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Abstract: Determining the geographic location and spatial distribution of underground goaf is of
great significance for the prevention of mining subsidence hazards and the detection of illegal mining.
However, traditional goaf detection techniques mainly focus on geophysical methods that are labor
intensive, have low efficiency, and are expensive. Due to the large range and off-site monitoring
capability of interferometric synthetic aperture radar (InSAR) techniques, research on goaf location
detection based on InSAR measurements has been increasing. This paper proposes a new method for
locating underground goaf based on cross-iteration and InSAR measurements. Firstly, the functional
relationship between the geometric parameters of the goaf and the line of sight (LOS) deformation
retrieved by InSAR techniques is constructed. Then, the three initial model parameters of the
probability integration method (PIM) are determined by mining geological conditions. Finally, the
cross-iteration method is used to determine the parameters to characterize the spatial location of
underground goaf. The experimental results show that the average relative errors of the simulated
experiment and the real experiment are 1.5% and 5.1%, respectively, and the inverted goaf parameters
are in good agreement with the real values. Moreover, the proposed method only requires the main
lithology of the overlying rock in the goaf and does not depend on the accuracy of PIM model
parameters. Therefore, this method has engineering application value for the detection of goaf
lacking actual measurement data or that caused by illegal mining.

Keywords: InSAR; PIM; cross-iteration; positioning of underground goaf

1. Introduction

Underground coal mining is the main way to obtain coal resources. The underground
cavities formed by the mining of coal seams are called goafs. With the large-scale mining of
coal, a large number of unknown goafs mainly caused by illegal mining activities have been
generated in the world. In addition, the destruction or loss of ancient coal seam mining
records make it difficult to know the actual situation of many abandoned goafs. These un-
known goafs may not only endanger people’s lives and property and destroy surface
infrastructure, but also cause landslides, surface subsidence, and other geological disasters.
Therefore, determining the geographic location and spatial distribution of underground
goafs is of great significance for the early warning and management of geological disasters.
Traditional underground goaf detection technologies focus on geophysical techniques,
such as transient electromagnetic method [1,2], microgravity measurement [3], and remote
thermal IR surveying [4]. These methods can roughly determine the spatial distribution
and geographic location of the goaf. However, they are time-consuming, labor-intensive,
costly, and have a small detection range.

Interferometric synthetic aperture radar (InSAR) is a new technology that can use the
interferometric phase information of SAR image pairs to obtain the surface deformation in
the line of sight (LOS) direction [5]. InSAR technology can provide wide area coverage,
high spatial resolution, and high monitoring precision of surface deformation fields [6,7].
It is gradually being used in many fields, such as the monitoring of volcanic activities [8,9],
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permafrost [10–13], landslides [14,15], and earthquakes [16–19]. In addition, InSAR tech-
niques have many successful applications in critical infrastructure monitoring fields [20–22].
Moreover, with the continuous development of InSAR technology, a wealth of SAR sen-
sors and a large number of historical archived images already exist, and free SAR image
acquisition methods are constantly enriched. Compared with traditional goaf detection
technology, InSAR technology has the unique advantages that provide the possibility for
precise detection and positioning of goaf in a large area [23].

At present, there are few studies using InSAR monitoring results to locate goaf.
In 2013, Hu et al. [24] proposed a differential InSAR (DInSAR)-based illegal-mining de-
tection system (DIMDS), which can determine the center geographic coordinates of the
underground goaf by combining the acquired LOS deformation and the mining subsidence
law. However, the rough center coordinates of the goaf are not sufficient to accurately
assess potential geological disasters. In order to obtain more effective goaf geometric
information, Yang et al. [25] have constructed the functional relationship between the LOS
deformation and the eight parameters of underground goaf based on the probability in-
tegration method (PIM). Then, the SAGA hybrid algorithm [26] was used to invert the
unknown goaf parameters. However, the complexity of the function model will affect
the efficiency of parameter inversion. Du et al. [27] extracted feature points on the sink-
ing curves to participate in the calculation of the coal seam boundary and mining depth.
Subsequently, Xia et al. [28] proposed a goaf positioning method that can calculate more
parameters and is suitable for inclined coal seams. Similar to the method proposed by [27],
this method ignores the influence of horizontal deformation and obtains incomplete goaf
parameters. More importantly, these methods [25,27,28] all require prior model parameters
of the PIM that are usually obtained from measured data. If the actual measurement data
are insufficient, large PIM model parameter errors may be introduced, and the positioning
accuracy of underground goafs may be seriously affected. Therefore, reducing the number
and accuracy requirements of PIM model parameters plays an important role in the precise
positioning of the unknown goaf.

In summary, this paper presents a cross-iteration method for accurate inversion of full
underground goaf parameters. This method reduces the input of model parameters of the
PIM and is not significantly affected by the accuracy of the required model parameters.
We first modify the PIM model to reduce the input model parameters. Then, we constructed
the functional relationship between the LOS deformation and the geometric parameters
of the goaf and determined the three initial model parameters of the PIM related to the
geological mining conditions. Finally, the geometric parameters of the goaf were inverted
by a cross-iteration method. The reliability of the method was verified through simulation
experiments and real experiments.

