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Abstract: Rice false smut (RFS), caused by Ustilaginoidea virens, is a significant grain disease in rice
that can lead to reduced yield and quality. In order to obtain spatiotemporal change information,
multitemporal hyperspectral UAV data were used in this study to determine the sensitive wavebands
for RFS identification, 665–685 and 705–880 nm. Then, two methods were used for the extraction of
rice false smut-infected areas, one based on spectral similarity analysis and one based on spectral
and temporal characteristics. The final overall accuracy of the two methods was 74.23 and 85.19%,
respectively, showing that the second method had better prediction accuracy. In addition, the
classification results of the two methods show that the areas of rice false smut infection had an
expanding trend over time, which is consistent with the natural development law of rice false smut,
and also shows the scientific nature of the two methods.

Keywords: UAV; hyperspectral data; rice; rice false smut

1. Introduction

Pests and disease are the main causes of yield loss and reduced grain quality in
global agriculture production. In addition to economic losses, pests and diseases can also
endanger global food security [1,2]. Pesticide application following the onset of infestation
is an effective method of pest control; however, the timing of pesticide application is
very important and can directly impact the outcome. In addition, abuse of pesticides
will increase the economic cost for farmers and cause environmental pollution (such as
water and soil pollution) [1,3]. Therefore, an automated and nondestructive approach to
monitoring crop pests is urgently needed to support sustainable agricultural production
by reducing the application of pesticides and chemical fertilizers [4].

The development of remote sensing technology brings a promising solution for pest
and disease monitoring that is favored by more researchers and farming communities [5–8].
Researchers used unmanned aerial vehicle (UAV) RGB images combined with machine
learning algorithms to identify yellow sigatoka in banana and achieved satisfactory ac-
curacy [9]. In addition to UAV RGB images, UAV multispectral images are also widely
used in pest and disease monitoring. Several studies on the use of UAV multispectral
remote sensing for spatiotemporal monitoring of wheat yellow rust achieved excellent
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accuracy [1,10]. In addition to UAV RGB images and multispectral remote sensing data,
hyperspectral remote sensing technology is also an effective means of monitoring crop
diseases and pests. Based on hyperspectral data, scholars have done a lot of research and
achieved encouraging results [11–14]. However, in studies that monitor crop diseases
and pests based on hyperspectral data, the data are mostly collected by field spectrora-
diometers, and UAV hyperspectral imagery is rare, which makes it difficult to obtain the
spatial distribution of crop diseases and pests over large areas. Furthermore, it is difficult
to evaluate the potential of using UAV hyperspectral remote sensing data in the monitoring
of crop diseases and pests.

In addition, the crops in previous studies have usually been inoculated with diseases
or insect inoculum, which can make the degree of infection relatively uniform. However,
in natural settings, crop diseases and pests usually originate from one place and then
spread to other areas. Among the existing methods for monitoring crop diseases and insect
pests, spectral indices and spectral reflectance combined with threshold segmentation [11]
or machine learning technology, especially random forest (RF) [1,10,12], convolutional
neural network (CNN) [13], maximum likelihood classifier (MLC) [15], and support vector
machine (SVM) [14], are gaining popularity. In summary, spectral indices are commonly
used to monitor crop diseases and pests, and machine learning is a popular technology in
such monitoring.

There have been various studies on pests and diseases covering a wide range of crops,
such as wheat yellow rust [1,10], fusarium head blight in wheat [16], Pyricularia grisea Sacc,
Bipolaris oryzae Shoem, Aphelenchoides besseyi Christie, and Cnaphalocrocis medinalis Guen
in rice [17], phaeosphaeria and leaf spot infestation in maize [12], Huang Long Bing in
citrus [18], and yellow leaf curl disease in tomato [11]. However, studies on the use of
remote sensing technology to monitor rice false smut have been limited [19]. In recent
years, rice false smut, caused by Ustilaginoidea virens, has become one of the most severe
diseases worldwide [20–24]. Especially in China, Japan, India, and the USA, rice false
smut has been reported as a devastating disease [19,21]. The few studies on monitoring
this disease by remote sensing technology [19,25] mainly relied on in situ hyperspectral
data, which makes it difficult to obtain continuous spatial distribution information. The
development of UAV hyperspectral technology would make it possible to monitor rice
false smut in time and space.

