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Abstract: The spatial calculation of vector data is crucial for geochemical analysis in geological big
data. However, large volumes of geochemical data make for inefficient management. Therefore, this
study proposed a shapefile storage method based on MongoDB in GeoJSON form (SSMG) and a
shapefile storage method based on PostgreSQL with open location code (OLC) geocoding (SSPOG)
to solve the problem of low efficiency of electronic form management. The SSMG method consists
of a JSONification tier and a cloud storage tier, while the SSPOG method consists of a geocoding
tier, an extension tier, and a storage tier. Using MongoDB and PostgreSQL as databases, this study
achieved two different types of high-throughput and high-efficiency methods for geochemical data
storage and retrieval. Xinjiang, the largest province in China, was selected as the study area in
which to test the proposed methods. Using geochemical data from shapefile as a data source, several
experiments were performed to improve geochemical data storage efficiency and achieve efficient
retrieval. The SSMG and SSPOG methods can be applied to improve geochemical data storage
using different architectures, so as to achieve management of geochemical data organization in an
efficient way, through time consumed and data compression ratio (DCR), in order to better support
geological big data. The purpose of this study was to find ways to build a storage method that can
improve the speed of geochemical data insertion and retrieval by using excellent big data technology
to help us efficiently solve problem of geochemical data preprocessing and provide support for
geochemical analysis.

Keywords: geochemical data; data storage; retrieval; database

1. Introduction

Geochemical mapping plays an important role in both mineral exploration and en-
vironmental studies [1]. Geochemical data have the characteristics of complexity, region,
and space. The traditional data management model cannot reflect the correlation char-
acteristics of geochemical data, let alone preprocess the geochemically original sampling
point data efficiently. Due to the complexity of geochemical data, it is difficult to ensure the
integrity of the data in electronic form [2]. At the same time, floating-point-based main
geochemical data types consume a lot of computer resources. Moreover, the increase in
the amount of geochemical data makes the correlation analysis between elements more
and more complicated. It is difficult to meet the needs of scientific research by using only
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electronic forms of data. With the science-intensive fourth paradigm [3] becoming the
main approach to scientific research, big data technology has provided new research ideas
for geochemical research. As a typical data-intensive discipline, geology has abundant
multisource heterogeneous data, including geochemical data, etc. The spatiotemporal and
multivariate nature of geochemical data derives a series of data characteristics [4], which
enables the accurate description of geological data. Considering the various, multisource
observation modes existing in the quantitative description of geological data, they are
divided into continuous data and discrete data. Discrete data are acquired via numerical
measurement, while continuous data are acquired via sampling and testing, and vector
data are an important data source in geological discrete data. Geochemical data are the
most representative geological data in vector form. Because geological problems have
multiple solutions, the same data can be analyzed from different perspectives and different
conclusions can be drawn. In a sense, data themselves contain more value than conclu-
sions [5]. With the improvement of test methods and test accuracy, the total amount of
geochemical data increases rapidly. The method based on big data involves the processing
of the whole geochemical dataset; it reveals the correlation between geochemical model
and known mineralization, and provides a new method for finding geochemical anomalies
in mineral exploration [6]. Therefore, creating an effective method to manage geochemical
data helps us to achieve geochemical analysis based on big data technology.

Vector data play a very important role in geological research, and the geochemically
original sampling point data are the most representative. Moreover, vector data are used
to make hydrogeological maps of Europe, and to evaluate geological surface processes
across the continent [7]. Vector data can also be used to simulate the surface geological
model of coastal zones [8], as well as to calculate discharge density, frequency, bifurcation
rate, and other parameters in river basins [9]. Furthermore, island paleogeography can be
reconstructed by building archipelagic databases in vector data format [10].

