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Abstract: Late frost damage is one of the main meteorological disasters that affect the growth of wine
grapes in spring, causing a decline in wine grapes quality and a reduction in yield in Northwest
China. At present, remote sensing technology has been widely used in the field of crop meteorological
disasters monitoring and loss assessments, but little research has been carried out on late frost damage
in wine grapes. To monitor the impact of late frost in wine grapes accurately and quickly, in this
research, we selected the Ningxia planting area as the study area. A practical framework of late frost
damage on wine grapes by integrating visible, near-infrared, and thermal infrared satellite data is
proposed. This framework includes: (1) Wine grape planting area extraction using Gaofen-1 (GF-1),
Landsat-8, and Sentinel-2 based on optimal feature selection and Random Forest (RF) algorithm;
(2) retrieval of the land surface temperature (LST) using Landsat-8 thermal infrared data; (3) data
fusion using Landsat-8 LST and MODIS LST for a high spatiotemporal resolution of LST with the
Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM); (4) the estimation
of daily minimum air temperature (Tmin) using downscaled LST and meteorological station data;
(5) monitoring and evaluation of the degree of late frost damage in wine grapes in April 2020 by
combining satellite-derived data and late frost indicators. The results show that the total area of wine
grapes extracted in Ningxia was about 39,837 ha. The overall accuracy was 90.47%, the producer’s
accuracy was 91.09%, and the user’s accuracy was 90.22%. The root mean square (RMSE) and the
coefficient of determination (R2) of the Tmin estimation model were 1.67 °C and 0.91, respectively.
About 41.12% of the vineyards suffered severe late frost damage, and the total affected area was
about 16,381 ha during 20–25 April 2020. This suggests the satellite data can accurately monitor late
frost damage in wine grapes by mapping the wine grape area and estimating Tmin. The results can
help farmers to take remedial measures to reduce late frost damage in wine grapes, and provide
an objective evaluation of late frost damage insurance claims for wine grapes. With the increasing
weather extremes, this study has an important reference value for standardized global wine grape
management and food security planning.
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1. Introduction

Grape is one of the most productive fruits with a wide range of cultivation around the
world, 80% of which are wine grapes. In evaluations of high-quality wine grape ecological
regions, the Ningxia planting area has been classified as one of the best wine grape ecology
districts in the world [1]. However, due to its location in the inland northwest, which
has frequent cold air activity and temperature fluctuations in spring [2], this district is
extremely vulnerable to low temperatures and late frost damages. Late frost damage
seriously restricts the development of the local wine grape industry, yield, and quality
stability [3]. Traditionally, monitoring and assessment of late frost damage in wine grapes
have been based on meteorological stations and field investigations [4,5], but this progress is
time-consuming, labor-intensive, and very expensive. Large-area and full-coverage remote
sensing technology provide the promising potential for the monitoring and assessment
of late frost damage as the remote sensing data can be used to extract the crop planting
area [6–10], estimate the air and soil temperature [11,12], monitor the crop growth [13,14],
assess the agro-meteorological disasters [15–17], and predict crop yields [18–20].

The wine grape planting area is the essential information for accurately monitoring
and assessing late frost damage in wine grapes. Satellite data have been widely used to
extract the planting area of crops, such as paddy rice [6,10,21,22], corn [7], wheat [23],
and soybean [24] with high to medium spatial resolution [25,26]. However, little research
has been carried out on extracting the wine grape planting area using high and medium
spatial resolution satellite data, and the few studies mainly focused on small-scale re-
search, such as vineyards [27] or at county scales [28]. From using single images [29,30]
to multi-source satellite images [22,31,32], the combination of multiple types of data and
features, such as sensitive bands, texture features, and vegetation index, can further pro-
vide comprehensive information and accurate extraction [23,33]. Several machine learning
methods have been used in planting area extraction, such as maximum likelihood [24],
support vector machine [34], and Random Forest (RF) [35,36]. The RF model [37,38] has
also been widely used to optimize features and remove redundant information. Ningxia
was selected as the study area in this paper as it is one of the most important cultivation
areas of wine grapes.

Land surface temperature (LST) is an important parameter for late frost monitoring
and evaluation [39]. The representative algorithms for LST derived from satellite data
mainly include the Jiménez-Muñoz single-channel algorithm [40], the Qin mono-window
algorithm [41], the Rozenstein split-window algorithm [42], and the Sobrino radiation
transfer equation method [43], etc. These algorithms have widespread applicability [44],
and are relatively mature. The spatial resolution of Landsat-8 thermal infrared data is 100 m,
but its revisit period is 16 d. MODIS products can provide daytime and nighttime LST from
the Terra and Aqua satellite, but their spatial resolution is 1 km. As the area of most wine
grape plantations in the study area is less than 1 km2, the higher the spatial and temporal
resolution, the better for late frost damage monitoring and assessment. Data fusion was
used to produce data with high spatial and temporal resolution. Scholars have proposed
a variety of downscaling methods for LST, including the Disaggregation Procedure for
Radiometric Surface Temperature (DisTrad) [45], the Algorithm for Sharpening Thermal
Imagery (TsHARP) [46], the High resolution Urban Thermal Sharpener (HUTS) [47], etc.
The spatio-temporal fusion method has been a research hotspot in recent years, and schol-
ars have carried out extensive research on this issue. The Spatial and Temporal Adaptive
Reflectance Fusion Model (STARFM) [48], the Spatial Temporal Adaptive Algorithm for
Mapping Reflectance Change (STAARCH) [49], the Enhanced Spatial and Temporal Adap-
tive Reflectance Fusion Model (ESTARFM) [50], and other fusion methods [51–53] were
proposed accordingly. In comparison, the ESTARFM takes the heterogeneity of the pixels
into account by introducing the conversion coefficients between pure and mixed pixels,
which has high fusion accuracy in areas of high heterogeneity [54].