In summary, there are some research issues and operational gaps in monitoring rice
false smut. Primarily, there is little or no research on UAV remote sensing technology, which
not only makes it difficult to obtain spatiotemporal distribution information but also means
that monitoring methods based on UAV imagery have not been developed. Therefore,
this study was designed to achieve two objectives: (1) explore the potential of using UAV
hyperspectral remote sensing data to extract areas of rice false smut infection, and (2)
investigate and compare the performance of two methods, based on spectral similarity
analysis and on spectral and temporal features.

2. Materials and Methods
2.1. Experimental Design and UAV Flight Campaigns

Field experiments were conducted at the Modern Agricultural Science and Technology
Innovation Demonstration Park of Sichuan Academy of Agricultural Sciences, Chengdu,
Sichuan, China. In the experimental field, the planting density of rice is 26.67 cm× 20.00 cm.
All rice received the same irrigation and field management. In this study, the rice cultivar for
extracting areas of rice false smut infection was You Liang You 2152.

The hyperspectral imaging sensor (Nano-Hyperspec®, Headwall, Bolton, MA, USA),
some technical properties of which are listed in Table 1, integrated with three groups of
GNSS/IMU inertial navigation systems and combined with one PAN/TILT (Ronin-MX, SZ
DJI Technology Co., Ltd., Shenzhen, China), was mounted on a UAV (Matric 600 Pro, SZ
DJI Technology Co., Ltd., Shenzhen, China) to capture the hyperspectral information of rice
from 10:00–14:00 during the growing season (from milk ripening to yellow maturity stage).
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The UAV imaging system is shown in Figure 1. Table 2 shows some information about the
four UAV field campaigns. In all four campaigns, the flight altitude was 100 m above the
ground and the spatial resolution of the UAV hyperspectral imagery was about 9.2 cm. The
flight speed depends on the exposure time of the imaging sensor (see Equation (1)), and
the exposure time depends on the intensity of sunlight at the time of imaging. The process
of setting the exposure time is as follows: First, the hyperspectral imaging sensor is opened
and the lens of the sensor is aligned with the calibration tarp. Then, the exposure time is
adjusted until the DN value of the sensor is around 70% of the sensor’s measurable range,
so as to avoid overexposure.

Table 1. Sensor configurations of the Nano-Hyperspec®.

Technical Property Value

Wavelength range 400–1000 nm
Spectral bands 270

Dispersion/pixels 2.2 nm/pixel
Spatial bands 640

Figure 1. UAV imaging system.

Table 2. Specifications of four UAV campaigns in this study.

Date Speed Altitude

14 August 2020 5.8 m/s 100 m
20 August 2020 6.8 m/s 100 m
25 August 2020 6.2 m/s 100 m

2 September 2020 6.0 m/s 100 m

v× t =
FOV × h

n
(1)

here, v is the flight speed of the UAV imaging system, t is the exposure time, FOV is the
field of view, h is the flight altitude, and n is the number of pixels per row.

Before each fight, a calibration tarp with an average reflectance of 32% was placed
on the ground within the flight path for radiometric calibration. The hyperspectral im-
agery acquired by the UAV was preprocessed, which includes radiometric calibration and
geometric correction. Spectral smoothing was also performed using the Savitzky–Golay
(S–G) [26] filter to remove high-frequency noise. In this study, the order and window size
of the S–G filter were 2 and 5, respectively. Figure 2 shows the effects of the S–G filter.
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Figure 2. Comparison of crop spectra before and after S–G filtering.

2.2. Field Investigation

In this study, healthy and infected areas were identified by visual interpretation; rice
was infected with rice false smut derived from natural settings, and no false inoculum
was introduced. The acquisition date of the infected area was 14 August 2020 (one area
was infected on that date, which indicates it was also infected after that date), that is,
we collected the shape file of the infected area on 14 August 2020, and at the same time,
obtained the shape files on the other three dates. The acquisition date of the healthy
area was 2 September 2020 (one area was healthy on that date, which indicates it was
also healthy before that date), that is, we collected the shape file of the healthy area on
2 September 2020, and at the same time, obtained the shape files on the other three dates.
Figure 3 shows the results of the field investigation, which includes healthy and infected
areas. In the figure, healthy areas are marked in green and infected areas in red. The center
coordinates of the experimental field are Lat: 30◦47′13′′, Lon: 104◦12′16′′.

Figure 3. UAV image showing samples of healthy and infected areas.