Advances in observation instruments and storage technology have led to the upgrad-
ing of vector data from MB level to GB level, and the geochemically original sampling
point data management model has also changed. Additionally, new methods can provide
advantages for research work. Vector databases are established to study the ecological eval-
uation and correlation index of trees and forests, so as to calculate important parameters
such as geological statistical analysis and ecological restoration ability [11]. Moreover, data
analysis and protection of river basins can also be strongly supported [12]. Meanwhile,
geochemical databases are used to monitor the nutrient content in lakes and rivers, which
can help map the chemical spatial patterns related to atmospheric deposition and other
environmental pressure sources [13]. Moreover, thematic geochemical databases have also
been established in many countries [14–16]. A variety of spatial methods can be applied to
produce geochemical patterns using original data stored in a geospatial database [17–19].
Shapefile is a geographic information system (GIS) file format developed by the Environ-
mental Systems Research Institute (ESRI), and is the most widely used vector data format
to store the location, shape, and attributes of geographical features [20]. Geochemical data
in shapefile format will be used as experimental data.

Recently, the emergence of many advanced data storage technologies has brought
more choices for spatial unstructured data management, and also provided a new storage
method for the management of geochemical data. Han [21] proposed a spatial data index
method based on the HBase database, which makes it possible to deploy an environment
with fewer computer resources. Bigtable provides a flexible and high-performance solution
for real-time processing of unstructured geological data [22]. Zheng [23] proposed that
vector and raster data can be stored and managed uniformly using the Oracle database. At
present, with the development of spatial information technology, the amount of vector data
increases rapidly. It is very difficult for traditional file management systems to manage
vector data at the PB level. Whether it is the column-oriented database HBase, based on the
Hadoop distributed file management system; Bigtable, with powerful backstage support
from Google; or Oracle, with the largest number of users, there is no specific solution
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for geochemical data. Distributed database centers for geological big data need PB-level
data centers to store and analyze complete geochemical data. Consequently, the above
database technologies have the following limitations in terms of data storage capacity: (1)
the inability to create spatial indices due to lack of spatial extension; (2) difficulty in storing
geochemical data based on traditional data structure; and (3) failure to achieve distributed
database architecture via sharding of spatial data [24].

Cloud computing technology, NoSQL, and distributed database cluster technology
may bring new solutions to overcome these problems for geological big data [25,26]. The
establishment of geochemical databases in big data environments aims at innovating data
storage structures and spatial index methods to store and analyze data efficiently at min-
imum cost. Therefore, in this paper, two advanced methods are proposed to solve the
disadvantages of large-scale geochemical data storage, especially in geochemical data
analysis for geological big data. These two new storage methods provide compact data
structure, better performance in storage space, and efficient retrieval speed. This paper
proposes two innovative storage methods of geochemical data: one is based on the Post-
greSQL hexadecimal stream, and the other improves the GeoJSON storage mode based
on MongoDB. This study implements a storage method based on MongoDB in GeoJSON
form (SSMG), and a storage method based on PostgreSQL with open location code (OLC)
geocoding (SSPOG), in order to achieve efficient retrieval and data compression. To test
geochemical data in these methods, we utilized geochemical data and basic geological
data from Xinjiang, in shapefile format. Moreover, data compression ratio (DCR) was used
to evaluate the storage efficiency of the SSMG method and the SSPOG method. In order
to accurately test the performance of the two methods, we simultaneously compared the
speed of storage and data compression between the two methods. Finally, conclusions and
future directions are discussed.

2. Materials and Methods
2.1. Datasets and Environment

In this research work, geochemical data for Xinjiang, in shapefile format, were selected
to test the proposed SSMG and SSPOG storage methods. Xinjiang was selected as the study
area. Xinjiang is located in the northwest of China, in the center of Eurasia, covering more
than 1.66 million square kilometers, accounting for about 1/6 of China’s total territory, and
has abundant mineral resources (Figure 1). The establishment of a geochemical database
provides data support for the evaluation of mineral resources, groundwater pollution
monitoring, and ecological monitoring and evaluation. Geochemical surveys, at home
and abroad, along with national geochemical data, have been applied in the process of
investigation of mineral resources for decades. Therefore, Xinjiang has abundant mineral
resources, which is of great significance in the establishment of a geochemical database.