Air temperature is a physical parameter that is often used as the distinguishing factor
for low-temperature freezing damage in crops. Since the daily minimum air temperature



Remote Sens. 2021, 13, 3231 3 of 22

(Tmin) is one of the important indicators of agro-meteorological disasters, LST needs to
be converted to Tmin. Obtaining continuous temporal and spatial daily Tmin images is
the research focus of damage monitoring. Although the observational air temperature of
traditional ground meteorological stations usually has high accuracy, due to the limited
quantity and uneven distribution of meteorological stations, they cannot meet the demand
for spatial continuity. Common remote sensing estimation methods for air temperature
include statistical methods, the Temperature-Vegetation Index (TVX) [55], the atmospheric
temperature profile method, and the energy balance method, etc. In recent years, based on
the correlations [11,56] between air temperature and LST, the method of estimating air
temperature by using full coverage LST has been recognized widely.

As current wine grape late frost damage monitoring is relatively sparse distributed, we
proposed a practical remote sensing monitoring framework to monitor late frost damage
in wine grapes and estimate the damaged area at a large scale. Specifically, this framework
includes extraction of the wine grape planting area using Gaofen-1 (GF-1), Landsat-8, and
Sentinel-2 satellite data; retrieval of LST using the Landsat-8 satellite data; fusion of Landsat
LST and MODIS LST data; and estimation of daily Tmin. Ultimately, the spatial distribution
and the degree of late frost damage in wine grapes were realized according to the disaster
indicators, the results of extracting grape planting area, and the daily Tmin estimation.

2. Materials and Methods
2.1. Study Area

Located in the Ningxia Hui Autonomous Region of Northwest China, the study area
along the Helan Mountain extends from 37.47◦N to 39.42◦N and 105.62◦E to 106.72◦E
(Figure 1). The Ningxia wine grape planting area includes four growing districts: Shizuis-
han, Yinchuan, Qingtongxia, and Hongsipu. It lies the temperate continental climate zone,
with an average annual temperature range of 8–10 ◦C and an average annual precipitation
range of approximately 130–250 mm. The annual sunshine hours are up to 3000 h, and the
frost-free period is about 150 days.
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With moderate heat and abundant sunshine, the study area has a typical continental
climate, which is very conducive to the accumulation of sugar and the transformation
of pigment, making it one of the major wine grape planting areas of China and world-
recognized “golden area” and “Chinese Bordeaux” for wine grape cultivation. Through
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field surveys, it was found that the main phenology of wine grape (Figure 2) growth is from
April to August, with the harvest period from September to October and the overwintering
period from November to March of the next year.
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2.2. Satellite Data and Preprocessing

The satellite data used in this paper can be divided into two parts: (1) GF-1, Landsat-8,
and Sentinel-2 data for extracting wine grape planting area; and (2) Landsat-8 thermal
infrared data and the MODIS product set (LST and EVI) for LST retrieval and data fusion.

Sentinel-2 images are provided freely by the European Space Agency (ESA) scientific
data hub portal (https://scihub.copernicus.eu/, accessed on 31 May 2020). Landsat-8
images are freely available for users to download from the United States Geological Survey
(USGS) website (https://earthexplorer.usgs.gov/, accessed on 1 June 2020). GF-1 satellite
images are provided freely by the China Centre for Resources Satellite Data and Application
(CRESDA) (http://www.cresda.com, accessed on 12 April 2020). GF-1 is the first satellite
of a series of high-resolution earth observation systems from China, launched in April
2013. GF-1 Wide Field of View (WFV) images have an overlapping swath of 830 km
and contain four bands (blue, green, red, and near-infrared) with a spatial resolution
of 16 m. MODIS products are freely available to users via the National Aeronautics
and Space Administration (NASA) satellite data website and can be downloaded from
https://ladsweb.modaps.eosdis.nasa.gov/search/ (accessed on 3 July 2020).

To obtain enough images to cover the main phenological stages of wine grape in the
study area, 10 cloud-free multi-source satellite images from April 2019 to April 2020 were
used to extract the planting area, and they included two GF-1 WFV images with a spatial
resolution of 16 m, four Landsat-8 Operational Land Imager (OLI) images with a spatial
resolution of 30 m and four Sentinel-2 Multispectral Instrument (MSI) images with a spatial
resolution of 10 m (Table 1).

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
http://www.cresda.com
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
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Table 1. Satellite data set for wine grape planting area extraction.

Order Number Date Satellite

1 5 April 2019 Landsat-8
2 6 July 2019 Sentinel-2
3 26 July 2019 Landsat-8
4 15 August 2019 Sentinel-2
5 30 September 2019 GF-1
6 22 November 2019 GF-1
7 6 February 2020 Sentinel-2
8 22 March 2020 Landsat-8
9 16 April 2020 Sentinel-2
10 23 April 2020 Landsat-8

Three cloud-free Landsat-8 Thermal Infrared Sensor (TIRS) images were acquired
on 22 March, 23 April, and 9 May 2020 at a spatial resolution of 100 m. Thirty Aqua
MODIS images of nighttime LST (MYD11A1) from 1 April to 30 April 2020; three im-
ages of daytime LST (MOD11A1) on 22 March, 23 April, and 9 May 2020; and seven
MODIS images of EVI products (MOD13A2.A2020081/A2020097/A2020113/A2020129,
MYD13A2.A2020089/A2020105/A2020121) were acquired with a spatial resolution of
1 km.

