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Abstract: The study presents the analysis of the possible use of limited number of the Sentinel-2 and
Sentinel-1 to check if crop declarations that the EU farmers submit to receive subsidies are true. The
declarations used in the research were randomly divided into two independent sets (training and
test). Based on the training set, supervised classification of both single images and their combinations
was performed using random forest algorithm in SNAP (ESA) and our own Python scripts. A
comparative accuracy analysis was performed on the basis of two forms of confusion matrix (full
confusion matrix commonly used in remote sensing and binary confusion matrix used in machine
learning) and various accuracy metrics (overall accuracy, accuracy, specificity, sensitivity, etc.). The
highest overall accuracy (81%) was obtained in the simultaneous classification of multitemporal
images (three Sentinel-2 and one Sentinel-1). An unexpectedly high accuracy (79%) was achieved
in the classification of one Sentinel-2 image at the end of May 2018. Noteworthy is the fact that the
accuracy of the random forest method trained on the entire training set is equal 80% while using the
sampling method ca. 50%. Based on the analysis of various accuracy metrics, it can be concluded that
the metrics used in machine learning, for example: specificity and accuracy, are always higher then
the overall accuracy. These metrics should be used with caution, because unlike the overall accuracy,
to calculate these metrics, not only true positives but also false positives are used as positive results,
giving the impression of higher accuracy. Correct calculation of overall accuracy values is essential
for comparative analyzes. Reporting the mean accuracy value for the classes as overall accuracy
gives a false impression of high accuracy. In our case, the difference was 10–16% for the validation
data, and 25–45% for the test data.

Keywords: reliability of the classification; machine learning classifiers; random forest; Sentinel-2;
Sentinel-1

1. Introduction

Integrated Administration Control System (IACS) was created in the European Union
to control direct payment to agriculture. Under common agricultural policy (CAP), direct
payments, without going into different payment schemes, apply to crops, which the farmer
declares each year, specifying the type of crop (plant) and its area. Some declarations
(ca. 5%) are controlled using on-the-spot check under which the area of an agricultural
parcel is measured and the plant is identified in the field. In order to simplify and auto-
mate this procedure, in 2018, the European Commission adopted new rules to control all
declared parcels based on Copernicus satellite data: Sentinel-1 (S-1), Sentinel-2 (S-2). In
purpose of control farmers’ declarations, the EC research center JRC (Joint Research Center)
recommends analysis of time series vegetation indices of any agricultural parcel during
the vegetation time [1–3].

The most popular index calculated form optical images is NDVI (normalized differen-
tial vegetation index) [4] and in microwave spectral range SIGMA (radar backscattering
coefficient) [5]. Analysis of the variability plots of these parameters over time allows for
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reliable assessment of the condition of vegetation and type of crop but it is also work, time
consuming and nearly not feasible for all declared plots. There are many initiatives and
projects dedicated to agriculture or the CAP (e.g., Sen2Agri, Sen4Cap) among others aimed
at the control of direct payments based on the time series of images S-1, S-2.

Automatic image classification for declarations’ inspection seems to be very promising
but there are no applicable recommendations for automatic image classification to support
audits. The key issue is the credibility of the method as control may result in financial
penalties for farmers. Moreover, the verification of all declared parcels is a huge undertak-
ing because it affects areas of the whole country, e.g., in Poland concerns ca. 30% of the
country’s area, i.e., 140,000 square kilometers and 10 million agricultural plots.

There are many publications on crops identification in various places around the
world, for different purposes and with varying levels of credibility. Analyzing prac-
ticed by most researchers methods of image classification for crops recognition, machine
learning (ML) undoubtedly dominates: random forest, support vector machine (SVM),
convolutional neural network (CNN). The literature reports high accuracies for these
methods: e.g., RF = 84.22% [6], SVM = 84.2% [7], SVM = 82.4% [8], CNN = 99.36% [9],
CNN = 94.60% [10], RF = 97.85% [11]. A common practice in crops identification is ap-
plying the time series consisting of several or several dozen images. Acquiring multiple
cloudless S-2 images over a large area is difficult, so many researchers perform analyzes
on combinations of a different number of images. In such approaches it is efficient to use
cloud computing using ML methods, e.g., Google Earth Engine (some accuracy values
reported by the authors: RF = 93.3% [12], SVMmodi f ied = 98.07% [13], RF = 93% [14]).

The level of accuracy achieved with single images is lower, several results can be
cited (e.g., [6–8]). The accuracy of the classification, using a single S-2 image, of three
crops (wheat, sugarcane, fodder), which was performed for the test area located in India,
was: RF = 84.22% and SVM = 81.85% [6]. In turn [7], for the test area in Australia,
the accuracy of classification of a single S-2 image using the SVM method was 77.4%
for annual crops (cotton, rice, maize, canola, wheat, barley) and perennial crops (citrus,
almond, cherry, etc.). Especially interesting is [8], where the authors examined the accuracy
of the classification of Sentinel-2 images by various classifications methods (RF, SVM,
Decision Tree, k-nearest neighbors). They analyzed the results of the S-2 time series for crop
recognition in South Africa: canola, lucerne, pasture, wheat and fallow recognition. The
highest accuracy was obtained with the use of the support vector machine (SVM) approx.
80%. The most important conclusion is that it was possible to obtain high accuracy of
crop classification (77.2%) using single Sentinel-2 image recorded approx. 8 weeks before
the harvest. Moreover, they found that adding more than 5 multi-time images does not
increase accuracy, and that “good” images do not compensate for “bad” images.

When comparing the research results, the type of crop must be taken into account.
The species of cultivated crops depend on the climatic zone in which the research area
is located. In this context it is worth citing publications relating to a similar test area to
ours. In [15], the authors present the results of research conducted in Northrhinewestfalia
(Germany) [15]. They performed a random forest classification of 70 Sentinel-1 mulitem-
poral images with topographical and cadastral data and reference agricultural parcels
obtained from Amtliches Liegenschaftskataster-Informationssystem (ALKIS). With recog-
nition of 11 crops: maize, sugar beet, barley, wheat, rye, spring barley, pasture, rapeseed,
potato, pea and carrot very high overall accuracy of 96.7% was obtained (comparing to
optic data 91.44%).