Shapefile data are often used as a data source for experiments [27]. This experiment
was designed to test the performance of the SSMG and SSPOG storage methods using
geochemical data. Shapefile is a vector graphics format, which can save the location
of spatial elements and related attributes, but this format cannot store the topological
information of geographical data. At present, many free programs or commercial programs
can read shapefile data. Shapefile can store the location data of spatial features, but cannot
store the attribute data of these spatial features in a file at the same time. Therefore, shapefile
may also be accompanied by a two-dimensional table file to store attribute information
for each spatial feature. A complete ESRI shapefile file consists of a main file (.shp), an
index file (.shx), and a table file (.dbf). The main file is composed of a fixed-length header
and a variable-length record; it is mainly used to keep spatial feature records. The index
file contains a 100-byte header and an 8-byte fixed-length record, recording the location
of each spatial feature in the main file. The table file contains the characteristic attributes
of each spatial feature in the shapefile file. The corresponding relationship between the
table file and the spatial feature record in the main file is established by the index file.
Therefore, shapefile data are adopted for the storage of geochemical data. Because the
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SSMG method is a storage mechanism based on the MongoDB database, shapefile data
inserted into the database become a complete document form. The SSPOG method is
based on the PostgreSQL database, which is similar to the form of table file in shapefile,
but SSPOG integrates shapefile spatial information into hexadecimal code and stores it in
the database.
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Figure 1. Location map and overview of the study area of Xinjiang (based on map sources: Depart-
ment of Natural Resources of Xinjiang Uygur Autonomous Regions Xin S (2019) No. 044).

To explain the differences between SSMG and SSPOG, the time consumed by MongoDB
and PostgreSQL operations was recorded. Therefore, PostgreSQL and MongoDB were
deployed on a single-machine environment, and database visualization software—such as
PremiumSoft’s Navicat Premium—was deployed to observe the result data. In addition,
ArcGIS and QGIS were used to display the result maps, showing the configuration details
of each platform (Table 1).

Table 1. Descriptions of testing platforms.

Platform PostgreSQL MongoDB

Overview PostgreSQL runs on a single server. MongoDB runs on a single server.

Software configuration
PostgreSQL version: 10.0

PostGIS version: 2.4.4
pgAdmin4: 4.4.6

MongoDB version: 4.0.9
MongoDB Compass Community: 1.17

Hardware configuration
CPU: Intel i7-4790 3.4 GHz

RAM: 16GB DDR4 3200 MHZ
HDD: 1TB 7200 rpm

2.2. Experimental Design

In our experiment, we tested the SSMG and SSPOG methods with geochemical data
in shapefile format. The SSMG method of geochemical data contains two processes—
JSONification, and cloud storage—while the SSPOG method of geochemical data contains
three processes: geocoding, extension, and data storage. Based on the methodology
detailed in Sections 2.3 and 2.4, Python was used to insert geochemical data into the
different databases in two ways. In addition, the geochemical data were stored in the
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database according to the table structure described in Section 2.5. As shown in Section 3.1,
the two storage methods are evaluated by the DCR criterion. Section 3.2 describes the
application of geochemical data in the SSMG and SSOG methods. Section 3.3 compares the
data storage performance of the two methods through a variety of evaluation criteria and
statistical methods.

2.3. SSMG Method

The big data technology group includes three parts: distributed database, parallel
computing, and data mining. MongoDB, HBase, Neo4j, and Redis are all popular databases
today. MongoDB has the ability to process massive data efficiently [28], supports embedded
document objects and array objects [29], and has an automatic sharding mechanism [30]. In
addition, MongoDB can provide a high-performance and -availability solution for storing
unstructured data. MongoDB stores data in document form. Each document consists of
multiple keys and their corresponding values, supports arrays and documents, and can
store complex data types. When spatial data are stored in MongoDB, each spatial object is
transformed into a JSON object by using the GeoJSON format for spatial data expression,
and the spatial and non-spatial attributes of spatial objects are stored in <key,value> mode.
Finally, spatial data are serialized into JSON files and stored on disk. GeoJSON defines the
following geometric types: Point, LineString, Polygon, MultiPoint, MultiLineString, Mul-
tiPolygon, and GeometryCollection. Attributes contain geometric objects and additional
information, as well as attribute sets [31]. Compared with the XML data format, GeoJSON
supports multiple server-side languages, and is easy to access and extract for the clients,
thus reducing the amount of code development on both the server and client sides.