The remaining structure of the paper is as follows. The principle of the cross-iteration
method is described in Section 2. Experiments and results are shown in Sections 3 and 4,
respectively. We state the discussion in Section 5, and the conclusion is presented in
Section 6.

2. Cross-Iteration-Based Methodology
2.1. Principle of the PIM

The PIM model is a widely used mining subsidence prediction model developed on
the basis of the random medium theory [29,30]. This model divides the goaf into many
small mining units and regards the impact of mining on the ground surface as the sum of
the mining impacts of all small units [31]. Supposing that there is an underground goaf
caused by long-wall mining, in order to determine the geographic location and spatial
distribution of this underground goaf, a set of parameters is usually required. This set
of parameters usually obtained through actual observations is regarded as the geometric
parameters of the goaf. As is shown in Figure 1, the geometric parameters of the goaf are
given by a true boundary length D3, true boundary width D1, coal seam mining height
m, dip angle α, geodetic coordinate of the origin (X0, Y0), and azimuth angle of mining
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direction ϕN , i.e., GP = [m, H, α, D3, D1, ϕN , X0, Y0]. As long as the mining direction and
related parameter values are determined, the vertical deformation W(x, y) and horizontal
deformation U(x, y, ϕ) in ϕ direction at a point (x, y) can be predicted based on the PIM
model [32].

W(x, y) = W0(x)W0(y)/Wmax (1)

U(x, y, ϕ) = [U0(x)W0(y) cos ϕ + W0(x)U0(y) sin ϕ]/Wmax (2)

with

W0(x) = Wmax

[
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(√

πx
r

)
− erf

(√
π(x− l)

r

)]
/2 (3)

W0(y) = Wmax
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πy
r1

)
− erf

(√
π(y− L)

r2

)]
/2 (4)

U0(x) = bWmax
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−πx2
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)
− exp

(
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[
exp

(
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2

)
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(
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r22

)]
+ cot ω ·W0(y) (6)

Figure 1. Underground goaf (white cuboid) and 3D coordinate system of the PIM model.

In Equations (1) and (2), Wmax = mq cos α is the maximum subsidence value of
the ground; q is the subsidence factor; W0(x) and W0(y) are the vertical subsidence on
the main section of the strike and dip directions, respectively (see Figure 2); U0(x) and
U0(y) are the horizontal deformations on the main section of the strike and dip directions,
respectively. Furthermore, l = D3 − S3 − S4 and L = [(D1 − S1 − S2) sin(α + ω)]/ sin ω
are the calculated boundary length and width of the goaf, where ω (see Figure 2b) is the
influence propagation angle of mining, S3, S4, S1, and S2 (see Figure 2) are the offsets of
inflection points in strike-back, strike, down-dip, and up-dip directions. r1 = H1/ tan β1,
r2 = H2/ tan β2, and r = H/ tan β are the main influence radius in down-dip, up-dip and
strike directions, respectively, where tan β, tan β1, and tan β2 are the tangents of the major
influence angles in the three directions. H (see Figure 2a) is the average mining depth,
H1 and H2 (see Figure 2b) are the mining depths in down-dip and up-dip directions, and b
is the horizontal displacement constant.
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Figure 2. (a) Mining subsidence caused by finite extraction in the strike direction; (b) mining subsidence caused by finite
extraction in the dip direction.

In addition to the geometric parameters of the goaf GP = [m, H, α, D3, D1, ϕN , X0, Y0],
there are a set of model parameters MP0 = [q, b, tan β, tan β1, tan β2, ω, S3, S4, S1, S2] that
depend on the geological mining conditions [31]. Model parameters of the PIM are usually
determined based on actual measured data and will vary with different geological mining
conditions. The tangent of the major influence angle depends on the main properties of
the overlying rock [25,31]. It can be approximately assumed that the tangents of the major
influence angle in three directions are equal, i.e., tan β = tan β1 = tan β2. The offsets of the
inflection points Si(i = 1, 2, 3, 4) are only used to obtain the calculated boundary length l
and width L of the goaf, and S3 + S4 and S1 + S2 are negatively correlated with the actual
boundary length and width of the goaf, respectively. In order to simplify the PIM model,
we can assume that S3 = S4 and S1 = S2. Based on the above assumptions, the model
parameters are modified to MP = [q, b, tan β, ω, S3, S1], which not only simplifies the PIM
model, but also reduces the difficulty for model parameter acquisition.

2.2. Underground Goaf Parameters Estimation by Cross-Iteration
2.2.1. The Function Model Linking InSAR LOS Measurement to Goaf Parameters

Using InSAR technology to monitor surface deformation can obtain millimeter-level
or even higher precision LOS deformation fields. Based on the imaging geometry of SAR,
the InSAR-derived deformation DLOS can be regarded as the comprehensive projection
of the north–south, east–west, and vertical deformation components DN , DE, DW in the
LOS direction.

DLOS = cos θ · DW + sin θ sin σ · DN − sin θ cos σ · DE (7)

where θ is the incidence angle of the SAR sensor; σ is the heading angle. The PIM model
can predict the 3D displacement of the surface settlement point and fully includes the
required spatial distribution parameters of the goaf. Therefore, substituting Equations (1)
and (2) into Equation (7), we can construct the functional relationship between the LOS
deformation and the PIM model.