The other example are the research concerning the IACS system was conducted on
the whole area of Belgium [16]. Authors performed an experiment to identify 8 crops:
wheat, barley, rapeseed, maize, potatoes, beets, flax and grassland. Various combinations
of Sentinel-1 and Sentinel-2 time series were tested in the study. The images were classified
using the random forest (RF) method. The maximum accuracy, equal to 82% for the
combination of twelve images: six Sentinel-1 and six Sentinel-2 was reported.
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The presented two approaches provided high accuracy of crop recognition for control
purposes, but required many unclouded images of large areas. This is rather difficult in the
case of Sentinel-2, especially considering that the area of Belgium and Northrhinewestfalia
is 10 times smaller than the area of Poland.

The similar research were also conducted by our team [17,18]. Ten Sentinel-2 images
from September 2016 to August 2017, and nine Sentinel-1 images from March to September
2017 were analyzed. A Spectral Angle Mapper (SAM) classifier was used to classify the time
series of NDVI images. Accuracy of OA = 68.27% was achieved, which is consistent with
the accuracy (69%) of other independent studies of similar nature conducted in Poland [19].
Therefore, instead of NDVI and SIGMA time series, it was decided to check the possibility
of using the classification of single S-2 images and a combination of several multitemporal
S-2 images. The aim of the research was to develop a simple, fast but reliable screening
method for farmers’ declarations control.

However, while reviewing the literature on the currently used image classification
methods for the purpose of crop recognition, we encountered the problem of comparing
the accuracy of the classification result. In a traditional remote sensing approach, accuracy
is calculated from test data independent of the training data. In machine learning, a lot of
attention is paid to the selection of hyperparameters, which is carried out iteratively using
only a part of the training set. At the same time, the validation accuracy is determined on
the basis of the samples from training set not used for learning.

Some authors report validation accuracy and accuracy calculated on independent test
data [7,12,20]. Others only provide information on accuracy based on external reference
data not included in the training set [8,15,16,21]. In some publications, there is not enough
information on this issue [13,22,23].

There are plenty examples of using only one reference set divided randomly or strati-
fied on training and validation sample, while the distinction between training, validation
and independent test data is extremely rare [24].

It turns out that the problem was also noticed by other researchers, e.g., a key work
on rigorous accuracy assessment of land cover products [25]. Good practice in accuracy
assessment, sampling design for training, validation and accuracy analysis was discussed.
The key, from the point of view of our research is the statement: “Using the same data
for training and validation can lead to optimistically biased accuracy assessments. Con-
sequently, the training sample and the validation sample need to be independent of each
other which can be achieved by appropriately dividing a single sample of reference data or,
perhaps more commonly, by acquiring separate samples for training and testing”. Similar
conclusions can be found in [26].

Reliability of the classification also depends on the reported accuracy metrics and
the unambiguous way of their calculation. Like the previous topic, it is not a trivial issue,
although it seems that. Despite many years of research on various accuracy metrics [27–33]
in the 2019 paper, mentioned above, it was stated that overall accuracy (OA), producer
accuracy (PA) and user accuracy (UA) are still considered the basic ones [25].

Unfortunately, the situation in this area has become more complicated due to the com-
mon use of ML methods. In recent years, additional accuracy metrics have been developed
that are not used in traditional approaches, i.e., specificity and precision. Other metrics
calculated automatically in ML tools: sensitivity and precision, correspond, respectively, to
producer accuracy (PA) and user accuracy (UA) in traditional image classification.

In extensive reviews of the literature from the past and the latest, comparative analyzes
of plenty various metrics can be found [26–33], but they do not respect sensitivity and
accuracy, despite they are commonly used in ML. It is worth noting that sensitivity and
accuracy are appropriate for the classification of one class. A problem arises when they are
used in assessing the classification of multiple classes, especially if the average value of
the accuracy [34] or global precision [35] is reported as OA, creating an illusion of higher
accuracy [36].
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Summarizing the issue of the reliability of the classification result, especially using
ignorantly ML tools, there is a double risk of overestimation accuracy: related to the lack
of independent test set and the incorrect calculation of the most frequently compared
metric in the research: OA. Therefore, the accuracy of the classification, which has a very
significant impact on the reliability and validity of the remote sensing method for verifying
the accuracy of the crops declared by farmers, should be demonstrated with deep attention
and carefulness. In the article, we focused on three issues:

1. Image classification in the aspect of screening method of controlling farmers’ decla-
ration based on a limited number of images (verification in Polish conditions of the
hypothesis from the publication [8]).

2. Analysis of the classification’ results made using extremely different sampling design
(we did not focus on the description of the model fitting).

3. Comparing the traditional accuracy metrics with those used in ML (also discussing
incorrect OA calculations), in order to confirm the hypothesis about artificially over-
estimating the accuracy of the classification result.

To the best of our knowledge, there are no publications on a quick and reliable
screening method to control the declarations submitted by millions of farmers in each
EU country each year. In addition, despite there are some publications [7,25] containing
information on artificially overestimating the accuracy of the classification if the OA
calculated from the validation set, instead of the test set, but there is no broader discussion
of this issue. On the other hand, the issue of incorrect calculation of OA is completely
ignored in publications.

2. Materials and Methods

The research consists of three parts Figure 1:

• obtaining and preparing reference and image data,
• image classification,
• comparative accuracy analysis.

Figure 1. The scheme of the methodology.
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2.1. Materials and Data Preparation

The test area of 625 square kilometers (25 km × 25 km) was located in central Poland,
near Poznań (Figure 2), and included 5500 agriculture parcels declared by farmers for the
subsidies. Data on farmers’ declarations were provided by Agency for Restructuring and
Modernisation of Agriculture (ARMA) in Poland and included size of the agricultural
parcel, type of crop, geometry of the agricultural parcel (polygon). The critical size of
the agricultural plot is 0.5 ha (this size should exclude the influence of the shape [1]). We
selected parcels of the area of 1ha or bigger to avoid technical problems with identify-
ing small parcels. In order to reduce the number of plots and eliminate errors, farmers’
declarations were statistically analyzed for:

• plot size (less than 1 ha),
• use of rare crops (less than 5 declarations).

Figure 2. Test area location (UL: 16◦37′21.43′′E; 52◦14′31.3′′N; LR: 16◦57′48.28′′E; 52◦1′3.74′′N). Data
source: OpenStreetMap.

Finally, 4576 parcels for the analysis were selected (Figure 3, Table 1).
The parcels’ set was randomly divided into 2 groups: training fields (2190 parcels)

and test fields (2386 parcels), which were used for classification and accuracy assessment.
Images from Sentinel-2 and Sentinel-1 satellites of the European Copernicus program

(ESA, 2020) were used for the analysis. Tables 2 and 3 contain a list and description of
satellite images used in the study. The images were downloaded from the Copernicus
Services Data Hub (CSDH) (https://cophub.copernicus.eu/ (accessed on 1 September
2018).