The characteristics of shapefile data stored in GeoJSON are different from relational
database storage mechanisms, integrating spatial information and attribute information
to ensure consistency [32]. MongoDB was chosen as the container for storing GeoJSON
because it is not only a NoSQL distributed database with good performance [33], but
also has more advantages in storing document data. In addition, using MongoDB can
achieve compatibility with other software. The proposed SSMG method illustrates how to
store geochemical data in the form of GeoJSON in the document-type database MongoDB
(Figure 2). This method consists of two tiers: JSONification, and cloud storage.
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Figure 2. Architecture of the proposed SSMG method.

As a core part of SSMG, the JSONification tier is used to convert geological vector
data to GeoJSON format data. The GDAL/OGR spatial database conversion interface is
used to process tasks by this tier. The Geospatial Data Abstraction Library (GDAL) is a
conversion interface developed by the Open Source Geospatial Foundation (OSGeo) under
the Massachusetts Institute of Technology X/MIT license agreement. The OGR Simple
Features Library (OGR) is a part of the GDAL, which mainly provides support for vector
data, including 84 different types of vector data. The OGR interface treats the shapefile
dataset as a whole, and a single shapefile in the dataset as one of the layers. The read driver
reads the outer ring clockwise and the inner ring counterclockwise under the polygon
specification. If the topological relationship of the shapefile is damaged under the polygon
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specification, the configuration option OGR_ORGANIZE_POLYGONS can be reset to
complete the analysis of the topological relationship of the original data. The GeoJSON
driver supports reading and writing access data in GeoJSON format, as well as the use of
GeoJSON for other map service formats, such as GeoServer or CartoWeb. The GeoJSON
driver maps five types of element objects—Point, LineString, Polygon, GeometryCollection,
and Feature—to new OGRFeature objects. According to the requirements of GeoJSON’s
specifications, because the members with properties are the characteristics of element
objects, every member with properties of OGR objects converted into OGRField type is
finally inserted into the corresponding OGRFeature objects. Therefore, the JSONification
tier achieves storage of geological vector data in GeoJSON geocoding format.

The cloud storage refers to a distributed database cluster. When more data are stored
in the database, a single database cannot meet the storage requirements, nor can it provide
acceptable read/write throughput. A distributed database enables the database system to
store more data by partitioning the data on multiple other servers. For client users, there
is no need to know whether the data are split or not, nor the corresponding server for
data sharding. The data sharding task is performed by a route process, which records the
storage location of all data and the corresponding relationship between data and shards.
The JSONification tier documents the geochemical data, while the cloud storage tier groups
the documents into blocks, each consisting of a specified range of keys. The cloud storage
tier records the amount of inserted data in each data block, and once the split threshold is
reached, the collection of the target database is split. For the client, it simply connects to an
ordinary process. In the database service of data request, the location of the target data can
be obtained by this process, and the data are collected by the route process and returned to
the client. On account of their fast access speed, superior performance, and easy expansion,
distributed databases are quite appropriate for geochemical data. Distributed databases
provide an easy and fast storage environment for geochemical data.

2.4. SSPOG Method

PostgreSQL is an open-source object-relational database management system, which
supports the management of geospatial data. Moreover, some fundamental geometric
types have been defined in PostgreSQL. The proposed SSPOG method in this study shows
the architecture of SSPOG (Figure 3). The SSPOG method innovatively uses OLC geocoding
as the geographic index of vector data, follows a Simple Feature for Structured Query
Language (SFS) [34] model to extend geometry objects under Open Geospatial Consortium
(OGC) specifications, and stores unstructured geographic data in a spatial database in the
form of two-dimensional relational tables. This method consists of three tiers: geocoding,
extension, and storage.
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The purpose of the geocoding tier is to process the conversion of longitude and
latitude of the WGS84 coordinate system to OLC. The input is a large number of longitude
and latitude coordinates (LLCs), while the output is a simpler OLC. In the geocoding tier,
the conversion interface is transmitted through a dedicated algorithmic reference table
supported by the Google Maps spatial engine. The algorithm is authorized to execute under
Apache License 2.0. Characters that are not easily confused in more than 30 languages are
selected as the OLC code. Meanwhile, each geographic code describes an area consisting of
two longitudes and latitudes, as determined by its southwest corner and size. According to
the requirement of user request, the geocoding length that meets the accuracy is determined
in the geocoding tier. As the geocoding length continues to expand, the target area becomes
more precise. When the encoding is extended to 11 characters, the mapping to the Earth’s
surface can accurately describe the geographical entity with a precision of 3 m. Compared
with LLC, OLC coding takes up less space, and is generated by open-source algorithms.
OLC coding can identify any part of the Earth, which is an appropriate solution to improve
the processing speed and positional identification accuracy of coding.

