.01 93.02
AA 72.88 91.45 72.91 91.79 85.69 91.34

κ 0.7717 0.9005 0.7720 0.9203 0.8558 0.9223

To sum up, the experimental results on four typical data sets show that the proposed
approach can provide better results than other tested methods. The proposed method
can alleviate the potential overfitting problems that deep learning-based methods usually
suffer when dealing with HSI classification.
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Figure 17. Experimental results of different methods with various numbers of training samples on KSC data set. (a) OAs;
(b) AAs; (c) κ coefficients.

4. Conclusions and Future Research

This paper develops an efficient deep spectral-spatial feature learning method for
HSI classification. The proposed approach can obtain high accuracy with limited labeled
samples by introducing the side window filtering principle to the deep feature learning,
and integrating the spatial and the spectral information contained in the original HSIs. Our
results also corroborate that incorporating prior domain knowledge into deep architecture
can deal with the small sample problem in HSI classification. Future work will focus on
improving the performance of the proposed method from the viewpoint of filtering, such
as more effective filtering technology being able be applied to the side window filtering
framework.
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