The chlorophyll content (often represented by the soil–plant analysis development
(SPAD) value [27]) of rice was collected. In this study, a SPAD meter (SPAD-502 Plus,
Konica Minolta Sensing Inc., Osaka, Japan) was used to collect measurements of the
light absorption of the leaves at two wavelengths, 650 and 940 nm, in order to obtain
SPAD values. Six leaves from the top layer of each sample were selected. For each leaf,
two SPAD values were obtained; the SPAD value of one sample is the average of 12
measurements [27,28].

2.3. Spectral Analysis of Rice False Smut

In this section, the analysis of the sensitivity of each spectral band to rice false smut
and the identifications of the ranges of sensitive wavelengths are presented.

When a crop is infected by disease, its structure, moisture, morphology, and pigment
will change. Subsequently, the spectral response curve of the crop will also change [4,29–31].
It is worth noting that because the spectral changes caused by crop disease may be small, if
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the system error of the data collected by the hyperspectral sensor is large (the signal-to-
noise ratio is low) in a certain wavelength range, the system error will overshadow the
spectral changes caused by the crop disease. Therefore, it is necessary to eliminate some
bands with a low signal-to-noise ratio (SNR) before selecting the sensitive bands.

The SNR of remote sensing images can be obtained by a variance method [32], that is,
the ratio between the mean value of pixels and the standard deviation of homogeneous
areas in the image (the calibration tarp selected in this study); the calculation formula is
shown in Equation (2). Figure 4 shows the SNR of hyperspectral remote sensing images
covering the range of 400–1000 nm. It can be seen from the figure that the SNRs of the
hyperspectral images at 400–410 and 880–1000 nm are relatively low (SNR < 40), so the
reflectance values at 400–410 nm and 880–1000 nm are not included in the subsequent
analysis of bands sensitive to rice false smut.

SNR =

1
N

N
∑

i=1
DNi√

1
(N−1)

N
∑

i−1
(DNi −DN)

2
(2)

where DNi is the value of the ith pixel in the homogeneous surface area, N is the total
number of pixels in the homogeneous surface area, and DN is the mean of all pixel values.

Figure 4. Signal-to-noise ratio of UAV hyperspectral remote sensing data covering calibration tarp.

In this study, the difference between the mean reflectance of healthy rice and the
mean reflectance of diseased rice (D-MRH&MRD), defined by Equation (3), was used to
measure the sensitivity of each waveband. The higher the D-MRH&MRD, the stronger the
sensitivity of the band to rice false smut.

D−MRH&MRDa = Rhealthy,a − Rdiseased,a (3)

Here, D−MRH&MRDa is the difference between the mean spectral reflectance of
healthy and infected rice at wavelength a, and Rhealthy,a and Rdiseased,a represent the mean
reflectance values of healthy and diseased rice, respectively, at wavelength a.

However, at different wavelengths, the value and range of spectral reflectance of rice
are very different, so it is unreasonable to directly compare the D-MRH&MRD at different
wavelengths to measure the sensitivity of bands. In order to ensure consistency at different
wavelengths, maximum and minimum normalization was applied to each band before
calculating the D-MRH&MRD by using Equation (4):

rnew =
rold − rmin

rmax − rmin
, (4)

where rold and rnew are the reflectance values before and after normalization, respectively, and
rmin and rmax are the minimum and maximum reflectance values at one wavelength, respectively.

Figure 5 shows the D-MRH&MRD and the sum of |D-MRH&MRD| (labeled as Sum-
|D-MRH&MRD|) at each band for the four dates. It can be seen from the figure that the
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values of |D-MRH&MRD| in the near-infrared and red-edge bands are much higher than
in the other bands, which proves that these two bands are more sensitive to RFS. A positive
value of D-MRH&MRD indicates that the reflectance of the infrared region will decrease
when rice is infected with false smut, but there is also a peak at the red band of visible
light, which indicates that this band is useful for extracting information on rice false smut
occurrence to a certain extent. A negative value of D-MRH&MRD indicates that when rice
is infected with false smut, the reflectance in the red band region will increase.

Figure 5. (a) D-MRH&MRD and (b) sum of |D-MRH&MRD| at each band for the four dates.

According to the sum of |D-MRH&MRD| of the four dates and the above analysis,
the bands with a sum greater than 0.15 (665–685 and 705–880 nm) were selected as the
sensitivity bands of rice false smut.

2.4. Extraction of Areas of Rice False Smut Infection Based on Spectral Similarity Analysis

In this section, we introduce the detailed building process of extracting areas of rice
false smut infection by using the similarities between the spectra.