The extension tier is designed to implement the mapping of geochemical data to
geographic entity objects. In order to follow the SFS model specification under OGC,
two sets are used to track and report geometries in the database. A collection calls the
spatial reference identifier (SRID) to define all known spatial reference systems in the
database. The SRID corresponds to a spatial reference system based on a specific ellipse,
and can be used for planar or spherical mapping. The extension tier supports the input and
output of geological vector data in a variety of formats, including well-known text (WKT),
well-known binary (WKB), extended well-known text (EWKT), extended well-known
binary (EWKB), and other format types. Among them, the EWKT and EWKB formats
are three-dimensional representation formats formally defined by the Structured Query
Language (SQL)-Multimedia Part 3 (SQL/MM) specification. According to the request of
SFS specification, geochemical data can be fundamentally processed.

The storage tier is the link of executing all types of geochemical data storage. After
the model specification of the extension tier, POINT, LINE, POLYGON, POLYGON with
a hole, and COLLECTION are used to map geographic entities on the Earth. There are
many types of geological data. The client may create geological databases on different
topics according to different geological disciplines, including geochemical databases, basic
geological databases, and geotectonic databases. Therefore, the storage tier builds different
databases according to metadata tables of different topics. Requests for geochemical data
are sent through a dedicated job submission interface, which converts the shapefile into
spatial databases suitable for insertion into geometric or geographic formats.

Because longitude and latitude require large storage space, and are stored in the form
of point features in the database, the efficiency of geochemical data execution is affected.
The proposed SSPOG method uses OLC geocoding to accurately describe the common sur-
face elements in geological research with 10–12 characters to meter level, which improves
the efficiency of geochemical data, and can quickly and accurately obtain the location
information of the target feature. Because the SSPOG method is based on PostgreSQL—a
relational database with pluggable type extensions and functional extensions—the spatial
and attribute information of geochemical data are therefore used for management in a rela-
tional database. Through the extension of geometry objects under the OpenGIS protocol,
spatial information is inserted into the database in a hexadecimal system. PostgreSQL dis-
tributed function extension technologies—such as Citus, Green Plum, and PL/Proxy—are
appropriate choices to support the distributed management of big data technology.

2.5. Design for Data Tables in SSMG and SSPOG to Store Geochemical Data

A dataset is divided into several parts by a relational database, and then stored in the
corresponding tables. When the data need to be used, they are spliced together and used.
For example, a table describing remote sensing data information is designed according to
the third paradigm [35], when different remote sensing data cover a study area. A single
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table can be used to store remote sensing images of different time series and read the
required data through the association between tables when displaying available remote
sensing data. Meanwhile, the geochemical data storage mechanism of SSMG is quite
different from this mode. Since this kind of storage unit is a document that supports arrays
and nested documents, SSMG can directly describe all attribute information of geochemical
data with a documented data structure (Figure 4). Each field in the entity represents a type
of information in the SSMG method, and is not a form of table. The association function of a
relational database is not necessarily its advantage, but a necessary condition for it to work.
In the SSMG method, using its rich document characteristics, it does not require every
document to have the same structure, and supports many heterogeneous data scenarios
very well. To some extent, association is a pseudo-requirement, which can be avoided by
reasonable modeling.
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Inheriting the advantages of the geospatial relation–object model, the storage of
geospatial set elements conforms to the description and definition of geographic elements
by OGC in SSPOG. The structure of the SSPOG method table is mainly divided into two
parts: One is a traditional structured attribute column, which meets all the requirements
of a traditional relational database paradigm. The other part is the spatial information
column, which stores geometric objects in hexadecimal form. Each spatial data record in
SSPOG stores a spatial feature, and integrates all tables into a dataset with the same spatial
reference system.