The FLAASH module [57] of ENVI was used for atmospheric correction of the GF-1 and
Landsat-8 images, and the sentinel-2 images were preprocessed by Sen2Cor (http://step.esa.
int/main/third-party-plugins-2/sen2cor/, accessed on 5 June 2020). and used as reference
images to geometrically correct the GF-1 images from the same day. The GF-1 and Sentinel-2
images were all resampled to 30 m spatial resolution. The digital elevation model (DEM) used
in preprocessing was Shuttle Radar Topography Mission (SRTM) DEM. All MODIS products
downloaded used the MODIS Reprojection Tool (MRT) provided by NASA for reprojection, data
layer extraction, and format conversion (HDF to TIF).

2.3. Meteorological Data

In this study, daily Tmin data from 1 April to 30 April 2020 were collected from 180 me-
teorological stations (Figure 1) in the study area. The LST values used as validation data on
April 2020 were acquired from the Real-Time Product Dataset of the China Meteorological
Administration Land Data Assimilation System (CLDAS-V2.0), which were downloaded
from China meteorological data service center (CMDC) (http://data.cma.cn/, accessed on
15 October 2020).

2.4. Field Survey and Sample Set

The field survey was carried out from July 30 to August 3 in 2019. We visited 10 vine-
yards in Yinchuan, Qingtongxia, and Hongsipu to collect information about the wine grape
distribution, grape species, and cultivation measures in the study area. Based on the field
survey and visual interpretations of Google Earth, more than 2000 samples (consisting of
over 150,000 pixels) of wine grapes, farmland, woodland, meadow, desert steppe, desert,
building, and water were selected as training and validating samples (Figure 3). In this
study, 60% were used as training samples; the remaining 40% were used to validate and
evaluate the extraction results.

http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://step.esa.int/main/third-party-plugins-2/sen2cor/
http://data.cma.cn/
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2.5. Methods

The framework proposed in this study is presented in Figure 4. Firstly, the wine
grape planting area was extracted by optimal feature selection and the RF method. Sec-
ondly, Landsat-8 LST (using two retrieval algorithms) and MODIS LST (after cloudy
gap-filling) were fused to obtain a seamless daily high spatial resolution of LST (100 m).
Thirdly, fully covered Tmin was estimated based on the correlations between downscaled
LST and meteorological station Tmin data. Finally, by using daily Tmin images of the study
area, wine grape planting area image, and the evaluation indicator of wine grape late frost
damage, we obtained a map of the late frost damaged area of wine grapes in the study area
in April 2020.

2.5.1. Extraction of the Wine Grape Planting Area Using RF

RF is a machine learning algorithm that uses multiple decision trees to train and
predict samples. It was first proposed by Breiman [58]. This method can effectively
solve the over-fitting phenomenon by double random sampling of the training samples
and selected feature variables and constructing multiple decision trees through the idea
of integrated learning. Each decision tree grows to the maximum without any pruning.
Through internal evaluation, the unbiased error is estimated in the process of RF generation,
and the final prediction and classification results depend on the mean prediction value and
the voting results of multiple decision trees.

In this study, the RF algorithm and Gini index were used to evaluate the importance of
features and determine the optimal feature subset according to the voting mechanism [59].
Gini index evaluates the classification contributions of the feature variables in each tree
of RF, normalizes all the feature importance scores, and compares the feature importance
weights. The Python language and the Scikit-learn library were used to implement the
feature optimization progress [60].



Remote Sens. 2021, 13, 3231 7 of 22
Remote Sens. 2021, 13, 3231 7 of 23 
 

 

 

Figure 4. The framework of wine grape late frost damage monitoring. 

Different crops show different spectral characteristics, due to their different pigment 
and moisture content and different canopy structures [61]. Therefore, spectral features can 
be used for crop recognition. In total, 52 spectral features were obtained from 10 multi-
source satellite images, including eight bands (Blue, Green, Red, Near-infrared) of two 
GF-1 images, 16 bands (blue, green, red, and near-infrared) of four Landsat-8 images, and 
28 bands (blue, green, red, near-infrared, and three red-edge bands) of four Sentinel-2 im-
ages. 

The vegetation indices were calculated from different spectral reflectance for vegeta-
tion discrimination and quantitative retrieval of parameters. NDVI is one of the most im-
portant indices for deriving crop phenological parameters and distinguishes different 
types of ground objects, which can reflect the difference between the vegetation and soil 
and is suitable for dynamic monitoring during early growth stages. As a common indica-
tor parameter of green plants, the Normalized Difference Red Edge Index (NDRE) has a 
high sensitivity for vegetation recognition and classification, as it can take advantage of 
the red-edge bands in the field of agricultural remote sensing monitoring [62]; it is widely 
used in agriculture and forest monitoring. In this study, NDVI values were calculated 
from the 10 multi-source satellite images. Sentinel-2 contains three red-edge bands, so 12 
NDRE features were calculated from the four Sentinel-2 images. NDRE features were not 
calculated from the GF-1 and Landsat-8 images, due to their lack of red-edge bands. 

Texture features measures the surface roughness and uniformity of image pixel by 
the similarity of spatial structure, reflecting the close relationship between texture infor-
mation and gray-scale [63], which has become one of the major factors in image classifica-
tion [64]. The Principal Component Analysis (PCA) transformation was implemented on 
the spectral bands of 10 images, and only the first PCA, which had the highest amount of 
information, was selected to calculate five texture features based on the Gray Level Co-
occurrence Matrix (GLCM). The five texture features were variance, contrast, correlation, 
angular second moment, and entropy. 

In total, 124 features were obtained from the NDVI, NDRE, spectra, and texture data, 
from which the feature set was selected, as listed in Table 2. 

Figure 4. The framework of wine grape late frost damage monitoring.