The data were collected as granules with a size of 100 per 100 km. Three Sentinel-2
images registered in September 2017, May 2018 and July 2018 were selected for analy-
sis. Images of Level-2A were acquired, which means after geometric, radiometric, and
atmospheric correction.

https://cophub.copernicus.eu/
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Figure 3. Declared agricultural parcels.

Table 1. Crops declared for agriculture parcels (area in [ha]).

Id Crop Count_Control Area_Control Count_Test Area_Test

1 winter wheat 288 23,749 279 23,754
2 winter rye 117 4389 137 5617
3 winter triticale 402 22,998 452 22,493
4 winter barley 147 6377 178 8652
5 winter oilseed rape 121 10,564 119 15,126
6 winter turnip 3 251 5 1188
7 spring wheat 8 310 11 466
8 spring barley 141 5423 122 3883
9 oat 32 1100 51 2163
10 maize 402 25,213 447 23,961
11 sugar beet 120 11,289 125 11,194
12 potato 11 1059 22 4128
13 lucerne 53 3206 48 2925
14 grass 54 2969 62 2834
15 pasture 291 12,352 328 12,870

Total 2190 131,250 2386 141,253
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Table 2. Characteristics of the Sentinel-2 satellite images.

Parameter Information

Satellite: Sentinel-2
Level: 2A (after geometric, radiometric and atmospheric correction)

Selected bands: 10 bands: B2, B3, B4, B5, B6, B7, B8, B8a, B11, B12
Number of images: 3

Dates: 28 September 2017, 26 May 2018, 20 July 2018
Images:

S2A_MSIL2A_20170928T100021_N9999_R122_T33UXT_20200104T144027
S2A_MSIL2A_20180526T100031_N0208_R122_T33UXT_20180526T161700
S2B_MSIL2A_20180720T100029_N0208_R122_T33UXT_20180720T142656

Short name: S2_20170928, S2_20180526, S2_20180720

Table 3. Characteristics of the Sentinel-1 satellite image.

Parameter Information

Satellite: Sentinel-1
Level: Ground Range Detected

Polarisation: Dual VV+VH
Number of images: 1

Dates: 15 July 2018
Images:

S1B_IW_GRDH_1SDV_20180715T164255_20180715T164320_011824_015C28_07F3
Short name: S1_VV_20180715, S1_VH_20180715

Additionally, one Sentinel-1 image was included in the tests, which had been pre-
processed for the sigma coefficient, according to the following workflow for two polariza-
tion modes (VV and HV):

• radiometric transformation of pixel value to backscatter coefficient (sigma0),
• geometric transformation by Range Doppler orthorectification method with SRTM

3 sek as DEM and bilinear interpolation,
• removing the salt pepper effect called speckle effect using refined Lee filter,
• logarithmic transformation of backscatter coefficient to dB.

In the next step, the classifications were performed on the basis of the following
image sets:

• 3 single Sentinel-2,
• 1 combination of 3 Sentinel-2,
• 2 combinations of 4 images: 3 Sentinel-2 and one Sentinel-1 (VV), 3 Sentinel-2 and one

Sentinel-1 (HV).

In the single classification, all 10 channels were used, while the channels with a resolu-
tion of 20 m were previously resampled to a spatial resolution of 10 m. The classification
of the combination of 3 images consists of the classification of 30 channels, 10 from each
Sentinel-2 image. The simultaneous classification of optical and radar images was based
on the classification of a stack of 31 channels: 30 optical, Sentinel-2 and 1 Sentinel-1 (VV
or HV).

2.2. Images’ Classifications

The idea was to use SNAP (ESA) software, because it is open-source commonly
used for image processing Sentinel-1, Sentinel-2 and is likely to be used in IACS control.
However, it has limitations in the size of the training set. Therefore we prepare our own
Python scripts to complete the research.

Eventually, images’ classifications have been carried out with the random forest
algorithm using:

• SANP ESA version 8.0.0,
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• Python version 3.9.0, scikit-learn version 0.23.2.

As mentioned above, classification in SNAP has some limitations. For example, it is
not possible to load a relatively large number of training fields, as in our case (2386 parcels).
In addition, the choice of classification parameters, such as, e.g., the number of sample
pixels is also limited. The training fields must allow the selection of the required number
of training pixels. The total number of assigned sample pixels is divided into the number
of classes and from each class the algorithm tries to select this number of pixels if possible.
It may be problematic to put the number of sample pixels exceeding the total number of
pixels in the class. Therefore, the default settings in SNAP are 5000 sample pixels (due to
the sampling method of the training set) and 10 trees (due to the computation time). As part
of the research, many different variants of classification with different settings were carried
out, especially since the default values were insufficient. The commonly used a grid of
parameter method was used to select the best hyper parameters of RF. The GridSearchCV
class implemented in scikit-learn was applied. The investigated parameter grid included:

• number of trees in the forest (n_estimators), the range of values: 30, 50, 100, 150, 500,
• the maximum depth of tree (max_depth), the range of values: None, 10, 30, 60, 100,
• the minimum number of samples required to split a node, (min_samples_split), the

range of values: 2, 4, 6, 8, 10,
• the minimum number of samples that must be in a leaf node, (min_samples_leaf), the

range of values: 1, 2, 4, 6, 8,
• the number of features to consider when split a node, (max_features), the range of

values: None, auto,
• bootstrap, the range of values: True, False.

Five k-fold (CV = 5) cross validation was aplied. Three metrics were used to assess
the quality of the model: accuracy, mean value of recall (balanced_accuracy), a weighted
average of the precision and recall (f1_weighted). In all hyper parameter estimation
simulations, all 3 metrics assessed the parameters at the same level. Usually, the set of
hyper parameters is selected that best suits the computational capabilities. By increasing
the number of trees, you can achieve better results, but it is very limited by the size of the
available RAM. Moreover, by increasing the number of trees above 100, the differences
in accuracy for the considered problems are negligible, in the order of tenths of a percent
(mean_accuracy: 0.8150, 0.8164 i 0.8177, respectively, 50, 100 i 500 trees).

Eventually, a possible large number of sample pixels and trees were assumed:

• 50,000 randomly selected samples (pixels) from the training set,
• 23 number of trees.

There are no such limitations generally in Python, and the whole training set (2190 parcels,
1,412,092 pixels) was possible to use for training. We tested different settings with the
k-fold cross-validations and decided to apply the following settings:

• classification: scikit-learn library, sklearn.ensemble module, RandomForestClassifier,
• number of trees: 100,
• min_samples_split’: 2,
• min_samples_lef: 2,
• bootstrap: True,
• max_depth: None,
• max_features: None.