According to Section 2.3, the spectrum of rice infected with false smut is different
from that of healthy rice in both the red and infrared bands (665–685 and 705–880 nm).
Therefore, areas of rice false smut infection can be extracted by calculating the similarities
(this experiment uses the correlation coefficient, R) between the spectra of pixels with
unknown infection status and healthy rice pixels; high similarity indicates healthy rice and
low similarity indicates infected rice. Naturally, the focus of this experiment was to find
the threshold of similarity to be used as the segmentation benchmark.

Rice growth is a complex physiological process with specific morphology and structure
during each growth period. Therefore, if a threshold is used to extract areas of RFS infection
on multiple dates, the applicability of the threshold may be greatly weakened. Thus, in this
experiment, different thresholds were used to extract the areas of rice false smut occurrence
on different dates. In the following steps, taking the data from 14 August 2020 as an
example, the process of selecting the threshold for the occurrence of rice false smut, that is,
the construction process of the extraction model for areas of rice false smut occurrence based
on spectral similarity analysis (Figure 6 gives the workflow of the proposed methodology)
is described in detail:

• Step 1: According to Section 2.3, 665–685 and 705–880 nm (labeled as
Spectral665–685+Spectral705–880, or S665–685+S705–880) were chosen as the sensitive
spectral ranges of rice false smut.

• Step 2: From the spectral data of healthy rice, 50 pieces of data were randomly selected
and S665–685+S705–880 were extracted to construct the standard spectral database of
healthy rice (labeled as Database-Healthystandard).

• Step 3: S665–685+S705–880 of the remaining spectral data of healthy rice (Database-
Healthy) and of spectral data of rice false smut (Database-Unhealthy) were extracted.
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• Step 4: The similarity (correlation coefficient, R) between the spectral data in Database-
Healthy + Database-Unhealthy and Database-Healthystandard, that is, the mean value
of similarity of Ri in relation to R, was calculated by Equations (5) and (6):

R =
1
N

N

∑
i

Ri (5)

Ri =

n
∑
j
(ref std,i,j − refstd,i)(ref j − ref

)
√

n
∑
i=i

(ref std,i,j − refstd,i

)2
√

n
∑
i=i

(ref j − ref
)2

(6)

where Ri is the Pearson correlation coefficient between one piece of spectral data
in Database-Healthy or Database-Unhealthy and the ith piece of spectral data in
Database-Healthystandard; N is the amount of data in Database-Healthystandard (N = 50
in this experiment); n is the number of bands in S665–685+S705–880; refstd,i,j is the jth
reflectance value of the ith piece of spectral data in Database-Healthystandard; refstd,i is
the mean value of the ith piece of spectral data in Database-Healthystandard; refj is the
jth reflectance value of one piece of spectral data in Database-Healthy or Database-
Unhealthy; and ref is the mean value of one piece of spectral data in Database-Healthy
or Database-Unhealthy.

• Step 5: The similarity (R) between each S665–685+S705–880 in Database-Healthy + Database-
Unhealthy and Database-Healthystandard was obtained, then Database-R was obtained.
Next, the maximum and minimum values of Database-R were obtained, which are
labeled Rmax and Rmin, respectively.

• Step 6: One one-hundredth of the difference between Rmax and Rmin was taken as the
step size, and then, based on Database-Healthy, Database-Unhealthy, and Database-R,
Thresholdi of Equation (7) was taken as the threshold value to predict RFS occurrence
or not, i.e., if Rk (k = 1, 2, 3, . . . , M+N−50) in Database-R is greater than Thresholdi,
the pixel corresponding to the S665–685+S705–880 corresponding to Rk was predicted
to be healthy, otherwise it was predicted to be infected. Finally, the corresponding
accuracy of each Thresholdi was calculated:

Thresholdi= Rmin+Step× i, i = 1, 2, 3, . . . , 99, 100 (7)

• Step 7: When the overall accuracy was the highest, the corresponding threshold was
the final threshold to determine whether rice was infected by rice false smut or not.

• Step 8: Steps 2 to 7 were applied to the spectral data from other dates, and then the
corresponding thresholds of those dates were obtained.
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Figure 6. Workflow of proposed method.
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2.5. Extraction of Areas of Rice False Smut Infection Based on Spectral and Temporal Features

In this section, we introduce the detailed building process of extracting areas of rice
false smut infection by using spectral and temporal features, including feature selection
and model building.