DLOS(x, y) =

 cos θ
sin θ sin σ
− sin θ cos σ

T W(x, y, GP, MP)
U(x, y, ϕN , GP, MP)
U(x, y, ϕE, GP, MP)

 (8)

According to Equation (8), when the model parameters MP are known, the non-linear
optimization algorithm can be selected to reverse the geometric parameters of the goaf GP.
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Moreover, using the large-area surface deformation data monitored by InSAR to directly
invert fewer geometric parameters of the goaf inevitably reduces the calculation efficiency.
Therefore, selecting an appropriate subsampling method not only effectively avoids data
redundancy, but also saves sufficient data information. In this paper, an adaptive quadtree
subsampling method [33,34] is selected to process deformation points. Compared with the
traditional quadtree method, this method can divide irregular polygonal areas and reduce
the influence of null values in InSAR data.

2.2.2. Model Resolution via Cross-Iteration

The PIM model is complex and nonlinear, which makes it difficult to directly deter-
mine the value of the model parameters MP. For mining areas lacking actual measurement
data, model parameters of mining areas with similar geological structure conditions or
model parameters of different working faces in the same mining area are usually used
as approximate replacements. Thus, large model parameter errors may be introduced,
which will result in lower inversion accuracy. In addition, a set of empirical parameters can
also be determined according to the geological mining conditions, which may also seriously
affect the inversion accuracy. Therefore, a cross-iteration method for the inversion of goaf
parameters is proposed. This method only needs the empirical values of three initial model
parameters q, b, tan β to obtain the goaf location results with high accuracy. Cross-iteration
is an iterative method of cross-updating between grouped parameters, through the opti-
mization algorithm to invert the pending parameters of each iteration. Since the magnitude
of the subsidence factor q, the horizontal displacement constant b, and the tangent of the
major influence angle tan β is small, the value interval is easily determined. First, we can
obtain the empirical values of these three model parameters q0, b0, tan β0 according to the
main properties of the overlying rocks in the goaf. Then, we must select an improved
genetic algorithm (GA) [32] to invert the goaf parameters m, H, α, D3, D1, ϕN , X0, Y0 and
the remaining model parameters ω, S3, S1. The fitness function of the improved GA can be
expressed as f = min ‖ DLOS(x, y)− D′LOS(x, y ‖), where D′LOS(x, y) is the predicted LOS
deformation based on Equation (8).

The processing steps of the improved GA are as follows: By repeatedly running GA for n
times, n solutions Pi(i = 1, 2, · · · , n) and corresponding fitness values f (Pi)(i = 1, 2, · · · , n)
can be obtained. Then, the RMSES of each parameter were calculated based on the n GA-
derived resolutions. Subsequently, we eliminated solutions with an error of more than twice
the corresponding RMSES. Finally, the reciprocal of the fitness values f

(
P1

i
)
(i = 1, 2, · · · , m)

were used to weight the remaining m solutions P1
i (i = 1, 2, · · · , m) to obtain the unknown

parameters Pf inal , i.e.,

Pf inal =
∑m

1
(

P1
i / f

(
P1

i
))

∑m
1
(
1/ f

(
P1

i
)) (9)

The influence propagation angle of mining ω, the offsets of inflection points S3, S1,
the dip angle α, the azimuth angle of mining direction ϕN , and the geodetic coordinate
of the origin (X0, Y0) are less affected by q0, b0, tan β0. Therefore, these seven parameters
are used as known to invert the remaining parameters using the improved GA. In this
way, two iterations were carried out, and a crossover process was completed. When the
ratio of the difference between the mining depths obtained in two adjacent iterations to
the previous mining depth is less than the threshold, the geometric parameters of the
goaf are relatively stable. Thus, the cross-iteration is terminated. The specific process of
cross-iteration (see Figure 3) is as follows.

(1) First Iteration: Determine the empirical values of the three initial model parameters
q0, b0, tan β0 and invert the remaining unknown parameters ω1, S3

1, S1
1, m1, H1, α1, D3

1,
D1

1, ϕN
1, X0

1, Y0
1.

(2) Second Iteration: Treat ω1, S3
1, S1

1, α1, ϕN
1, X0

1, Y0
1 as known and update the remain-

ing parameters to q1, b1, tan β1, m2, H2, D3
2, D1

2.
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(3) Iteration Termination Judgment: When the condition
(

H2 − H1)/H1 ≤ 0.05 is satis-
fied, the iteration is terminated, and the target parameter value is m2, H2, α1, D3

2, D1
2,

ϕN
1, X0

1, Y0
1. If the termination condition is not satisfied, the parameter values

q1, b1, tan β1 obtained in the second iteration are used to repeat the two steps (1) and
(2) until it is satisfied

(
Hi+1 − Hi)/Hi ≤ 0.05.

Figure 3. Flowchart of cross-iteration processing.

2.2.3. Overall Processing

The proposed method in this paper is essentially based on the constructed function
model to perform a cross-iterative inversion to obtain the required parameters. Therefore,
we first had to build a function model. Prior to this, InSAR data processing was required
to obtain the cumulative LOS deformation within the target time range. Then, we linked
the modified PIM model shown in Section 2.1 with the cumulative LOS deformation
to construct the inversion model of the goaf parameters. Subsequently, the empirical
values of the initial model parameters were determined according to the mining geological
conditions of the study area. At this point, we had completed the preparatory work before
the cross-iteration processing. Finally, we performed the inversion of the goaf parameters
according to the cross-iteration steps shown in Section 2.2.2 and output the results. In this
way, we completed the goaf positioning process as shown in Figure 3.