2.3. Accuracy Analysis

Based on a literature review, main metrics were selected for the analysis: OA, PA, UA,
additionally f 1 and two metrics from ML, usually not used in remote sensing: accuracy
and specificity (Table 4, please notice difference between OA and accuracy). The meaning
of these metrics can be illustrated on any full cross matrix, for example (Table 5) taken from
the publication from 2021 [37] (it is Table 4—transposed for our purposes).
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Table 4. Selected accuracy indicators calculated for each class separately except OA [30,38].

RS Description RS ML Description ML Formula

OA overall accuracy - % correct predictions OA = ∑n
i=1 TPi

∑n
i=1(TPi+TNi+FPi+FNi)

- - acc accuracy acc = TP+TN
TP+TN+FP+FN

PA producer accuracy tpr sensitivity tpr = TP
TP+FN

UA user accuracy, reliability ppv precision ppv = TP
TP+FP

- - tnr specificity, true negative rate tnr = TN
TN+FP

- - f 1 F1 score f 1 = 2·TP
2·TP+FP+FN

Table 5. Example of full confusion matrix (source: [37], Table 4 modified for our purposes—transposed,
symbols of classes instead names).

Predicted/True C1 C2 C3 C4 C5 C6 PA

C1 87 3 0 0 7 0 0.8969
C2 3 90 2 1 0 0 0.9375
C3 0 6 45 0 0 0 0.8823
C4 0 1 0 29 3 0 0.8787
C5 0 2 0 0 23 1 0.8846
C6 0 0 0 1 2 14 0.8235

UA 0.9667 0.8824 0.9574 0.9355 0.6571 0.9333

Accuracy of the classification results is estimated on the basis of the confusion matrix:
a full confusion matrix, typically implemented in remote sensing or from a binary confusion
matrix used in machine learning.

Full confusion matrix represents the complete error matrix (Table 5), i.e., the combi-
nation of all classes with each other using the peer-to-peer method, which includes all
commission and omission errors for each class.

Binary confusion matrix contains only cumulative information: number of samples
correctly classified as a given class (TP true positives), correctly not classified as this class
(TN true negatives), falsely classified as this class (FP false positives) and falsely not
classified as this class (FN false negatives). One binary confusion matrix is assigned to
one class (e.g., for C1 Table 6). In our case we therefore have 6 binary confusion matrices
(Table 7) which are flattened and each matrix written on one row.

Table 6. Binary confusion matrix for class C1.

TP FP 87 3
FN TN 10 220

Table 7. Binary confusion matrix for all classes, with metrics.

Class TP TN FP FN tpr trn acc ppv f1

C1 87 220 3 10 0.8969 0.9865 0.9594 0.9667 0.9305
C2 90 212 12 6 0.9375 0.9464 0.9438 0.8824 0.9091
C3 45 267 2 6 0.8824 0.9926 0.975 0.9574 0.9184
C4 29 285 2 4 0.8788 0.993 0.9813 0.9355 0.9063
C5 23 282 12 3 0.8846 0.9592 0.9531 0.6571 0.7541
C6 14 302 1 3 0.8235 0.9967 0.9875 0.9333 0.875

average 0.8839 0.9791 0.9667 0.8887 0.8822

From the complete confusion matrix, the binary confusion matrices can be computed,
but the reverse operation is impossible.



Remote Sens. 2021, 13, 3176 10 of 23

From both matrices it is possible to compute all metrics and their values are of course
the same. However, it should be also noted that there is more information in the full
confusion matrix than in the binary confusion matrix. In the case of more than 4 classes,
the size of full confusion matrix is larger then size of binary confusion matrix, because the
binary confusion matrix for one class is always 2 × 2 (Table 6), after flattering one row in
(Table 7). The main advantage of the full confusion matrix is the possibility of exhausting
analysis of testing samples and errors (so-called omission and commission errors).

More important, however, is the distinction between OA and the mean value of
accuracy (acc). The sum of the number of correctly classified samples is used in the
numerator to calculate OA. In the classification of many classes it is the sum of TP. For one
class, we are dealing with samples correctly classified as a given class and correctly not
classified to it, i.e., on the diagonal of the binary confusion matrix there is the sum of TP
and TN. So, for class C1, OA and acc are equal to (87 + 220)/(87 + 3 + 10 + 220) = 0.9594.

Analyzing individual classes separately, the acc values correspond to OA. While the
metrics OA for all classes is 0.9000 and is not the mean acc of the classes, which is 0.9667.
In this case, the difference is ca. 7% but one should also take into account the relatively
small number of TN, because as can be seen from the formula acc, the more TN the greater
the accuracy (acc).

In our research, the accuracy analysis was performed adequately to the classification
design. In the case of learning on a selected number of samples, an accuracy analysis was
performed 2 times, on the basis of the validation set and of the test set. In the case of using
the entire training set in learning, the accuracy analysis was performed only on the test set.

Binary confusion matrices have been calculated for validation simultaneously with
the classification in SNAP on the basis of randomly selected pixels from the training set
(results are available in the text file, default name: “classifier.txt”, SNAP_META). SNAP
does not provide accuracy analysis on the independent test set, therefore we made the
analysis externally in our own Python scripts.

Accuracy analysis was performed on the test set in the pixel and object-oriented
approach, using our own scripts, Python (PP) and Python (PO), respectively. In the
object-oriented approach, 2386 samples equal to the number of all parcels in test set were
analyzed, corresponding to 1,412,092 pixels (10 m pixel size), which is the number of
samples analyzed in the pixel approach.

In Python (PP), test polygons were converted to raster form and cross with classi-
fication result for the computation of confusion matrix. In Python (PO), using a zonal
statistics algorithm, the modal value of the classification score located within each polygon
was calculated. This provided the basis for calculating the confusion matrix. The full
confusion matrix, binary confusion matrices and accuracy metrics were calculated for each
classification results.

3. Results

The chapter is composed of three parts. The first part presents accuracy metrics values
(calculated based on the binary confusion matrices given in SNAP) for the FR classification
using the sampling method for three types of data:

• two sets randomly selected from the training set (one for training and one for valida-
tion),

• an independent test set.

The second part presents the results of the RF classification using all training samples
(the entire set of training plots) with the full accuracy analysis on the all testing samples.

The third part shows the discrepancies between farmers’ declarations and classification
results obtained in these two approaches.