As described in Section 2.3, 665–685 and 705–880 nm are the sensitive spectral regions
of RFS. To reduce data redundancy, the correlation coefficient between every two bands was
calculated (see Figure 7). During this process, all samples, including healthy and infected
spectral data, were used. It can be seen from the figure that there is a strong correlation
between 705–880 and 665–685 nm, suggesting that there is a lot of data redundancy in this
wavelength range, which is consistent with previous studies [28,33]. Finally, 680 nm, within
the wavelength range of 665–685 nm (because the Sum-|D-MRH&MRD| of 680 nm is the
maximum within that range; see Figure 5), and 755 nm, within the range of 705–880 nm
(because the Sum-|D-MRH&MRD| of 755 nm is the maximum within that range; see
Figure 5), were selected as the sensitive wavelengths to extract areas of RFS infection.

Figure 7. Correlation coefficient between every two wavebands.

Figures 8 and 9 show the reflectance of healthy and infected rice at 755 and 680 nm.
It can be seen from Figure 8 that at all growth stages, the statistics of the reflectance of
healthy rice at 755 nm (mean and median) are higher than that of infected rice. This further
proves that rice infected with false smut will have reduced reflectance in the near-infrared
region. It can be seen from Figure 9 that regardless of the growth stage, the statistics of the
reflectance of healthy rice (mean and median) are lower than that of rice infected with false
smut at 680 nm, which proves that rice infected with false smut will increase reflectance in
the red band.

According to Figures 8 and 9, whether the rice is infected with rice false smut or not, the
reflectance at 755 nm will decrease and the reflectance at 680 nm will increase slightly over
time. Therefore, time is also an important factor in monitoring rice false smut occurrence.

To sum up, three features were extracted for monitoring the occurrence of rice false
smut in this experiment: the reflectance at 755 nm and 680 nm (ref755 and ref680, respec-
tively) and the date.

In this study, the dataset was randomly divided into a training set and a test set
with a ratio of 70 and 30%. Then, based on the three features extracted, a random forest
algorithm [34] was used to build a monitoring model of rice false smut.
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Figure 8. Box diagram of reflectance values of infected and healthy rice at 755 nm on different dates.

Figure 9. Box diagram of reflectance values of infected and healthy rice at 680 nm on different dates.

Random forest is an ensemble learning method that combines Breiman’s idea of
“bagging” and the random selection of features [34,35]. A random forest model was
built according to the following steps. First, based on the training dataset, the bootstrap
aggregation algorithm was used to generate homogeneous subsets. Then, each sub-decision
tree was grown to its maximum depth by selecting random samples and variables from
the calibration dataset, and the growth process of the sub-decision tree can be executed in
parallel. Finally, the random forest model was generated by integrating all sub-decision
trees [35,36]. When building a random forest model, it is necessary to determine two
parameters, the number of decision trees (n_estimators) in the bagging framework and
the number of variables (max_features) in the decision tree framework [36]. In this paper,
n_estimators (range of 10–300, step size of 10) of the random forest had an optimal value
of 220 through a grid search and cross-validation [28], and the max_features was set as 3,
equal to the number of features [37].

2.6. Estimating Rice SPAD based on RCRWa-b

In a previous study, we proposed the parameter rate of change in reflectance between
wavelengths a and b (RCRWa-b) to estimate the chlorophyll content of rice [28]. In this study,
four RCRWa-b parameters (RCRW532–550, RCRW665–674, RCRW691–698, and RCRW738–747)
were determined by the same method. Based on the four selected RCRWa-b, combined
with the gradient boosting regression tree (GBRT) algorithm [38,39], we obtained the
spatiotemporal distribution of SPAD values in Plot 1 and Plot 2.
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GBRT is a machine learning technique that can solve regression problems [38]. The
core idea of GBRT is that each calculation is completed by a basic model, and the subsequent
calculation is done to reduce the residual of the previous model and create a new basic
model with the reduced residual in the gradient direction. By adjusting the weight of the
weak prediction model, the final strong prediction model can be obtained [38,39]. The con-
tributions of decision trees (learning_rate), the number of sub-decision trees (n_estimators),
and the maximum depth of each decision tree (max_depth) are the important parameters
in GBRT [28]. In this study, through grid search and cross-validation, n_estimators and
learning_rate had optimal values of 600 and 0.01, respectively, and the other parameters
reference our previous study [28].