1. Geocoding table: Stores the corresponding OLC codes and precise parameters, as
well as the converted longitude and latitude coordinates;

2. Geo-Information table: Stores coordinate information of each feature in geochemical
data;

3. Age table: Stores sampling time of geochemical data and maximum and minimum
ages of strata obtained by field geologists;

4. Tectonic Units table: Stores names of geological tectonic units of different grades in
the study area;

5. Zone table: Stores map name and map code of administrative divisions’ information
and geological maps of the study area;
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6. Sample table: Stores the information of the name, description, and type of sampling
points when sampling in the field;

7. Geochemistry table: Stores the element content existing in various strata of each
sampling point; the first three elements are stored according to the content value.

3. Experiment and Results
3.1. Data Compression Ratio (DCR)

In order to achieve large-scale geochemical data storage, the SSMG and SSPOG
methods are used to store unstructured data. There are great differences between the
two methods proposed in this research. The former is used to transform the spatial
information and attribute information of the shapefile into GeoJSON format and store them
in database. The latter is used to extend the spatial information of the shapefile following
the OGC protocol, and store it in the database in the form of two-dimensional tables. The
increase or decrease in space occupied by data insertion into the database is one of the
important evaluation criteria for a data organization mode, and the efficient storage of
data is also pursued in the era of big data. Therefore, a new method of evaluating data
storage mechanisms—DCR—is proposed in this study. In order to analyze the increase and
decrease in the space occupied by two different methods for storing data, firstly, the space
occupied by shapefile-encoded experimental data stored on a Windows file system was
recorded, which was used as the standard control group for the experiment. Secondly, the
experimental data were recorded and stored in different databases using SSMG and SSOG.
Thirdly, the amount of space taken up by recording the experimental data in different
databases via SSMG and SSPOG was recorded. Finally, the DCR values of different methods
were calculated according to (1). The size of DCR represents the efficiency of data storage.

R =
D0 − DT

D0
(1)

where R is the DCR of the database, DT is the space occupied by the experimental group
data, and D0 is the space occupied by the control group data.

3.2. Geochemical Data Storage and Data Presentation

This study measured the time needed to reconstruct geochemical data into a GeoJSON
structure and store it in a two-dimensional table structure. In addition, the time consumed
to retrieve data based on the SSMG and SSPOG methods and their corresponding DCR
were also measured. The experiment consisted of two steps: storing geochemical data,
and mapping them. When using SSMG to store geochemical data, the efficiency of its
storage function was evaluated. Three steps were performed in sequence: (1) Clients obtain
all the information of geochemical data from the data source by inheriting the GetLayer
operation of the GDAL/OGR spatial feature library, and shapefile data are reconstructed
into GeoJSON form via the Feature.ExportToJson function. This contains the original
data with all the spatial information and attribute information. (2) Clients register data
into the MongoDB cluster through the metadata tables already designed in the system to
provide data foundation for geological data analysis. (3) At this point, MongoDB divides
the documents registered in the database into blocks. When block data reach a threshold,
MongoDB divides them into two smaller blocks. Finally, geochemical data are inserted
into MongoDB in the form of GeoJSON.

Similarly, when using the SSPOG method to store geochemical data, the efficiency of
its storage function was also evaluated. Three steps were performed in sequence: (1) Clients
use the DECODE function to encode the shapefile data of the research area, so that each
spatial feature can be accurately described by OLC. (2) The SSMG method follows the SFS
model specification under OGC to extend shapefile data to geometry objects, describing
the spatial information of data in the form of hexadecimal characters. (3) Through the
specific model, the structured attribute information and the extended spatial information
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are uniformly stored in the two-dimensional table structure, so that clients can analyze
spatial data with SQL.