3.1. Random Forest Classification Using Sampling Method

The first part presents two sets of RF classification results using the sampling method:
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• 5000 training, 5000 validating pixels and 10 trees (default in SNAP),
• 50,000 training, 50,000 validating pixels and 23 trees.

Table 8 shows the accuracy metrics of single image classification on an example of
image S2_20180526, which were calculated from the binary confusion matrix stored in
SNAP_meta for 5000 training, 5000 validating pixels and 10 trees.

Table 8. Metrics calculated from SNAP_META, 2 × 5000 pixels, 10 trees, OA = 0.9056 (compare mean
value acc).

No TP TN FP FN acc tpr ppv f1

1 311 4623 37 22 0.9882 0.9339 0.8937 0.9134
2 311 4640 22 20 0.9916 0.9396 0.9339 0.9367
3 302 4648 12 31 0.9914 0.9069 0.9618 0.9335
4 279 4575 85 54 0.9722 0.8378 0.7665 0.8006
5 286 4622 38 47 0.9830 0.8589 0.8827 0.8706
6 302 4618 42 31 0.9854 0.9069 0.8779 0.8922
7 289 4615 45 44 0.9822 0.8679 0.8653 0.8666
8 320 4639 21 13 0.9932 0.9610 0.9384 0.9496
9 297 4639 21 36 0.9886 0.8919 0.9340 0.9125
10 309 4620 40 24 0.9872 0.9279 0.8854 0.9062
11 326 4643 17 7 0.9952 0.9790 0.9504 0.9645
12 322 4653 7 11 0.9964 0.9670 0.9787 0.9728
13 259 4615 45 74 0.9762 0.7778 0.8520 0.8132
14 300 4644 16 33 0.9902 0.9009 0.9494 0.9245
15 308 4636 24 25 0.9902 0.9249 0.9277 0.9263

mean 301 4629 31 31 0.9874 0.9055 0.9065 0.9055

It is worth paying attention to the numbers of true and false cases, namely, to the
proportions between TP, TN and FP, FN. In all classes, the number of TP is about 300 pixels,
while TN is ca. 4600 pixels. On the other hand, both the FP and FN numbers are small,
ca. 30 in class.

Finally, all metrics are very high. Overall accuracy OA = 0.9056, All average accuracy indices
are above 0.90: accuracy acc_m = 0.9874 (8.18% higher then OA), sensitivity-tpr_m/PA = 0.9055,
precision-ppv_m/UA = 0.9065 and F1 score-f1_m = 0.9055.

Table 9 shows the accuracy metrics of single image classification on an example of
image S2_20180526, which were calculated from the binary confusion matrix stored in
SNAP_meta for 50,000 training, 50,000 validating pixels and 23 trees.

Table 9. Metrics calculated from SNAP_META, 2 × 50,000 pixels, 23 trees, OA = 0.8788 (compare
mean value acc).

No TP TN FP FN acc tpr ppv f1

1 2764 43755 512 569 0.9773 0.8293 0.8437 0.8364
2 2936 43948 319 397 0.9850 0.8809 0.9020 0.8913
3 2861 43350 917 472 0.9708 0.8584 0.7573 0.8047
4 3037 43943 324 296 0.9870 0.9112 0.9036 0.9074
5 3013 44044 223 320 0.9886 0.9040 0.9311 0.9173
6 1727 45581 107 185 0.9939 0.9032 0.9417 0.9220
7 2017 44865 376 342 0.9849 0.8550 0.8429 0.8489
8 2835 43717 550 498 0.9780 0.8506 0.8375 0.8440
9 2614 43689 578 719 0.9728 0.7843 0.8189 0.8012
10 3093 43931 336 240 0.9879 0.9280 0.9020 0.9148
11 3050 43966 301 283 0.9877 0.9151 0.9102 0.9126
12 3144 43967 300 189 0.9897 0.9433 0.9129 0.9279
13 3052 43874 393 281 0.9858 0.9157 0.8859 0.9006
14 2917 44028 239 416 0.9862 0.8752 0.9243 0.8991
15 2771 43973 294 56 0.9820 0.8314 0.9041 0.8662

mean 2789 44042 385 351 0.9838 0.8790 0.8812 0.8796
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One should also pay attention to a certain regularity: the number of TP and TN in the
classes. In all classes, the number of TP is ca. 2789, and TN is ca. 44,042. On the other hand,
both the FP and FN numbers are small (respectively, 385 and 351).

By analyzing the accuracy metrics for image S2_20180526 in the Table 9 it can be noticed:

• all metrics are significantly above 0.78 (acc even above 0.97) in all classes; all mean
values (last row) are above 0.85,

• incorrectly reporting acc_m as OA creates a false impression of a 10.50% higher
accuracy (acc_m = 0.9838 while OA = 0.8788); it is an illustration of the problem
highlighted in the Introduction and also presented in the Material and Methods.

Accuracy metrics calculations for the remaining images and their combinations was
the same as for S2_20180526 (Table 10 contains all metrics). Additionally, the graphical
presentation of the variability of the two selected indices: OA and f 1 are in Figure 4.

Figure 4. The impact of the image registration date and the number of classified images on the classification accuracy-
selected metrics: OA and f 1m. Classification in SNAP with RF algorithm with sampling method (50,000 training/50,000 val-
idation samples). Accuracy assessment on validation set—red points, on test set: pixel approach—yellow points, object
approach—purple points.

Table 10. The accuracy metrics of validation calculated from SNAP_meta sampling method
(50,000 training/50,000 validation samples) and accuracy metrics calculated from the entire test
set in the pixel and in the object-oriented approach Python (PP) and (PO).

Image Software OA ppv_m tpr_m f1_m acc_m

S2_20170928 SNAP_meta 0.8753 0.8765 0.8762 0.8759 0.9834
Python (PP) 0.2209 0.2041 0.2058 0.1787 0.8961
Python (PO) 0.3110 0.2623 0.2841 0.2400 0.9081

S2_20180526 SNAP_meta 0.8788 0.8812 0.8790 0.8796 0.9838
Python (PP) 0.4199 0.3481 0.3581 0.3246 0.9226
Python (PO) 0.5155 0.4076 0.4636 0.4006 0.9354

S2_20180720 SNAP_meta 0.8738 0.8769 0.8752 0.8748 0.9832
Python (PP) 0.4204 0.3550 0.3989 0.3325 0.9227
Python (PO) 0.4744 0.4095 0.4914 0.3877 0.9299
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Table 10. Cont.