3. Experiments
3.1. Simulated Experiment

A simulated experiment was carried out. At first, a ground displacement field was
simulated. We assumed that there was an underground goaf with a coal seam mining
height of 3 m, a boundary length of 600 m, a boundary width of 150 m, a dip angle of 12◦,
a mining direction angle of 100◦, and an average mining depth of 500 m. The overlying
rock of the assumed goaf was mainly medium sandstone and limestone. The large mining
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depth and the type of overlying rock determined the continuity of surface deformation.
Subsequently, we simulated the 3D displacements of the surface caused by the mining
of the goaf. Assuming that the incidence angle and heading angle of the SAR sensor
were 33.66◦ and −10.39◦, the 3D displacements were converted to the simulated LOS
deformation observations according to Equation (7). The spatial resolution of the simulated
LOS deformation is 5 m × 5 m. As can be seen in Figure 4, the LOS deformation basin
was approximately symmetrical, the largest deformation point was located in the center of
the basin, and the largest deformation value was 0.54 m. Moreover, the relative positional
relationship between the simulated goaf (the black polygon in Figure 4) and the LOS
deformation basin in the same plane conformed to the characteristics of mining subsidence.

Figure 4. The simulated LOS deformation. The black and purple polygons represent the simulated
goaf and the location result of the goaf, respectively.

3.2. Real Data Experiment
3.2.1. Study Area

Fengfeng coalfield is located in the southwest of Handan City, Hebei Province, China.
The fold that controls the overall morphology and structure of the mining area is the
Gushan–Zishan anticline; the Zishan anticline in the northern section has an axis of NNE
and the Gushan anticline in the southern section has an axis close to SN [35]. The Gushan–
Zishan anticline divides the mine into two parts, the eastern monoclinic and the western
syncline [36]. The coal-bearing strata of the Fengfeng mining area belong to the Permo-
Carboniferous, and they include six to seven mineable coal seams [37]. The Shanxi Forma-
tion of the Permian is mainly composed of siltstone, fine gray sandstone, and coal seams,
with one mineable coal seam [35]. The Taiyuan Formation of the Carboniferous is mainly
composed of gray to dark gray siltstone, sandstone, limestone, and coal seams, with five to
six mineable coal seams [35]. Long-term and large-scale coal mining has resulted in a large
number of abandoned underground goafs that have caused many related disasters [38].
Therefore, the accurate determination of these unknown old goafs can protect people’s
lives and property and allow sustainable development of the mining area. In this study, we
selected the surface subsidence area caused by mining the 132,610 working face (the white
polygon in Figure 5) as the study area. From the literature [28], the coal seam mining height
is 4.5 m, the boundary length is 319 m, the boundary width is 165 m, the dip angle is 31◦,
the mining direction angle is 169◦, and the average mining depth is 774 m.
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Figure 5. Location of study area (blue polygon) superimposed on the DEM and the coverage area of sentinel-1A image
(red polygon) superimposed on the provincial administrative division map. The white polygon represents the 132,610
working surface.

3.2.2. SAR Data Sets and InSAR Processing

Twenty C-band Sentinel-1A images covering the study area were selected to monitor
the surface deformation. The basic parameters of the Sentinel-1A data set were shown in
Table 1. These images were acquired from 17 June 2015 to 30 May 2016. However, the actual
goaf parameters represent the mining information from 15 June 2015 to 5 March 2016.
We chose the cumulative deformation from 17 June 2015 to 7 March 2016 as the InSAR
observation data to participate in the inversion of the goaf parameters. The acquisition
time interval was largely consistent; thus, we considered the actual goaf parameters to
still be applicable. The surface deformation caused by mining develops rapidly and has a
large magnitude. Therefore, we chose the two-connection network construction method to
reduce the impact of time decoherence. As shown in Figure 6, a total of 37 interferometric
pairs were selected.

Table 1. Basic parameters of the Sentinel-1A dataset.

Number Acquisition Date Absolute Orbit Path Incident Angle

1 17 June 2015 6412 40 33.7483
2 29 June 2015 6587 40 33.7494
3 11 July 2015 6762 40 33.7483
4 16 August 2015 7287 40 33.7487
5 28 August 2015 7462 40 33.7505
6 9 September 2015 7637 40 33.7506
7 21 September 2015 7812 40 33.7516
8 3 October 2015 7987 40 33.7514
9 15 October 2015 8162 40 33.7510
10 27 October 2015 8337 40 33.7512
11 20 November 2015 8687 40 33.7566
12 2 December 2015 8862 40 33.7566
13 14 December 2015 9037 40 33.7560
14 26 December 2015 9212 40 33.7534
15 7 January 2016 9387 40 33.7533
16 7 March 2016 10,262 40 33.7578
17 31 March 2016 10,612 40 33.7593
18 12 April 2016 10,787 40 33.7623
19 6 May 2016 11,137 40 33.7629
20 30 May 2016 11,487 40 33.7560
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Figure 6. Combination of interferometric pairs. The blue circles represent the SAR images, and the
black lines represent the interferometric pairs.