3. Results

In this study, two methods were used to extract areas of rice false smut infection, one
based on spectral similarity analysis (Method-SSA) and one based on spectral and temporal
features (Method-STF).

3.1. Results of Method-SSA

According to Method-SSA, four thresholds used to extract areas of rice false smut
infections on different dates were determined. The overall accuracy of Method-SSA is
74.23% (see confusion matrix in Table 3). Tables 4–7 show the results (confusion matrix) of
these four thresholds in extracting areas of rice false smut occurrence, with accuracies of
77.41, 74.70, 71.52, and 73.21% for the four dates. In general, the classification accuracy of
Method-SSA in different rice growth seasons is stable.

Table 3. Results (confusion matrix) of Method-SSA.

Predicted

Healthy Infected Total Producer’s
Accuracy (%)

Measured
Healthy 361 205 566 63.78
Infected 137 624 761 82.00

Total 498 829 1327
User’s accuracy (%) 72.49 75.27
Overall accuracy (%) 74.23

Table 4. Results of Method-SSA on 14 August 2020.

Predicted

Healthy Infected Total Producer’s
Accuracy (%)

Measured
Healthy 101 41 142 71.13
Infected 34 156 190 82.11

Total 135 197 332
User’s accuracy (%) 74.81 79.19
Overall accuracy (%) 77.41

In order to obtain the spatial and temporal distribution information of rice false smut,
the threshold of each date was applied to the corresponding date of UAV hyperspectral
imagery pixel by pixel. Figures 10 and 11 show the spatial and temporal distribution
information of rice false smut in Plot 1 and Plot 2, respectively. According to these figures,
qualitatively, the spatial distribution of rice false smut in the two plots was relatively small
on 14 August 2020 compared to the other dates, and the occurrence area gradually became
denser over time. In addition, the occurrence area of rice false smut gradually expanded
over time, which was consistent with the natural development law of rice false smut.
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Table 5. Results of Method-SSA on 20 August 2020.

Predicted

Healthy Infected Total Producer’s
Accuracy (%)

Measured
Healthy 84 56 140 60.00
Infected 29 167 196 85.20

Total 113 223 336
User’s accuracy (%) 74.34 74.89
Overall accuracy (%) 74.70

Table 6. Results of Method-SSA on 25 August 2020.

Predicted

Healthy Infected Total Producer’s
Accuracy (%)

Measured
Healthy 85 59 144 59.02
Infected 33 146 179 81.56

Total 118 205 323
User’s accuracy (%) 72.03 71.22
Overall accuracy (%) 71.52

Table 7. Results of Method-SSA on 2 September 2020.

Predicted

Healthy Infected Total Producer’s
Accuracy (%)

Measured
Healthy 91 49 140 65.00
Infected 41 155 196 79.08

Total 132 204 336
User’s accuracy (%) 68.94 75.98
Overall accuracy (%) 73.21

Figure 10. Spatiotemporal distribution of occurrence information of rice false smut in Plot 1:
(a) 14 August 2020; (b) 20 August 2020; (c) 25 August 2020; (d) 6 September 2020.
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Figure 11. Spatiotemporal distribution of occurrence information of rice false smut in Plot 2:
(a) 14 August 2020; (b) 20 August 2020; (c) 25 August 2020; (d) 6 September 2020.

3.2. Results of Method-STF

Table 8 shows the confusion matrix of Method-STF. It can be seen that the overall
accuracy of the method is 85.19%. The user accuracy of the healthy area predicted by
Method-STF is slightly lower than that of the infected area, but the difference between
them is small, 84.81 and 85.59%, respectively. The mapping accuracy of the healthy area is
slightly higher than that of the infected area, and the difference between them is also small,
86.27 and 84.07%, respectively.

Table 8. Results (confusion matrix) of Method-STF.

Predicted

Healthy Infected Total Producer’s
Accuracy (%)

Measured
Healthy 201 36 237 84.81
Infected 32 190 222 85.59

Total 233 226 459
User’s accuracy (%) 86.27 84.07
Overall accuracy (%) 85.19

In this study, Method-STF was applied to the hyperspectral imagery of each phase pixel by
pixel to obtain the spatiotemporal distribution map of rice false smut (see Figures 12 and 13). It
can be seen from the figures that qualitatively, the spatial distribution of rice false smut in the
two plots was relatively sparse on 14 August 2020 compared to the other dates; the occurrence
area gradually became denser over time, and, with the growth of rice, the occurrence area of rice
false smut gradually expanded. In short, the temporal and spatial variation trend was consistent
with the natural development law of rice false smut.