Image Software OA ppv_m tpr_m f1_m acc_m

Combination_3x SNAP_meta 0.9714 0.9719 0.9718 0.9718 0.9962
Python (PP) 0.4383 0.3610 0.4197 0.3513 0.9251
Python (PO) 0.482 0.3959 0.4935 0.3907 0.9309

Combination_4VV SNAP_meta 0.9679 0.9686 0.9684 0.9684 0.9957
Python (PP) 0.4471 0.3502 0.4021 0.3500 0.9263
Python (PO) 0.4719 0.3712 0.4591 0.3696 0.9296

Combination_4VH SNAP_meta 0.9671 0.9678 0.9676 0.9677 0.9956
Python (PP) 0.4384 0.3520 0.4086 0.3485 0.9251
Python (PO) 0.4543 0.3770 0.4764 0.3677 0.9272

Based on the metrics’ values in Table 10 and Figure 4, it can be concluded that:

• all values of OA obtained from the SNAP metadata far exceed the values calculated
for the test set, twice or more (S2_20170928); validation accuracy (SNAP_meta) is on
average 90%, while the accuracy of the classification (Python (PP)/PO) is on average
45% (Figure 4; compare mean level of red dash line with mean level of purple and
yellow dash lines),

• the highest OA obtained by object-oriented method for S2_20180526 image (51.55%)
and was only slightly higher than the OA obtained for the S2_20180720 (47.44%),
Combination_3x (48.2%), Combination_4VV (47.19%) images,

• difference between the OA calculated in the pixel and object approach is small, espe-
cially for the combination of images,

• when comparing the metrics in rows, consistency between all metrics except acc_m
can be noticed,

• comparing the columns OA and acc_m for validation (SNAP_meta), we can see in all
cases accuracy overestimation if acc_m is reported as OA (from 2.5% for Combina-
tion_3x to 11.8% for S2_20170928),

• comparing the columns OA and acc_m for test set (Python PP/PO), much larger
discrepancy between OA and acc_m can be noticed; the accuracy is overestimated
by approx. 45% if we report the average acc_m value as OA; for Python (PP): 0.9226
instead of 0.4199 and for Python (PO): 0.9354 instead of 0.5155,

• the inclusion of radar images did not increase the accuracy,
• the accuracy analysis on the control set Python (PP) and Python (PO) shows a slight

decline in accuracy for the image combination, which is in contradiction with the
values obtained from the accuracy analysis of SNAP_META.

3.2. Random Forest Classification Using Entire Training Set

Sample full confusion matrix, with the best result (Combination4VV, Python PO) is
shown in Table A1 and corresponding binary confusion matrices calculated form it, in
Table 11.

By analyzing the accuracy metrics for Combination4VV (Python PO) in the Table 11, it
can be noticed that:

• there is a significant variation in the value of the metrics compared to the Table 9;
analyzing mean values (last row) only acc_m is especially high, here equal 0.9746, but
also ppv value is much = 0.8587, while tpr, ppv and f 1 are much lower,

• in this case, the difference between OA and acc is much higher: OA = 0.8097, a mean
acc_m = 0.9746; accuracy overestimation is approx. 16%.

Accuracy metrics calculations for the remaining images and their combinations are
presented in (Table 12). Additionally, the graphical presentation of the variability of the
two selected indices: OA and f 1 are presented in Figure 5.
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Table 11. Binary confusion matrices calculated from the full confusion matrix Table A1, OA = 0.8097
(compare mean value of acc_m).

Crop TP TN FP FN acc tpr ppv f1

winter wheat 190 2055 52 89 0.9409 0.6810 0.7851 0.7294
winter rye 79 2221 28 58 0.9640 0.5766 0.7383 0.6475

winter triticale 400 1724 210 52 0.8902 0.8850 0.6557 0.7533
winter barley 132 2197 11 46 0.9761 0.7416 0.9231 0.8225

winter oilseed rape 113 2260 7 6 0.9946 0.9496 0.9417 0.9456
winter turnip 1 2381 0 4 0.9983 0.2000 1.0000 0.3333
spring wheat 1 2375 0 10 0.9958 0.0909 1.0000 0.1667
spring barley 79 2222 42 43 0.9644 0.6475 0.6529 0.6502

oat 7 2332 3 44 0.9803 0.1373 0.7000 0.2296
maize 439 1914 25 8 0.9862 0.9821 0.9461 0.9638

sugar beet 122 2250 11 3 0.9941 0.9760 0.9173 0.9457
potato 8 2363 1 14 0.9937 0.3636 0.8889 0.5161
lucerne 17 2337 1 31 0.9866 0.3542 0.9444 0.5152
grass 18 2323 1 44 0.9811 0.2903 0.9474 0.4444

pasture 326 1996 62 2 0.9732 0.9939 0.8402 0.9106

mean 129 2197 30 30 0.9746 0.5913 0.8587 0.6383

Figure 5. The impact of the image registration date and the number of classified images on the accuracy of classification-
selected indicators: OA and f 1m. Classification is performed in our own Python scripts with RFC algorithm. Accuracy
assessment in our own scripts: Python (PP) and Python (PO).

Table 12. The accuracy metrics related to RF classification made on entire training set (1,312,093 pixels)
calculated from the entire test set in the pixel (1,412,092 pixels) and in the object-oriented (2386 parcels)
approach Python (PP) and (PO).

Image Software OA ppv_m tpr_m f1_m acc_m

S1_20180715 Python (PP) 0.2487 0.3251 0.1650 0.1815 0.8998
Python (PO) 0.3353 0.7690 0.1957 0.2285 0.9114

S2_20170928 Python (PP) 0.4448 0.4224 0.3087 0.3226 0.9260
Python (PO) 0.5063 0.6287 0.3114 0.3474 0.9342



Remote Sens. 2021, 13, 3176 15 of 23

Table 12. Cont.