Different crops show different spectral characteristics, due to their different pigment
and moisture content and different canopy structures [61]. Therefore, spectral features can
be used for crop recognition. In total, 52 spectral features were obtained from 10 multi-
source satellite images, including eight bands (Blue, Green, Red, Near-infrared) of two
GF-1 images, 16 bands (blue, green, red, and near-infrared) of four Landsat-8 images,
and 28 bands (blue, green, red, near-infrared, and three red-edge bands) of four Sentinel-
2 images.

The vegetation indices were calculated from different spectral reflectance for vege-
tation discrimination and quantitative retrieval of parameters. NDVI is one of the most
important indices for deriving crop phenological parameters and distinguishes different
types of ground objects, which can reflect the difference between the vegetation and soil
and is suitable for dynamic monitoring during early growth stages. As a common indicator
parameter of green plants, the Normalized Difference Red Edge Index (NDRE) has a high
sensitivity for vegetation recognition and classification, as it can take advantage of the
red-edge bands in the field of agricultural remote sensing monitoring [62]; it is widely
used in agriculture and forest monitoring. In this study, NDVI values were calculated
from the 10 multi-source satellite images. Sentinel-2 contains three red-edge bands, so
12 NDRE features were calculated from the four Sentinel-2 images. NDRE features were
not calculated from the GF-1 and Landsat-8 images, due to their lack of red-edge bands.

Texture features measures the surface roughness and uniformity of image pixel by the
similarity of spatial structure, reflecting the close relationship between texture information
and gray-scale [63], which has become one of the major factors in image classification [64].
The Principal Component Analysis (PCA) transformation was implemented on the spectral
bands of 10 images, and only the first PCA, which had the highest amount of information,
was selected to calculate five texture features based on the Gray Level Co-occurrence Matrix
(GLCM). The five texture features were variance, contrast, correlation, angular second
moment, and entropy.

In total, 124 features were obtained from the NDVI, NDRE, spectra, and texture data,
from which the feature set was selected, as listed in Table 2.
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Table 2. Description of the multi-source feature set.

Feature Type Order Number
of Satellite Data Abbreviation of Feature Number of Features

Spectral feature 1–10 1

Blue 1~Blue 10, Green 1~Green 10
Red 1~Red 10, Nir 1~Nir 10
1Red-edge 2, 1Red-edge 4,
1Red-edge 7, 1Red-edge 9
2Red-edge 2, 2Red-edge 4,
2Red-edge 7, 2Red-edge 9
3Red-edge 2, 3Red-edge 4,

3Red-edge 7, 3Red-edge 9 2

52

Vegetation index feature 1–10 1

NDVI 1~NDVI 10
1NDRE 2, 1NDRE 4, 1NDRE 7,

1NDRE 9
2NDRE 2, 2NDRE 4, 2NDRE 7,

2NDRE 9
3NDRE 2, 3NDRE 4, 3NDRE 7,

3NDRE 9

22

Texture feature 1–10 1
Second 1~Second 10, Correlation

1~Correlation 10, 50
Entropy 1~Entropy 10, Variance

1~Variance 10,
Contrast 1~Contrast 10

1 Order numbers “1–10” are 10 satellite images of Table 1 from 2019/04/05 to 2020/04/23. 2 Three red-edge bands of Sentinel-2 were
described 1Red-edge, 2Red-edge, and 3Red-edge, respectively.

2.5.2. Data Fusion of LST

The mono-window algorithm (LST_MW) [65], and the nonlinear split-window al-
gorithm [66] were utilized to calculate LST using Landsat-8 TIRS on 22 March, 23 April,
and 9 May 2020, respectively. The LST_MW constructs the calculation model of LST, at-
mospheric transmittance, brightness temperature, and average atmospheric temperature
based on the thermal radiation transfer equation and Landsat-8 TIRS 10. The split-window
algorithm (LST_SW) used the atmospheric absorption difference between the two thermal
infrared channels to correct the atmospheric impact, establishing the relationship between
the LST and the brightness temperature.

The MODIS LST products with a temporal resolution of 1 day provided an excellent
source for the temporal continuity analysis of LST. Since wine grape late frost damage
usually occurs during 03:00–04:00, which is close to the observation time of the Aqua
MODIS nighttime LST (MYD11A1), MYD11A1 products were selected as the data source
for LST with a high temporal resolution of 1 day and a low spatial resolution of 1 km.
However, the quality of pixels largely depends on the cloud coverage, so cloudy weather
may lead to poor pixel quality. Since the Helan Mountain lies to the west of the study area,
which is affected by snow accumulation in early spring, the mountainous area often has
many low-quality pixels. In this study, the spatiotemporal linear interpolation method was
used to find similar properties between the effective pixels and invalid pixels (the pixels
with poor quality were removed) in the adjacent time and space; then, the missing pixels
were interpolated by calculating the conversion relationship [67].

Assuming that the LST of similar pixels can be known at time t0 and t1, then the linear
relationship between two LST images can be defined by statistical linear regression.

LSTt0 = f (LSTt1) (1)

where LSTt0 is the LST at t0, and LSTt1 is the LST at t1. If the LST of the pixel at t0 is
unknown, but that at t1 is known, then the LST of the pixel at t0 can be obtained through
the linear relationship above.
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Given the cloud cover in the study area, LST images with cloud-free pixel coverage
of more than 70% were selected as the reference image, and the image with cloud-free
pixel coverage less than 70% as interpolated images. We then established the linear model
linking the cloud-free pixels of the interpolated images, cloud-free pixels of the reference
images, DEM and EVI. Due to the different measurements of LST, DEM, and EVI, the three
values were normalized before establishing the linear relationship.