In order to obtain a reliable cumulative deformation caused by the mining of the
132,610 working face, we performed SBAS-InSAR processing [39]. GAMMA software was
used to process the selected interference pairs. First, we used a network-based method [40]
for image registration. Then, the DEM data of SRTM 1 arc second (30 m) were applied to
remove the topographic phases of the interferograms, and we performed a 5× 1 multi-look
operation on the range and azimuth directions to obtain rectangular pixels. Third, the adap-
tive filter based on the local fringe spectrum [41] was used to further suppress phase
noise in the interferograms and generate filtered coherence maps. Afterwards, we masked
the points with coherence less than 0.2 and used the minimum cost flow unwrapping
method [42] to calculate the ambiguity of the differential interferometric phases. Finally,
a polynomial model [43,44] was selected to eliminate the residual phase ramps caused by
the atmospheric or baseline modeling error in the differential interferograms. Subsequently,
we performed spatio-temporal filtering to remove atmospheric delay components. The cu-
mulative deformation sequence from 17 June 2015 to 7 March 2016 is shown in Figure 7.
Because the coal roof is composed of limestone and siltstone, and the mining depth is
large (an average of 774 m), continuous deformation of the surface was caused. This was
consistent with the time series deformation shown in Figure 7, which proved the accuracy
of the InSAR monitoring results from the side.
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Figure 7. Time series of cumulative deformation. The black polygon represents the 132,610 working surface.

4. Results
4.1. Simulated Experiment Results
4.1.1. Inversion of Goaf Parameters

Based on the simulation of ground displacement, the inversion of goaf parameters
was conducted. We first constructed the functional relationship between the simulated
LOS deformation and the geometric parameters of the goaf. Subsequently, the proposed
cross-iteration method was used to estimate the geometric parameters of the goaf. The im-
proved GA was used to retrieve unknown parameters in the cross-iteration processing.
More specifically, we repeated the GA for 100 times, with a population size of 100, cross frac-
tion of 0.95, and maximum generations of 500. After eliminating gross errors, the final
results were obtained by weighting the remaining solutions with the reciprocal of the
fitness. It was noteworthy that the empirical values of the subsidence factor q, the horizon-
tal displacement constant b, and the tangent of major influence angle tan β needed to be
determined in advance. Since the main lithology of the overlying rock in the simulated
goaf was medium-hard, the initial model parameters were obtained based on [45], i.e.,
q0 = 0.72, b0 = 0.23, tan β0 = 2.1. In the cross-iteration procedure, the value ranges of
the parameters were fixed. The value range of each parameter was determined by [45],
the common value range and the geometric characteristics of the LOS deformation basin.
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4.1.2. Accuracy Evaluation

To visually show the effect of the proposed method on the spatial positioning of
the goaf, the simulated underground goaf and the positioning result are depicted in a
three-dimensional space, as shown by the black and purple rectangles in Figure 8. It is easy
to see that the shapes of the two goafs are similar, but the average mining depth from the
inversion is greater than the simulated average mining depth. We projected the two goafs
onto a two-dimensional plane. It can be seen from Figure 4 that the gap between the two is
not obvious, and they roughly coincide with each other.

Figure 8. Comparisons between the simulated goaf and the positioning result. The black and purple rectangles represent
the simulated goaf and the location result of the goaf, respectively.

To quantitatively evaluate the inversion accuracy of the goaf, we calculated the ab-
solute error and relative error between the inverted and simulated geometric parameters
of the goaf (see Table 2). It can be seen that the maximum absolute error was −44.6 m,
and the minimum absolute error was 0.03◦. There was a significant difference between the
absolute error of each parameter. The main reason is that the magnitudes and dimensions
of the parameters were not exactly the same, making it difficult for the absolute error to
meet the overall requirements for accuracy evaluation. Since the relative error ignores the
unit, the accuracy of the parameters can be evaluated uniformly. Table 2 shows that the
relative error of goaf parameters was concentrated between 0.0% and 8.9%, and the average
relative error was 1.5%. This indicates that the inversion accuracy of the goaf parameters
was high, which further proves the reliability of the proposed method.

Table 2. Comparisons between the inverted and simulated geometric parameters of the goaf.

Parameters m α D3 D1 ϕN H X0 Y0

Simulated 3 m 12◦ 600 m 150 m 100◦ 500 m 3,916,776 m 520,899 m
Inverted 2.94 m 11.97◦ 596.9 m 149.8 m 100.4◦ 544.6 m 3,916,781 m 520,896 m

Absolute error −0.06 m −0.03◦ −3.1 m −0.2 m 0.4◦ 44.6 m −5 m 3 m
Relative error 2.0% 0.3% 0.5% 0.1% 0.4% 8.9% 0.0% 0.0%
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4.2. Real Data Experiment Results
4.2.1. Inversion of Goaf Parameters

According to Equation (8), the construction of the function model needed to determine
the local coordinates of the InSAR monitoring deformation. The ground resolution of the
geocoded deformation data was 14.324 m × 15.286 m. Therefore, we chose the latitude
and longitude of the center of the pixel as the geographic coordinates of the deformation
data and converted them to geodetic coordinates. Then, the geodetic coordinates were
converted to local coordinates by determining the origin geodetic coordinates and azimuth
angle of mining direction. In the cross-iteration process, the local coordinates of the
LOS deformation point changed with the iteration of the origin geodetic coordinates and
azimuth angle of mining direction.