Image Software OA ppv_m tpr_m f1_m acc_m

S2_20180526 Python (PP) 0.7310 0.7043 0.5253 0.5481 0.9641
Python (PO) 0.7858 0.8609 0.5539 0.5884 0.9714

S2_20180720 Python (PP) 0.7017 0.6941 0.5157 0.5503 0.9602
Python (PO) 0.7041 0.7824 0.4980 0.5359 0.9605

Combination_3x Python (PP) 0.7775 0.7791 0.5779 0.6124 0.9703
Python (PO) 0.8080 0.8567 0.5858 0.6307 0.9744

Combination_4VV Python (PP) 0.7812 0.7820 0.5838 0.6190 0.9708
Python (PO) 0.8097 0.8587 0.5913 0.6383 0.9746

Combination_4VH Python (PP) 0.7768 0.7847 0.5782 0.6140 0.9702
Python (PO) 0.8089 0.8658 0.5903 0.6375 0.9745

Based on the metrics’ values in Table 12 and Figure 5, it can be concluded that:

• the highest accuracy (OA = 81%) was obtained for Combination_3x, Combination_4VV,
Combination_4VH,

• an unexpectedly high accuracy (OA = 79%) was obtained for a single image registered
in May 2018 S2_20180526,

• a very low accuracy (OA = 33%) was obtained for image in the fall of the previous
year compared to the year for which the analysis was performed-S1_20180715 VV,

• difference between the OA calculated in the pixel and object approach is smaller then
in Figure 4, especially for the combination of images (compare run of the yellow and
red curves in Figure 5 and yellow and purple curves in Figure 4),

• when comparing the metrics in rows, their greater variation can be seen in comparison
to the previous paragraph, but always acc_m has very high values above 90%,

• comparing the columns OA and acc_m (in this case there are only test set (Python
(PP)/PO)) we can see the discrepancy between the correctly calculated OA value
and the mean acc_m, but smaller than in the previous paragraph, the difference is on
average 25% (except S1_20180715 and S2_20170928),

• the shape of the relationship in Figure 5 is similar to that in in Figure 4 (i.e., for an
image S2_20180720, the accuracy is reduced compared to the image S2_20180526 and
images’ combinations,

• the inclusion of radar images did not increase the accuracy.

3.3. Influence of the Number of Samples on the Classification Result

The Figure 6 shows the SNAP learning accuracy metrics obtained for the default
number of pixels equal to 5000 (orange bars in the chart) and for the number of pixels
used in the research: 50,000 (blue bars in the chart). The first number in the legend is the
number of training samples and the second is the number of samples used for validation;
in SNAP, these numbers are equal (the total number of pixels used is 10,000 and 100,000,
respectively). Values of (OA, tpr_m, ppv_m, f1_m) are close to each other and high, above
0.8; acc is an outlier equal almost 1.0. It is worth noticing a slightly higher value of metrics
calculated on the basis of 5000 pixels compared to the calculation for 50,000 pixels. Higher
accuracy metrics are not reflected in the accuracy determined on the basis of independent
control fields (1,400,000 pixels), which in the case of default settings is lower then for 50,000
(brown dash line compared to blue dash line). Finally, it is also worth paying attention to
the high overall accuracy of the classification made with the use of all available pixels from
the training set (130,000).
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Figure 6. Accuracy metrics calculated for the result of the classification performed in SNAP using
50000 and 5000 training samples. For comparison, the OA obtained in the classification using our
own scripts in Python (black dashed line).

3.4. Discrepancies between Farmers’ Declarations and Classification Results

The accuracy analysis discussed in the Results allows to create a map of the discrep-
ancy between the crop declared by the farmer and the one identified using the random
forest training algorithm. Figures 7 and 8 show discrepancies between farmers’ declarations
and classification results obtained for the single image (S2_20280526) and for comparison,
the combination of 3 Sentinel-2 and 1 Sentinel-1(VV) images. The parcels for which the
classification confirms declarations are presented in gray, the parcels for which the crops
declared by the farmers differ from the classification result—in brown. There is a huge
difference in the results obtained with classification using sampling method and the result
of classification performed on whole training set.

Figure 7. Map of discrepancies between farmers’ declarations and classification results (UTM34N coordinate). RF
classification—sampling 50,000 pixels. Confirmation in gray, difference between declared and classified crop—brown.
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Figure 8. Map of discrepancies between farmers’ declarations and classification results (UTM34N coordinate). RF
classification—the entire training set: 1,412,092 pixels. Confirmation in gray, difference between declared and classi-
fied crop—brown.

4. Discussion

In the discussion, we refer to the aim of the research, i.e., the analysis of the results
of image classification for an effective and reliable screening method to control farmers’
declarations. In temperate climates, an efficient method that is applicable to a large area
must be based on as few images as possible, preferably one. The method implemented
for the inspection of farmers’ declarations must be reliable as it may result in financial
penalties for the farmer. The reliability of the method can be determined on the basis of a
properly performed accuracy analysis. In this case, we are not interested in the accuracy
of fitting the hyperparameters of the classification method. Accuracy of validation does
not determine the actual accuracy of the product, which is the classification result. The
phenomenon of accuracy overestimation using only validation data set, emphasized in the
literature review [25], is confirmed in other literature, e.g., [7,20], and also in our research.

The accuracy analysis should be performed on the training set (if possible, e.g., in
the SAM method), on the validation set and on the test set. In most methods, it is not
possible to obtain accuracy on the training set, but only on the validation and test set. In
many publications the accuracy of validation (OA) is reported, which in almost all cases
is above 80% (e.g., SVM = 97.7% [7], SVM = 98.96% [20], SVMmodi f ied = 98.07% [13],
RF = 93% [22], RF = 86.98% [23], RF = 83.96% [39], Dynamic Time Warping algorithm,
NDVI time series classification = 72–89%, multi-band classification = 76–88% [40]). In some
cases, the accuracy for test data is also delivered: 84.2% [7], 88.94% [20], which means
in the case of 13.5% [7] less value than the accuracy of the validation and in the case of
10.02% [20] lower.

In our research, the accuracy of the validation was also over 90%, and the accuracy of
the test data was approx. 45%. We used training set composed of 2190 parcels/1,412,092
pixels, test set of 2386 parcels/1,412,092 pixels and the number of samples for learning was
5000 and 50,000. Since the classification accuracy based on selected sample delivered not
satisfactory results, the entire training set was used for training and the accuracy on the
test data increased to 80% (all accuracy metrics: OA, acc, tpr, ppv, f 1).
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It is difficult to compare our experiment with the research design mentioned above. Note
the number of training and test samples: 2005/341 points [7] and 2281/1239 pixels [20].

When analyzing the credibility of the method, the issue of selecting accuracy metrics
cannot be ignored. The most frequently reported accuracy metric is OA, regardless of
whether it is traditional approach or ML. Confusion may arise when the mean accuracy
(acc) value is given in the ML instead of the correct OA value. In our research, we obtained
an overestimation of up to 45%. It is impossible to refer to the literature on this topic
because to our knowledge this problem has not been discussed so far.

Many studies exist regarding the application of remote sensing for crop recognition.
They are typically based on time series of optical images, radar images, or both simul-
taneously. The authors do not always provide sufficient information about the accuracy
analysis and they use different metrics. Nevertheless, several examples can be given in
this area.