LSTint = a · LSTre f + b ·DEM + c · EVI + d (2)

where LSTint is the array of interpolated images, LSTre f is the cloud-free pixel array of
reference image, and a, b, c, and d are regression coefficients. With this equation, the LST
pixels of cloud cover can be calculated using the reference images, DEM and EVI. For the
missing pixels after filling, the CLDAS-V2.0 0 cm LST data set was used for further filling.
The downloaded CLDAS-V2.0 0 cm LST can be used as supplementary data after format
conversion, coordinate system conversion, resampling, clipping, and other processing.

To obtain LST with a high spatiotemporal resolution, ESTARFM was used to fuse the
Landsat-8 LST and MODIS LST. ESTARFM is a data fusion algorithm based on a moving
window [54,68]. It is based on the premise that the image registration of fine-resolution
and coarse-resolution images is accurate, and it is assumed that the reflectivity difference
between the images is only caused by system deviation, and there is no significant difference
between the images from two periods [50,69]. The satellite images used for downscaling
model are listed in Table 3.

Table 3. List of satellite images used for the data fusion model.

Date of Predicted
MODIS Images

Date of Landsat-8
Reference Image

Date of MODIS
Reference Images

1 April 2020~22 April 2020 22 March 2020, 23 April 2020 22 March 2020, 23 April 2020
23 April 2020~30 April 2020 23 April 2020, 9 May 2020 23 April 2020, 9 May 2020

Assuming that the land cover types and the sensor calibration of the two images are
consistent, the relationship between fine-resolution (Landsat-8 LST) and coarse-resolution
(MODIS LST) images can be described by a linear model.

L(x, y, tl , B) = a ·M(x, y, tl , B) + b (3)

L(x, y, tp, B) = a ·M(x, y, tp, B) + b (4)

where L(x, y, tl , B) and M(x, y, tl , B) are the pixel values of Landsat-8 LST and MODIS LST
at tl , L(x, y, tp, B) and M(x, y, tp, B) are the pixel values of Landsat-8 LST and MODIS LST
at tp, and a and b are conversion coefficients of the linear regression model and depend on
the system deviation of the sensor.

Equation (5) can be derived from Equations (3) and (4):

L(x, y, tp, B) = L(x, y, tl , B) + a ·
[
M(x, y, tp, B)−M(x, y, tl , B)

]
(5)

Because of the complexity of the land surface, most of the pixels in the images are
mixed pixels, that is, one pixel contains different land cover types. It is difficult to ensure
the accuracy of the prediction results by using only a single pixel. Therefore, assuming that
the reflectivity of the mixed pixels is a linear combination of that in different land cover
types, and that the proportion of land cover types in the two images remains basically
unchanged, the reflectivity of the mixed pixel can be expressed as:

L(x, y, tp, B) = L(x, y, tl , B) + v(x, y) ·
[
M(x, y, tp, B)−M(x, y, tl , B)

]
(6)

where v(x, y) is the conversion coefficient of mixed pixels.
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According to the principle that the similar neighboring pixels have similar reflectivity,
a moving window is used to obtain the information of the neighboring pixels, and the
information of the similar pixels is then integrated into the calculation of fine-resolution
reflectivity. From the similarity between neighboring pixels, the central pixel values of the
predicted images are calculated as follows:

L(xw/2, yw/2, tp, B) = L(xw/2, yw/2, tl , B) +
N

∑
i=1

Wi ·Vi ·
[
M(xi, yi, tp, B)−M(xi, yi, tl , B)

]
(7)

where (xw/2, yw/2) is the location of the central pixel, w is the size of the moving window,
N is the number of similar pixels, including the central predicted pixel, Wi is the weight of
the ith similar pixel, Vi is the conversion coefficient of the ith similar pixel, and (xi, yi) is
the location of ith similar pixel.

Two images from different dates were used to calculate the value of the center pixel.
Landsat-8 LST and MODIS LST images at tm and tn were used to predict the fine-resolution
reflectance of date tp, and the weighted combination of the two prediction results was
calculated to obtain a more accurate value. The temporal weight was calculated by the
magnitude of change in the MODIS values between tl (l = m, n) and tp, and Equation (8) is
as follows:

Tk =

1/
W
∑

j=1

W
∑

i=1
M(xi, yi, tl , B)−

W
∑

j=1

W
∑

i=1
M(xi, yi, tp, B)

∑
k=m,n

(1/

∣∣∣∣∣ W
∑

j=1

W
∑

i=1
M(xi, yi, tl , B)−

W
∑

j=1

W
∑

i=1
M(xi, yi, tp, B)

∣∣∣∣∣)
, l = m, n (8)

Then the final predicted fine-resolution reflectance of the center pixel at tp is as follows:

L(xw/2, yw/2, tp, B) = Tm · Lm(xw/2, yw/2, tm, B) + Tn · Ln(xw/2, yw/2, tn, B) (9)

where Lm(xw/2, yw/2, tm, B) and Ln(xw/2, yw/2, tn, B) are fine-resolution pixel value, respec-
tively, at tm and tn, and Tm and Tn are the temporal weight of tm and tn.

2.5.3. Estimation Model of Daily Minimum Air Temperature

The daily Tmin was estimated by the 30 images of downscaled LST (LSTE) in April
2020 with the spatial resolution of 100 m. The observation time for MODIS LST was 1:30
a.m. every day, and the late frost of wine grapes often occurs during 03:00–04:00, and the
daily Tmin in the study area occurs during approximately 05:00–07:00 [4]. The research
showed that temperature at these key times had a strong linear correlation, so we can
monitor the late frost damage by building a linear estimation model. Because LSTE was
calculated from MODIS LST, LSTE is considered to have a similar property with MODIS
LST and also has a good linear relationship with the daily Tmin. Therefore, the study
constructed a linear model of the daily Tmin and LSTE to estimate the daily Tmin using
Equation (10). The daily Tmin in April 2020, as input variable in the model, was derived
from meteorological stations.