In this experiment, we used the adaptive quadtree subsampling method to process de-
formation points. The calculated LOS deformation after adaptive quadtree subsampling is
shown in Figure 9. Before the cross-iteration, the empirical values of the three initial model
parameters were determined by [45], i.e., q0 = 0.6, b0 = 0.3, tan β0 = 1.95. According to
the subsampling LOS deformation data and the initial model parameters, the proposed
method was used to invert the geometric parameters of the underground goaf. We used
the improved GA to retrieve unknown parameters in the cross-iteration processing. In each
iteration, we repeated the GA for 100 times, with a population size of 100, cross fraction of
0.95, and maximum generations of 500. The results are shown in Table 3.

Figure 9. LOS deformation of the study area after subsampling.

Table 3. Comparisons between the inverted and measured geometric parameters of the 132,610 working face.

Parameters m α D3 D1 ϕN H

Measured 4.5 m 31◦ 319 m 165 m 169◦ 774 m
Inverted 4.98 m 32.71◦ 319.2 m 172.0 m 170.7◦ 844.3 m

Absolute error 0.48 m 1.71◦ 0.2 m 7.0 m 1.7◦ 70.3 m
Relative error 10.7% 5.5% 0.0% 4.2% 1.0% 9.1%

Relative error in Xia (2020) - 6.45% 7.21% 16.36% 3.55% 1.94%

4.2.2. Results and Accuracy Evaluation

We comprehensively analyze the reliability of the cross-iteration method from two
perspectives. First, we drew the underground goafs in Figure 10 based on the inverted
and actual geometric parameters of the goaf to qualitatively evaluate the positioning
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results. As is shown in Figure 10, the inverted goaf is not located in the center of the
surface subsidence basin but is biased towards the side of the largest sinking point. This is
consistent with the general rule of mining subsidence.

Figure 10. Comparison between the inversion of the goaf geometry and the actual goaf geometry.
The gray polygon is the actual goaf, and the light blue polygon is the inverted goaf.

Then, we respectively calculated the relative error and absolute error between the
inversion value and the measured value of the goaf parameters to quantitatively test the
effect of the cross-iteration method. Due to the lack of complete measured data, we did
not perform precision analysis on the geodetic coordinate of the origin X0 = 4,054,325 m,
Y0 = 514,206 m obtained from the inversion. In Table 3, the maximum relative error is 10.7%
of the coal seam mining height m. From the perspective of absolute error, the coal seam
mining height was only overestimated by about 0.48 m. In a comprehensive consideration,
the accuracy of the coal seam mining height was acceptable. The relative error of the
average mining depth was 9.1%, similar to the result of the simulation experiment. Further-
more, the difference between the inverted values and measured values of the remaining
goaf parameters was small. The average relative error of the six parameters of the goaf,
shown in Table 3, was 5.1%, which meets the actual requirements for the location of the
goaf. Then, we compared the goaf parameters obtained by the proposed method with
those obtained by Xia et al. [28] to further verify the reliability of the cross-iteration method.
It can be seen in Table 3 that the geometric parameters of the goaf, except for the average
mining depth, have a higher accuracy. The sources of the errors in the inverted geometric
parameters of the goaf are discussed in Section 4.3.
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4.3. Sensitivity Analysis of Parameters Estimation
4.3.1. Impact of the Cross-Iteration Method

The cross-iteration method uses iteration to improve the accuracy of parameter in-
version. Therefore, we first analyzed the impact of iteration on the results. We compared
the accuracy of iterative and non-iterative inversion results in real experiments. As shown
in Tables 3 and 4, the absolute and relative errors of the inversion parameters without
iteration have increased significantly. The average relative error of the six parameters of
the goaf increased from 5.1% to 15.5%. The inversion results show that cross-iteration can
improve the accuracy of the goaf parameters.

Table 4. Comparisons between the inverted and non-iterative geometric parameters of the 132610 working face.

Parameters m α D3 D1 ϕN H

Measured 4.5 m 31◦ 319 m 165 m 169◦ 774 m
Non-iterative 3.69 m 41.69◦ 353.8 m 182.7 m 174.7◦ 894.5 m
Absolute error −0.81 m 10.69◦ 34.8 m 17.7 m 5.7◦ 120.5 m
Relative error 18% 34.5% 10.9% 10.7% 3.4% 15.6%

Simulation experiments can independently verify the influence of each impact con-
dition on the results. Hence, simulation experiments can be designed to better test the
performance of the cross-iteration method. We choose the simulated goaf described in
Section 3.1, and assumed the PIM model parameters, i.e., q = 0.6, b = 0.3, tan β = 2.0,
ω = 82.2, S3 = 30, S1 = 30. Subsequently, we predicted the surface LOS deformation
by Equation (8). We constructed the functional relationship between the predicted LOS
deformation and the PIM model and used the initial model parameters to invert the ge-
ometric parameters of the underground goaf. The results obtained by the cross-iteration
method are listed in Table 5. In order to verify the impact of the cross-iteration method,
we calculated the relative error and absolute error of each geometric parameter of the goaf.