In the process of displaying geochemical data, the geochemical data were retrieved
from the database through the application interface accessed by the database, and the data
were displayed via the graphical software. Based on the different element content values
in geochemical data, the original data were symbolized and displayed, and finally the
display results were obtained. The results showed the geochemical element contents of
different elements based on shapefile data (Figure 5). Geochemical data contain information
about element content in most of the regions. If the kind of data can be used quickly and
efficiently, this can provide effective data support for geological big data.
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3.3. Performance Evaluation

The experiment compared the storage efficiency of SSMG with SSPOG when storing
different numbers of features. The SSMG and SSPOG methods are based on open-source
servers; the databases of SSMG and SSPOG were MongoDB and PostgreSQL, respectively.
Specifically, the experiments of SSMG and SSPOG were carried out in the same hardware
environment. Because computer performance would be affected by other processes, the
average of three repeated experiments was taken in this experiment. For shapefile data
with 129,419, 239,344, and 421,897 features, the time consumed by the SSMG method was
approximately 515, 955, and 1646 s, respectively. Meanwhile, the time consumed by the
SSPOG method was approximately 165, 293, and 509 s, respectively (Figure 6). When
storing 453,988 features, the SSMG method reached approximately 1727 s, while SSPOG
reached 550 s. Overall, the SSPOG method was approximately three times more efficient
than the SSMG method.

The time consumption growth trend of the SSMG and SSPOG methods was linear
with respect to the number of features (Figure 7). The slope of SSMG was approximately
0.0038s/row, while the slope of SSPOG was approximately 0.0012s/row. The SSPOG
method is much more efficient than the SSMG method when storing large quantities of
geochemical data.

In the same way, this experiment also compared the DCR of the SSMG method with
the SSPOG method when storing different numbers of features. For shapefile data with
129,419, 239,344, and 421,897 features, the DRC of SSMG was approximately 22.40%, 22.37%,
and 21.43%, respectively, whereas for the SSPOG method it was approximately 53.39%,
53.67%, and 52.07%, respectively (Figure 8). The DRC of SSMG trends to ~22%, while the
DRC of the SSPOG method trends to ~53%. Overall, the DRC of SSMG does not reach half
that of the SSPOG method.
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Figure 6. Time required for storage of shapefile data using two methods with different numbers of features.
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Figure 7. Relationship between the time consumption of geochemical data storage and number of
features based on SSMG and SSPOG.

Table 2. Test case of retrieval.

Platform Test Case Number of Results

PostgreSQL SELECT FROM Geodatabse WHERE Ag = 76
1310 rows

MongoDB db.Geodatabse.find({“properties.Ag”: 76})

In conclusion, the SSPOG method was more efficient when storing different numbers
of features. With the number of features increased, the time consumed by SSPOG decreased
in comparison with SSMG. Compared with document management systems, the SSMG
and SSPOG methods provide new ways to store geochemical data, and support higher
storage capacity. Compared with SSMG, SSPOG provides higher and more efficient storage
methods (Figures 6 and 8). Meanwhile, using the DCR index, SSPOG provides better
compression data capability compared with capacity. However, using different retrieval
methods, it is apparent that the SSMG method is better than the SSPOG method in terms
of retrieval.
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Figure 8. DCR of geochemical data using two methods with different numbers of features. Table 2 shows the performance
of testing retrieval under different methods. Dealing with 129,719 features, the time consumed was different with respect
to different storage and retrieval methods. Using the collection query method (CQM), the time consumed by the SSMG
method was 220 milliseconds. In the same way, the time consumed by the SSPOG method was 2450 milliseconds (Figure 9).
Overall, the SSMG method was approximately 10 times faster than the SSPOG method in retrieval.
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4. Discussion

In this experiment, the geochemical data were stored and accessed using the SSMG
and SSPOG methods. In the performance evaluation stage, the SSPOG method consumed
less time than document methods, such as SSMG. Relational databases are structurally
compact and less redundant compared with document databases. The basic structure of
shapefile data is to store information in the form of traditional attribute tables. The SSPOG
method stores the spatial information of geochemical data as structured data in a relational
database after spatial extension. Therefore, the SSPOG method has more advantages than
SSMG in terms of saving and compressing data. However, the SSMG method helps to solve
the problem of geochemical data storage for retrieval. The document database <key,value>
data storage mode eliminates the close relationship between different data in the relational
database, and achieves the direct acquisition of target data from the database. Therefore,
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the SSMG method performs better in terms of retrieval. The experimental results were
compared with one another, and the advantages of SSMG and SSPOG are as follows:

(1) The SSPOG method efficiently stores geochemical data in shapefile format. The
SSPOG method can store different types of geographic elements—such as point,
polyline, and polygon—in different ways. This storage method enables the same
type of data to be invoked to extract multisource data information in geological big
data analysis functions. Meanwhile, OLC enables SSPOG to save lots of space and
locate target features more accurately, as described in Section 2.2. In terms of storage
efficiency and speed, merging two floating-point fields into one character field is an
innovation for traditional spatial data storage. As the number of geochemical data
increases, so too does the time consumed by SSPOG. Therefore, for the above reasons,
the SSPOG method improves the efficiency of storing geochemical data;

(2) The SSMG method innovates the storage form of geochemical data and improves the
retrieval efficiency. On account of the increasing accuracy and complexity of geological
data description, it is difficult to implement retrieval in large-scale data in an efficient
way. The vector format of geochemical data is expressed in the form of <key,value>
by SSMG, which breaks through the complex relationships between attributes in
relational databases. As mentioned in the conclusion, the storage method is much
faster than retrieval in relational database space. Through geochemical data storage
in GeoJSON format, this vector data storage method supports a two-dimensional
spherical spatial index, and solves the application problem of location-based service
(LBS), so it is suitable for large-scale retrieval research. Meanwhile, the clustering
technology of MongoDB enables a vector dataset to be segmented and stored on
different data nodes, which provides a technological foundation for the distributed
analysis and calculation of geochemical data.

Challenges still remain in terms of data storage structure and database organization;
more efficient storage methods of geochemical data can be established to achieve geological
big data storage. Future work will focus on the following: (1) The OLC unique coding
and matching technology of vector features’ locations and geometric features can solve
the problem of unified coding of elements in geochemical data. Through the uniform
coding of geological entities, the matching of geological spatial features can be converted
into document format via coding matching, which can improve the matching efficiency
of geological data. (2) Storing a large amount of geochemical data in different clusters
can make full use of idle computer resources, and improve the data availability and
performance of large database retrieval servers. Therefore, database cluster sharding
technology will be the focus of our next work.

5. Conclusions and Future Work

This study implemented unstructured spatial data storing methods to improve the
storage efficiency of vector data and achieve shapefile data application in the retrieval
of geochemical data. Our experiment demonstrated that the SSPOG and SSMG methods
achieved creative geochemical data storage and retrieval at a large scale. These two
methods showed different performance in storing and retrieving geochemical data. In
terms of storage performance, the efficiency of geochemical data storage in SSPOG can be
threefold greater than that of SSMG. The SSPOG method showed the advantage of the close
data structure of the relational database through spatial extension under OGC standard. In
terms of data compression, through the DCR index proposed in this paper, the efficiency
of data compression in SSMG was better than that of SSPOG. Meanwhile, the retrieval
performance of SSMG was better than that of SSPOG; that is to say, the SSMG method
was able to complete real-time geological retrieval tasks with excellent performance when
storing geochemical data at a large scale. Because the SSMG method uses a document
structure to store geochemical data, it can obtain a looser structure, so it performs better
in terms of data compression and retrieval. In fact, 90% of the time consumed in storing
geochemical data in SSMG is a process of documentation, which takes only a short time
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to insert document data into the database. Therefore, documented vector data have more
advantages in optimizing storage space and retrieval.

Compared with the traditional retrieval of geochemically original data, the two geo-
chemical data management models based on big data technology proposed in this paper
show effective improvement. It takes less than 1 s to find the target data from 460,000
records, which is an efficiency that cannot be achieved by the traditional geochemically
original data management model. On the basis of these management models, the abnormal
values in the massive geochemical data can be quickly found and processed. At the same
time, the core of geochemical big data analysis is to retrieve the target data from the massive
data for processing and analysis, and the methods proposed in this paper can provide
efficient technological support. In addition, the SSPOG and SSMG methods have their
own advantages and disadvantages in terms of storage and retrieval performance. Under
different conditions, different methods can be selected.

At present, the focus of our research is on the improvement of spatial data storage
performance and retrieval by range index attributes. In future works, the spatial index will
be the focus of our research. In the two methods proposed in this paper, the use of a spatial
index can increase the accuracy of data retrieval, and in different application scenarios can
also improve the efficiency of data retrieval.
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