Tmin = a · LSTE + b (10)

where a and b are the regression coefficients of ordinary least squares regression.

2.5.4. Mapping the Late Frost Damaged Area

The evaluation indicators of wine grape late frost damage from the Yinchuan Meteoro-
logical Bureau (Figure 4), were proved to be reliable through experiments and verification.
The occurrence of wine grape late frost damage is related to air temperature, precipitation,
and soil conditions, but the low air temperature is the most important factor. In this study,
we classified the degree of late frost damage according to the evaluation indicator and the
daily Tmin of each wine grape pixel.
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As described in Sections 2.5.1 and 2.5.3, daily minimum air temperature images
(DMTI), wine grape planting area image (WGPAI), and the evaluation index of wine grape
late frost damage (LFDEI) were obtained and integrated to derive the late frost damage
images (LFDI) [17]. Equation (11) is as follows:

LFDI = (DMTI) ∩ (WGPAI) ∩ (LFDEI) (11)

The spatial distribution information of late frost damage was then further combined
with the estimated area of wine grapes to estimate the late frost damaged area in the
Ningxia planting area in April 2020.

3. Results
3.1. Extraction of the Wine Grape Planting Area

In total, 124 features, including spectral reflectance, vegetation indices, and texture
features, were calculated. Rankings of the feature importance and performance are shown
in Figure 5, and the changes in the overall accuracy (OA) and kappa coefficient with the
number of feature variables are shown in Figure 6.
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The OA and the kappa coefficient first increased rapidly with the number of feature
variables (Figure 5), then, increased slowly and fluctuated up to 13 features. When the
number of features reached 53, the total accuracy and kappa coefficient value reached
the maximum. Therefore, the top 53 features were used as the optimal feature subset to
extract wine grape planting area. Among the top 53 features (Figure 6), which included
21 spectral features, 20 texture features, and 12 vegetation index features (6 NDVI features
and 6 NDRE features), NDVI 3 had the highest feature importance score, and NIR 10 had
the lowest.

Based on the testing samples, the extraction results were assessed using the confusion
matrix with OA, producer accuracy (PA), user accuracy (UA), and the kappa coefficient of
the optimal feature subset in Table 4.

Table 4. Confusion matrix and accuracies.

Class Wine Grape Farmland Woodland Meadow Desert
Steppe Desert Building Water UA (%)

Wine grape 5274 112 110 104 53 80 113 0 90.22
Farmland 56 4111 12 11 7 0 0 12 97.68
Woodland 130 17 9580 132 49 68 464 0 91.76
Meadow 135 74 701 11317 51 4 961 63 85.05

Desert
steppe 63 10 46 380 5935 54 0 27 91.10

Desert 24 13 55 7 12 1544 100 0 88.00
Building 108 10 494 847 390 90 8018 0 80.53

Water 0 31 0 34 26 0 32 14707 99.17
PA (%) 91.09 93.91 87.11 88.19 90.99 83.91 82.76 99.31
OA (%) 90.47
Kappa 0.89

The OA and kappa coefficient were 90.47% and 0.89, respectively. The wine grape
PA and UA were 91.09% and 90.22%, respectively. The omission and commission error
may have been caused by mixed pixels around the vineyard border, due to the limitation
of the spatial resolution of the satellite images. On the other hand, wine grapes in new
plantations can be classified as desert, due to their low vegetation coverage and similarity
to bare soil. The extracted area of wine grape planting regions (Figure 7) was calculated to
be about 39,837 ha.
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Figure 7. Wine grape map of the study area.

3.2. Data Fusion of Landsat-8 LST and MODIS LST Using the ESTARFM Method
3.2.1. LST Retrieval Using Landsat-8 Thermal Infrared Data

The LST_MW and the LST_SW were used to retrieve the LST from Landsat-8 TIRS
(TIRS 10: 10.60~11.19 µm; TIRS 11: 11.50~12.51 µm) at a resolution of 100 m. One hundred
pixels were randomly selected from every LST_MW and LST_SW image. The verification
pixels of three dates obtained by the same algorithm were combined into a group, with
a total of 300 pixels in each group. Through a comparison with the corresponding pixel
values of CLDAS-V2.0 at 11:00 (the observation time of Landsat-8 is about 11:30 a.m. Beijing
time), the accuracy of the two LST retrieval algorithms was analyzed. Figure 8 shows the
scatter plot of the LST calculated by the two algorithms versus CLDAS-V2.0 LST.
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Figure 8. Scatter plot of the LST calculated by the two algorithms versus CLDAS-V2.0 LST:
(a) LST_MW; (b) LST_SW.

We revealed that in the scatter plot of the two groups of 300 verification pixels; the
root mean square (RMSE) of LST_MW and LST_SW were 2.15 ◦C and 2.51 ◦C, respectively.
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In addition, the coefficient of determination (R2) of LST_ MW was 0.78, and the R2 of LST_
SW was 0.76. Based on the above analysis, although there were some differences between
the two algorithms in the process of LST retrieval, the two algorithms both produced ideal
retrieval results, and the accuracy of the LST_MW algorithm was relatively higher than
that of the LST_SW algorithm in this study. Therefore, the LST calculated by the LST_MW
algorithm was used for subsequent research.