Table 5. Comparison between the inversion results without errors and with random errors in deformation.

Deformation Parameters m α D3 D1 ϕN H X0 Y0

Error-free
Inverted 3.13 m 12.45◦ 600.4 m 140.7 m 99.9◦ 543.2 m 3,916,778 m 520,901 m

Absolute error 0.13 m 0.45◦ 0.4 m −8.3 m −0.1◦ 43.2 m 2 m 2 m
Relative error 4.3% 3.8% 0.1% 5.5% 0.1% 8.6% 0.0% 0.0%

Random errors
Inverted 3.35 m 13.05◦ 591.1 m 144.1 m 100.1◦ 543.8 m 3,916,778 m 520,904 m

Absolute error 0.35 m 1.05◦ −8.9 m −5.9 m 0.1◦ 43.8 m 2 m 5 m
Relative error 11.7% 8.8% 1.5% 3.9% 0.1% 8.8% 0.0% 0.0%

The accuracy of this experiment can be evaluated according to the magnitude and
error of the goaf parameters. As shown in Table 5, when there is no error in the LOS
deformation, the absolute error and the relative error are both concentrated on the average
mining depth H. The larger error proves that the proposed cross-iteration method had
the greatest impact on the average mining depth H. Although the accuracy of the average
mining depth H was lower than the other goaf parameters, the relative error of H within
10% can meet the requirements of goaf positioning. The remaining geometric parameters
of the goaf were roughly in agreement with the simulated values. In addition, the average
relative error of the geometric parameters of the goaf was 3%. Therefore, the cross-iteration
method obtained the goaf parameters with high overall accuracy, which meets actual
engineering needs.

4.3.2. Influence of Deformation Error

InSAR technology solves the displacement vector of the ground object in the LOS
direction by separating the interferometric phase [46]. Although we performed the opera-
tions as described in Section 3.2.2, the unwrapped deformation phase still contained terrain
residuals, orbital errors, unwrapping errors, atmospheric effects, and noise. We tested
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the influence of LOS deformation error on the positioning results of the goaf through a
simulation experiment. We used the predicted LOS deformation described in Section 4.3.1.
In order to approximate the actual solution, we added −5 cm to 5 cm random errors to
the predicted LOS deformation. Furthermore, we used the precise values of the three
initial model parameters to participate in the cross-iteration so that the impact of LOS
deformation errors on the positioning results could be effectively evaluated. Afterwards,
a cross-iteration experiment was carried out on the LOS deformation with random errors.
The inversion results and relative errors of goaf parameters are shown in Table 5. Table 5
shows the accuracy of the coal seam mining height m and dip angle α obtained by the
predicted LOS deformation with a decrease in random errors. The absolute error of the two
parameters changed from 0.13 to 0.35 and from 0.45 to 1.05, respectively. As the magnitude
of the two parameters is small, the absolute error did not clearly change. The relative error
of the two parameters changed significantly, increasing by 7.4% and 5%, respectively. More-
over, the accuracy of the remaining goaf parameters was not distinctly affected by the LOS
deformation error. In particular, the average mining depth H, which was greatly affected
by the cross-iteration method, was not obviously affected by the LOS deformation error.
The relative error range of the inverted goaf parameters based on LOS deformation with
random errors was 0% to 11.7%, and the average relative error was 4.4%, while the relative
error range of the inverted goaf parameters based on error-free LOS deformation was 0%
to 8.6%, and the average relative error was 3.0%. The mean relative error and relative error
range of the goaf parameters obtained by error-free LOS deformation were both smaller
than the former. This shows that the reliability of the goaf parameters was negatively
affected by the accuracy of the InSAR-derived deformation. Therefore, using accurate
surface LOS deformation can improve the inversion accuracy of the cross-iteration method.

4.3.3. Effect of the Initial Model Parameter Error of the PIM

For goafs that are unknown or lack actual measurement data, the proposed method
determines the empirical values of the initial model parameters of the PIM through geolog-
ical mining conditions, which inevitably contains certain errors. In this section, simulation
experiments were conducted to test the influence of model parameter error distribution
on the inversion accuracy of goaf parameters. First, we chose the predicted error-free LOS
deformation as in Section 4.3.1. Afterwards, we sequentially added -50% to 50% error
with an interval of 10% to the three initial model parameters. The detailed method is to
select one of the initial model parameters to add −10% to −50% and 10% to 50% error,
and the other two parameters do not have an added error. By selecting different initial
model parameters that required the addition of errors, a total of 30 sets of parameters
can be obtained. Finally, we used the predicted LOS deformation and each set of initial
model parameters to perform cross-iteration to invert the geometric parameters of the goaf.
The experimental results are shown in Figure 11.

It can be seen from Figure 11 that the accuracy of the initial model parameters of the
PIM had no significant effect on the results of the cross-iteration processing. When the error
contained in the subsidence factor q and tangent of major influence angle tan β increased,
the boundary length D3, boundary width D1, azimuth angle of mining direction ϕN ,
and geodetic coordinate of the origin (X0, Y0) were largely consistent with the simulated
values (red line in Figure 11). When the error contained in the horizontal displacement
constant b increased, the boundary length D3, boundary width D1, and origin abscissa of
the local plane coordinate system X0 had no obvious change. However, the accuracy of dip
angle α, the origin ordinate of the local plane coordinate system Y0, and the azimuth angle
of mining direction ϕN had a slight downward trend, but there was no significant difference
between these two parameters and the simulated values. The calculated average mining
depths H were similar to the results in Section 4.3.1. Therefore, we believe that the accuracy
of the average mining depth H was not greatly affected by the initial model parameters.
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Figure 11. Goaf parameters retrieved when the initial model parameters of the PIM include errors. The yellow, green,
and blue lines are the results of linear fitting; the red line indicates the simulated goaf parameters.