Figure 12. Spatiotemporal distribution of occurrence information of rice false smut in Plot 1:
(a) 14 August 2020; (b) 20 August 2020; (c) 25 August 2020; (d) 6 September 2020.
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Figure 13. Spatiotemporal distribution of occurrence information of rice false smut in Plot 2:
(a) 14 August 2020; (b) 20 August 2020; (c) 25 August 2020; (d) 6 September 2020.

The above phenomenon shows that Method-STF not only has high accuracy, but also
has a stable effect, and can effectively monitor the occurrence area of rice false smut.

3.3. Comparison of Methods

In this study, two methods, Method-SSA and Method-STF, were used to extract areas
of rice false smut infection on different dates. Comparing the two methods, in terms of
physical meaning, Method-STF uses machine learning technology and Method-SSA uses
spectral similarity analysis and considers the difference between the spectra of infected
and healthy rice; thus, Method-SSA has stronger physical interpretability. With regard
to prediction accuracy, which is crucial for the evaluation of the model, the accuracy of
Method-STF is higher, with overall prediction accuracy reaching 85.19%, compared to
74.23% for Method-SSA. In addition, both methods take temporal features into account.

3.4. Relationship between Rice False Smut and Canopy Chlorophyll Content of Rice

Figures 14 and 15 show the spatiotemporal variation of occurrence area of rice false smut
and corresponding SPAD values in Plot 1 and Plot 2, respectively. According to Figure 14, in the
upper left and lower right of Plot 1, rice was healthy, and the corresponding SPAD value was
relatively high, especially on 14 August 2020 and 20 August 2020. Figure 15 shows that rice in
the middle of Plot 2 was healthy, and the corresponding SPAD value was relatively high. In
conclusion, in both plots, the SPAD values of rice were lower in the infected area and higher in
the healthy area. This may be because after rice is infected with false smut, part of the chlorophyll
in the plants is destroyed, resulting in decreased chlorophyll content.

Figure 14. Spatiotemporal variation of occurrence area of rice false smut and corresponding SPAD
values in Plot 1: (a) 14 August 2020; (b) 20 August 2020; (c) 25 August 2020; (d) 6 September 2020.
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Figure 15. Spatiotemporal variation of occurrence area of rice false smut corresponding SPAD values
in Plot 2: (a) 14 August 2020; (b) 20 August 2020; (c) 25 August 2020; (d) 6 September 2020.

By comparing the sensitive bands of rice false smut and chlorophyll (see Figure 16), it
was found that the two sensitive bands (red and near-infrared) overlapped, further proving
that rice false smut infection has an impact on chlorophyll content.

Figure 16. Sensitive bands of rice false smut and chlorophyll.

4. Discussion

There have been many studies on crop diseases and pests. Most of them have treated
the crops with diseases or insect inoculum, so that the degree of infection of the treated
crops is more uniform [1,10], which makes it easier to extract the occurrence area of diseases
and pests. In this study, the rice was in a natural setting and the rice false smut was the
result of natural processes, without inoculum treatment, which is a huge difference between
this study and other studies with regard to the experimental scenario. In addition, most
studies monitoring crop diseases and insect pests use vegetation indices, the physical
interpretability of which is poor. In this study, Method-SSA and Method-STF were used to
extract areas of rice false smut infection based on UAV hyperspectral imagery. According
to the selected sensitive wavebands and the prediction results, the following outcomes
were observed.

In this study, 665–685 and 705–880 nm were selected as the sensitive wavebands of
rice false smut; for infected rice, the reflectance will decrease at 705–880 nm and increase
at 665–685 nm, which may be because the rice false smut can destroy the physiological
structure of rice, cause changes to pigment and water content, and then changes to the crop
canopy spectrum. Previous studies have reported that the reflectance of crops will decrease
in the red bands and increase in the near-infrared bands if the crop has been infected by
diseases or pests, which is consistent with the finding in our study [2,29].
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As far as Method-SSA (extraction of infected areas based on spectral similarity anal-
ysis) is concerned, the prediction results on the four dates were 77.41, 74.70, 71.52, and
73.21%, and the overall accuracy was 74.23%. This method can extract areas of rice false
smut occurrence effectively, and the performance is stable at different growth periods. The
accuracy for August 14, 2020 was slightly higher than for the other dates, and the classifica-
tion accuracy shows a downward trend. This may be because, during the natural growth
of rice (from milk ripening to yellow maturity stage), the chlorophyll content in the leaves
gradually decreases [28], and decreased chlorophyll content in crops will lead to decreased
near-infrared reflectance [40,41], which may have a certain impact on the monitoring of rice
false smut (rice false smut also leads to decreased near-infrared reflectance; see Figure 5. In
other words, the lower the chlorophyll content in rice, the more difficult it is to monitor
rice false smut.