3.2.2. Cloud Gap-Filling of MODIS LST Data

During April, the valid pixel rates of the original daily MODIS LST images in the
study area were 8.77% to 82.95%. The cloud-free pixel coverage on 4, 11, 16, 26, 27, 28,
and 30 April were 71.57, 79.46, 79.80, 82.95, 79.04, 71.65, and 80.85, respectively. Therefore,
these LST images were selected as the reference image, and the others were interpolated
images. The multivariate regression model was built by using the cloud-free pixels of the
interpolated images as the dependent variables and the cloud-free pixels of the reference
image, DEM and EVI, as the independent variables. The model increased the valid pixel
rates of all interpolated images. The effect of pixel interpolation in daily MODIS LST
images is shown in Figure 9. After interpolation, the valid pixel rates of all interpolated
images were 71.57% to 86.40%.
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The MODIS LST images in April were compared with the pixels of CLDAS-V2.0 LST
as follows: All 30 images were taken as a group, randomly choose 50 interpolated pixels in
each image; that is, 1500 random pixels were selected for the validation. We validated the
cloud gap-filling methods (Figure 10); overall, the R2 between the interpolated MODIS LST
and CLDAS-V2.0 LST was 0.87 with RMSE of 1.79 ◦C, which indicates a strong correlation
between MODIS LST and CLDAS-V2.0 LST. Furthermore, for the pixels still vacant after
interpolation, CLDAS-V2.0 0 cm LST real-time products were used to fill them indirectly,
then the valid pixel rates of all images were 100%. The final nighttime LST images with
full spatial coverage at 1 km resolution in the study area were obtained and used as the
data source for the data fusion stage of the research.
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3.2.3. Data Fusion of Landsat-8 LST and MODIS LST Using the ESTARFM Method

Temporal resolution changes before and after data fusion are shown in Figure 11a.
Taking four 13 km × 13 km local areas in Figure 11b as an example, the spatial resolution
results of data fusion can be visualized by comparing the differences in the LST image
pixels before and after data fusion for 24 April.

Figure 11 shows the data fusion result of LST both in temporal and spatial resolution.
In Figure 11a, only three images of Landsat-8 LST were used before data fusion. After fusion
by ESTARFM, a complete data set containing 30 images of LST in April was obtained. In
Figure 11b, compared with the LST images with a spatial resolution of 1 km, the downscaled
images have more detailed information and a clear description of the LST pixels. With
regard to the phenomenon of local blurring and mutation at the boundary of different
types of ground objects, this study analyzed the reasons, which may be the degradation
of the downscaling quality caused by the high degree of fragmentation of mixed pixels.
Overall, downscaled LST had a high correlation with MODIS LST and could be used to
construct the model of the following Tmin estimation.
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3.3. Calibration and Validation of Daily Minimum Air Temperature Estimation Using the
Downscaled LST Data

A linear regression model was constructed between Tmin measured from 180 meteo-
rological stations and the fused LSTE derived from the Aqua nighttime MODIS LST and
Landsat LST. Two-thirds of the meteorological data were used for modeling and one-third
for validation.

The regression model between Tmin and LSTE is formatted in Equation (12).

Tmin = 0.91 ∗ LSTE − 3.19 (12)

RMSE was 3.07 ◦C; the R2 and Bias for the estimation model of daily minimum air
temperature were 0.85 and 0.008, respectively.

Fully covered Tmin of the study area can be calculated by Equation (12). In Figure 12b,
the scattered points are distributed near the 1:1 line. The RMSE and R2 of the estimated
Tmin and measured Tmin were 1.67 ◦C and 0.91, respectively. The low error value and good
correlation indicated that the estimation model had high applicability for the estimation of
Tmin in the study area, and the estimated results can be used for remote sensing monitoring
and grade evaluation of wine grape late frost damage.
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3.4. Mapping of the Late Frost Damaged Area

The distribution map of the wine grape planting area with a spatial resolution of
30m was resampled to 100 m, which was consistent with the spatial resolution of Tmin.
The spatial distribution of wine grapes and full spatial coverage of Tmin at 100 m resolution
in each planting region in April 2020 were combined to obtain the daily late frost damaged
area. The results showed that in April 2020, affected by the very cold air, days with low
air temperature appeared frequently and intensively. There were about 14 days when
the daily Tmin was lower than 0 ◦C in the planting area; that is, there were 14 late frost
days, which were 2–4 April, 11–13 April, 16–17 April, and 20–25 April. Among these
days, extremely low air temperature appeared on the morning of 24 April, when the Tmin
suddenly dropped to about −6 ◦C; the Tmin on the other days of the fourth late frost period
were all below 0 ◦C. Although the Tmin was lower than 0 ◦C, most of the wine grapes were
not frozen before 20 April because they had just been unearthed from the soil, but had not
yet sprouted. This period had strong resistance to low air temperature, which had little
effect on the growth of wine grape buds and leaves. Therefore, we monitored the late frost
situation during 20–25 April.

Figure 13 shows the remote sensing monitoring of late frost in the wine grape planting
area in April 2020. The severe damage area is mainly concentrated in the central part of
the study area, with less frost damaged in the northern part. Combined with the local
field survey, we found that the degree of late frost damage was relatively severe in areas
with low or flat terrain. Table 5 shows the affected area during the late frost damage
in April 2020. We found that a total of 77.48% of the vineyards suffered from late frost
damage, and the area of wine grapes affected by severe late frost damage reached 16,381 ha,
accounting for 41.12% of the total planting area. Among the areas, Yinchuan was the most
severely damaged area, with about 8501 ha, and the total damaged area of Qingtongxia,
and Hongsipu was about 7393 ha. The planting scale of wine grapes in the Shizuishan
growing district was relatively small, so the damaged area was significantly smaller than
other growing districts. According to the local planting area statistics, the mortality rate of
wine grape buds in some wine chateaus with severe freezing damage was 70%; only about
30% of them survived, and vineyards were faced with great loss of production [70]. The
results of late frost damage obtained by estimating the Tmin was in good agreement with
the statistics from the agricultural meteorological disaster department.
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Table 5. Estimated damage area of wine grapes late frost.