Afterwards, we calculated the average relative error of the goaf parameters, except the
geodetic coordinate of the origin (X0, Y0), when different initial model parameters included
errors. As shown in Figure 12, the maximum average relative errors of the coal seam mining
height m and dip angle α were 8.4% and 8.9%, respectively. We found that the horizontal
displacement constant b had a greater impact on the coal seam mining height m than other
initial model parameters, and the subsidence factor q and tangent of major influence angle
tan β had a greater impact on the dip angle α than the horizontal displacement constant
b. Furthermore, we considered the absolute error to more fully analyze the impact of
the initial model parameters. When the average relative error was equal to 10%, the coal
seam mining height m and dip angle α changed by 0.3 m and 1.2◦, respectively. This was
sufficient to prove that the relative error of less than 10% did not have much influence on the
inversion values of the coal seam mining height m and dip angle α. In addition, the initial
model parameters, including errors, had little effect on the geometric parameters of the
goaf except for the coal seam mining height m and dip angle α (see Figures 11 and 12).
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Figure 12. Calculated average relative error of the goaf parameters except origin coordinates of the local plane coordi-
nate system.

5. Discussion
5.1. Impact of the Tangent of the Main Influence Angle on the Average Mining Depth

We analyzed the reasons for the large average mining depth error from the principle of
the PIM model. Equations (3) and (5) show that the average mining depth H was only used
to calculate the main influence radius in strike direction r, i.e., r = H/ tan β. Furthermore,
we found that the tangent of the major influence angle tan β was overestimated in the
cross-iteration processing. If the main influence radius in strike direction r is regarded as a
constant, the tangent of the major influence angle tan β has a positive correlation with the
average mining depth H. Based on the simulated experiment described in Section 4.3.1,
we calculated the ratio of H to tan β in each iteration. The ratios were 251.7, 252.8, and 250.2,
respectively. This shows that the ratio of the average mining depth H to the tangent of
major influence angle tan β was close to the true value 250, so the assumption that r is
a constant was established. Moreover, the magnitude of the two parameters was quite
different; a slight fluctuation of the tangent of the major influence angle tan β will cause a
large change in the average mining depth H. Therefore, the main reason that the average
mining depth H was overestimated is that the tangent of the major influence angle tan β
was overestimated. Solving this problem will be the subject of our future research.

5.2. Influence of Subcritical Mining

The ratio of goaf size to mining depth determines the mining degree. When D3/H,
D1/H < 1.2 ∼ 1.4, the mining degree is subcritical, and when D3/H, D1/H ≥ 1.2 ∼ 1.4,
the mining degree is critical or supercritical, where D3 and D1 are the true boundary length
and width of the goaf and H is the average mining depth. The ratio of the true boundary
length and width of the goaf to the average mining depth in the real experiment is 0.4
and 0.2, respectively. This shows that the mining degree of the 132610 working face is
subcritical in the strike and dip directions. The PIM model generally overestimates the
3D surface deformation induced by subcritical mining, because the subsidence factor q for
subcritical mining is smaller than the subsidence factor under the critical or supercritical
mining. As analyzed in Section 4.3.3, the increase of the subsidence factor has no obvious
effect on the geometric parameters of the goaf. Therefore, subcritical mining is probably not
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the main factor affecting the accuracy of goaf parameters. The results of the real experiment
roughly conform to this point of view.

6. Conclusions

This paper proposes a cross-iteration method to determine the spatial location of the
underground goaf. The proposed method reduces the required PIM model parameters to
three and does not significantly depend on their accuracy. We verified the reliability of the
proposed method through experiments. The average relative errors between the geometric
parameters of the goaf inverted by the simulation experiment and the real experiment and
the real value were 1.5% and 5.1%, respectively.

Analyzing the influence of various factors on the inverted goaf parameters, it was
found that the cross-iteration method was the main reason for the overestimation of the
average mining depth, but the overestimated value generally did not exceed 10% of the true
value. The deformation error monitored by InSAR caused a negative impact on the goaf
positioning results, thus ensuring that the accuracy of the InSAR monitoring can improve
the accuracy of the goaf positioning. Furthermore, the main reason for the overestimation
of mining thickness and coal seam dip in real experiments and simulation experiments
may be that the LOS deformation and initial model parameters contained errors, but the
overestimated values were not significant. However, there was no obvious linear correlation
between the magnitude of the error included in the initial PIM model parameters and the
accuracy of the geometric parameters of the goaf. In addition, we should also consider
the inapplicability of the PIM model in subcritical mining, which may also be one of the
reasons that affect the positioning accuracy of the goaf. Therefore, the improvement of the
cross-iteration method and the consideration of the impact of subcritical mining will be the
main directions of our future research.
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