As shown in Tables 4–7, the producer’s accuracy of healthy samples is significantly
lower than that of infected samples; that is, more healthy samples were wrongly assigned to
the infected group. This may be because of the following: (1) When constructing the model,
since there were somewhat fewer healthy samples than infected samples, the optimal
threshold value moved in the direction of improving the accuracy of classifying infected
samples when the threshold was calibrated, which led to lower producer’s accuracy for
healthy samples than infected samples. (2) The sensitive wavebands selected in this
experiment were near-infrared and infrared, and the near-infrared band is sensitive to
water content. When the water content is higher, the spectral reflectance of the crop canopy
at near-infrared will decrease [42], which is consistent with the spectral change trend of
rice false smut. Therefore, the difference in soil moisture in the plots may have led to the
wrong classification of healthy samples as infected.

Method-STF achieved satisfactory overall accuracy, with stable performance in pro-
ducer’s and user’s accuracy (see Table 8). The upper left part of Figure 13a shows
the infected area on 14 August 2020, but the degree of infection was weakened after
20 August 2020 (see Figure 13b–d); that is, the change in the occurrence area of rice false
smut in this part does not conform to the natural development law. After verification, the
terrain of Plot 2 is slightly higher in the south than in the north, and in this case, there
may have been water accumulation or soil moisture in the north of the plot. With different
soil moisture content, the reflectance of high soil moisture areas will decrease to a certain
extent in the near-infrared band [42]. As shown in Figure 8, the reflectance at 755 nm
was lower for infected than healthy rice. Therefore, healthy rice under relatively high soil
moisture conditions may be mistakenly classified as infected rice. On 14 August 2020,
the difference in water content between the north of Plot 2 and other parts was greater
than on the other days, so the pixels in the northern part on 14 August 2020 were more
likely to be wrongly classified as infected. This shows that although Method-STF has good
classification accuracy, it also has some limitations.

Comparing the performance of the two methods, we found that the Method-STF had
higher overall accuracy and the difference between the user’s and producer’s accuracy of
Method-STF is smaller. This may be because more near-infrared bands are used in Method-
SSA, which are more susceptible to soil moisture interference, while Method-STF only uses
one near-infrared band, which is more resistant to soil moisture. However, Method-STF
uses machine learning technology, while Method-SSA uses spectral similarity analysis;
therefore, Method-SSA may have stronger physical interpretability.

In this study, through field investigation, although only one rice disease (rice false
smut) was found, it does not mean that some rice diseases and pests (other stress types)
that cannot be seen visually did not affect the reflectance data, especially when other types
overlap with the sensitive wavelength range of rice false smut. Therefore, this study still
has some limitations.
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5. Conclusions and Recommendations

This study investigated the potential of using UAV hyperspectral imagery to identify
the occurrence of rice false smut. Results from two methods for the extraction of infected
areas, one based on spectral similarity analysis and one based on spectral and temporal
features, were evaluated and compared, and the following conclusions are drawn:

• The spectral difference between healthy rice and rice infected by rice false smut is
useful information for assessing the sensitivity of wavebands to RFS.

• RFS can reduce the chlorophyll content of rice plants.
• The spectral regions of 665–685 and 705–880 nm are useful to extract areas of RFS occurrence.
• Both Method-SSA and Method-STF are effective for extracting areas of RFS occurrence, with

the former showing stronger physical interpretability and the latter being more accurate.
• Compared with Method-STF, Method-SSA seems to be more affected by soil

moisture variations.

Although the results of this study are encouraging, there are still limitations. The
feature used to extract areas infected by rice false smut was reflectance, which may have
been affected by soil moisture. Therefore, some vegetation indices, for example, NDVI,
that can reduce the influence of the soil background [43,44], combined with reflectance,
may be helpful for improving the accuracy of the extraction of infected areas. Furthermore,
the methods used in this study should be tested on other rice cultivars. In addition, the
flight speed of the UAV should be the same on different dates, so as to reduce the effect
caused by different flight speeds on the positional precision.
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