Planting
Area

Slight Damage Moderate Damage Severe Damage Total

DA 1 (ha) DR 2 (%) DA 1 (ha) DR 2 (%) DA 1 (ha) DR 2 (%) DA 1 (ha) DR 2 (%)

Yinchuan 3159 14.81 5051 23.68 8501 39.85 16711 78.33
Shizuishan 178 15.66 195 17.15 487 42.83 860 75.64

Qingtongxia 1256 13.41 2123 22.66 3983 42.52 7362 78.59
Hongsipu 1051 13.14 1471 18.38 3410 42.63 5932 74.15

Total 5644 14.17 8840 22.19 16381 41.12 30,865 77.48
1 DA = damaged area; 2 DR = damaged rate.

4. Discussion

In this paper, a practical remote sensing monitoring framework of wine grape late
frost damage was proposed using multi-source satellite data and auxiliary ground meteo-
rological data. This framework includes extraction of the wine grape planting area and
estimating the daily minimum air temperature using satellite data.

In April 2020, wine grapes in the study area suffered severe late frost damage. Accord-
ing to the estimation results of Tmin in this paper, 14 frost days occurred in April, which
may have caused the leaves and buds of wine grapes to be frozen. During 20–25 April,
several extreme low air temperature events occurred, particularly the sudden drop in air
temperature in the early morning of 24 April, which turned the wine chateaus with slight
or moderate late frost damage in the early stage into moderate or severe late frost damage
finally. In addition, because most of the wine grapes had begun to sprout, this growth
stage was greatly affected by low air temperature; the whole region suffered severe late
frost damage with long duration, low air temperature, and wide affected area, especially
in low-lying areas. Because cold air is heavier than warm air, and there are more water
molecules in cold air. When the cold air sinks and collects in valleys or low-lying areas, frost
forms. Through field investigations and meteorological monitoring, it is found that this
late frost was the mixed frost of radiation and advection [70], causing different degrees of
freezing damage to the buds, leaves, and tender shoots of wine grapes in the germination
and leaf-expansion stages. At the same time, because the occurrence of late frost was
mostly around the germination and leaf-expansion stages of wine grapes, the sensitivity
and tolerance of different wine grape varieties to low air temperature are different.

This late frost had a great impact on the mid-late maturing red wine grape varieties,
such as Mathelan, Merlot, and Shiraz, and white wine grape varieties, such as Riesling
and Chardonnay. The effect on Cabernet Sauvignon, a late maturing variety, was relatively
slight. The influence of cold air can be reduced by smoking, fan, drip irrigation, and shallow
tillage to prevent late frost damage. In view of the late frost damages that happened,
we can help promote bud germination and inflorescence growth to reduce the yield loss
and increase the fruit setting rate by providing a small amount of irrigation, increasing the
nitrogen fertilizer, deep plowing the soil, and covering grapevines with plastic film.

In previous studies, the agricultural research on wine grapes mostly focused on agro-
nomic mechanisms and cultivation, while research on late frost damage is mainly based on
field experiments and meteorological stations [71–73], which have certain spatiotemporal
limitations. It is rare to use remote sensing to monitor late frost damage in wine grapes and
to estimate the damaged area at a large scale. In view of the above problems, this paper
proposed a monitoring model of wine grape late frost damage based on remote sensing,
which made full use of multi-source data, such as long-term series of remote sensing
satellite data, ground meteorological station data, terrain data, and phenological data of
wine grape, to monitor late frost damage in wine grapes and estimate the damaged area at
a large scale. Previous researches on wine grapes focused on late frost duration patterns [4],
the impact of climate change [74–76], risk assessment [77,78], and regional planning [2].
Compared with the daily minimum temperature estimation and frost monitoring models
used in these studies, the multi-source data used in our model ensured the integrity of the
model framework and the high accuracy of the results. In addition, the advantage of our
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model was that we used fewer modeling indices, but obtained higher accuracy. Although
the complete research framework could apply to wine grape remote sensing monitoring,
more work is needed to explore the optimal scale for wine grape monitoring. If the LST is
downscaled to a higher spatial resolution, more potentially available information may be
added. In addition, we should further implement a corresponding evaluation index of late
frost damage for different kinds of wine grapes to comprehensively evaluate the late frost
damage under cumulative effects, such as temperature, precipitation, and soil condition.
Meanwhile, the application of the remote sensing monitoring framework for other crops in
other regions will be explored from the perspective of practical use.

5. Conclusions

This study presented a practical remote sensing monitoring framework for late frost
damage in wine grapes based on in-situ measurements and multi-source satellite data. The
in situ data included meteorological data and field survey data. These data obtained the
accurate wine grape planting area, daily Tmin data, and late frost damage in wine grapes,
but were limited by their uneven and sparse distribution. In this study, we extracted
the wine grape planting area by selecting the optimal feature subset, estimating the daily
minimum air temperature (Tmin) with the spatial resolution of 100 m, and mapped the wine
grape late frost damage in April 2020. Spatially, about 41.12% of the vineyards suffered
severe frost damage, and the total affected area was about 16,381 ha.

The results of late frost damage obtained by estimating the Tmin were in good agree-
ment with the statistics of the agricultural meteorological disaster department. The pro-
posed framework innovatively solved the problems of a lack of meteorological data or
coarse spatial resolution, and realized accurate monitoring of full coverage in the study
area. It can also provide a reference and technical support for estimations of the wine
grape area, large scale dynamic monitoring of late frost damage, and agro-meteorological
services in the whole planting area in the future.
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