Integration of multi-temporal S-1 and S-2 images resulted in higher classification
accuracy compared to classification of S-2 and S-1 data alone [41] (max. kappa for two
crops: wheat-0.82 and rapeseed-0.92). Using only S-2 data images it was obtained max.
kappa = 0.75 and 0.86 for wheat and rapeseed, respectively. Using only S-1 data images
obtained max. kappa = 0.61 and 0.64 for wheat and rapeseed, respectively.

The kappa coefficient was also used in the evaluation of in-season mapping of irrigated
crops using Landsat 8, Sentinel-1 time series and Shuttle Radar Topography Mission
(SRTM) [42]. Reported classification accuracy using the RF method for integrated data was:
kappa = 0.89 compared to kappa = 0.84 for each type of data separately.

In other studies, simultaneous classification of S-1, S-2, Landsat-8 data was applied to
crops:wheat, rapeseed, and corn recognition [43]. Classification accuracy performed with
the Classification and Regression Trees (CART) algorithm in Google Earth Engine (GEE),
estimated in this case by metric: overall accuracy, was OA = 84.25%.

The issue of the effect of different time intervals on early season crop mapping (rice,
corn and soyabean) has been the subject of other studies [44]. Based on the analysis of time
profiles of different features computed from satellite images, optimal classification sets
were selected. The study resulted in maximum accuracy of OA = 95% and slightly lower
91–92% in specific periods of plant phenology.

Wheat area mapping and phenology detection using S-1 and S-2 data has been the
subject of other studies by [45]. Classifications were performed using the RF method in
GEE obtaining accuracy for integrated data 88.31% (accuracy drops to 87.19% and 79.16%
while using only NDVI or VV-VH, respectively).

Time series of various features from S-2 were analysed in the context of three crops
recognition rice, corn and soyabean [46]. The research included 126 features from Sentinel-
2A images: spectral reflectance of 12 bands, 96 texture parameters, 7 vegetation indices,
and 11 phenological parameters. The results of the study indicated 13 features as opti-
mal. Overall accuracies obtained by different methods were, respectively, SVM 98.98%,
RF 98.84%, maximum likelihood classifier (MCL) 88.96%.

In conclusion of this brief review, it is important to note the dissimilarity of the metrics
when comparing validation accuracy with accuracy based on a test set. In the following
discussion, the accuracy data cited from the literature and from our study applies only to
metrics computed on the training-independent test data set.

Ultimately, in the context of the literature, we would like to discuss the results of our
research on the accuracy of single image classification for crop recognition. Recently, in
2020 reported Ref. [8] that it was possible to obtain high accuracy of crop classification
using one Sentinel-2 image registered in the appropriate plant phenological phase. [8]
presented the results of the Sentinel-2 time series classification performed on the test area
in South Africa, Western Cape Province, for 5 crops: canola, lucerne, pasture (grass), wheat,
fallow. The most important conclusion from the research is that it is possible to obtain high
accuracy of crop classification (77.2% by SVM Supported Vector Machine method) using
one Sentinel-2 image recorded approx. 8 weeks before harvest (comparing max. of 82.4%).
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Some other researchers compare the results of classification of various combinations of
time series with the results of classification of single images. This is particularly important
in temperate climatic zones, where acquiring many cloudless images over large areas
is problematic.

One example can be noticed in [7] where the authors examined perennial crops using
various combinations of multispectral Sentinel-1 and Sentinel-2 images. They obtained the
maximum accuracy for the combination of ten images Sentinel-2 and ten Sentinel-1 84.2%,
for comparison, the classification accuracy of the combination of ten images Sentinel-2
was 83.0%.

The influence of the classification of all Sentinel-2 channels was also tested in compari-
son to the classification of channels with a resolution of 10 m. A single optical image with
four 10 m channels resulted in an accuracy of 71.6%, while the use of 10 channels improved
the accuracy of 77.4%. In addition, these studies show one more conclusion that the NDVI
time series classification gives worse results than the classification of the original images
(which was also observed during our research [17,18].

Results of the research most similar to ours can be found in the paper [16] (cited
also in Introduction). The maximum accuracy of 82% was achieved for the combination:
6 × Sentinel-1 + 6 × Sentinel-2, much bigger then for the single Sentinel-2 image for which
it was 39%.

In our case, the highest accuracy (81%) was obtained in RF classification using entire
training set in object-oriented approach with accuracy estimation for Combination_3x,
Combination_4VV, Combination_4VH (for comparison to pixel approach - 78%). It was
also astonishing that there was no large decrease in accuracy for a single image S2_20180526
(79% in Python PO and 73% in Python PP). We obtained better accuracy for one image
then [16] (one Sentinel-1: 47%, one Sentinel-2: 39%), but comparable with [7,8]. The highest
accuracy of 79% was for a single image registered on 26 May 2018, while the classification
of the image of 20 July—just before the harvest was slightly less accurate.

The high accuracies obtained in crop recognition using time series only radar images
(OA = 87% [47], OA = 87% [48], OA = 96.7% [15]) provide valuable inspiration for future
research in our test area.

5. Conclusions

Analyses of the classification accuracy of three Sentinel-2 and one Sentinel-1 images
allow the following conclusions to be drawn:

1. The accuracy metrics used in machine learning: “accuracy” and “specificity” show
overestimated accuracy values because they include not only “true positive” but also
“true negative” cases. This approach is valid for one class classification (e.g., medical
testing) but not for the use of classification for crop recognition.

2. Reporting the mean accuracy value as overall accuracy gives the false impression
of high accuracy. In our first case (SNAP) for the image from May on the control
fields, the accuracy overestimation was approx. 45% (if, instead of the correct value of
52%, we gave the average acc_m value of 94%), in the second case it was approx. 20%
(instead of 79%, 97%)—compare OA and accm for S2_20180526 in Tables 10 and 12.

3. The use of all training pixels from the reference polygons, compared to the sampling
method, increases the classification accuracy with RFC algorithm by almost 40% (form
50% to 80%).

4. The highest classification accuracy, equaling 81%, was obtained for the combination
of 3 Sentinel-2 images with all pixels in our own Python script (for comparison 80%
reported by [8],

5. The overall accuracy of the single image classification was equal 79%, which is slightly
higher then the value from the literature (77.4% [7], 77.2% [8]) and much better than
47% [16], the highest accuracy we obtained in May, a few weeks before harvest
confirming [8],
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6. Adding radar images did not improve the classification result, which is also confirmed
in the literature [20,23], but due to the use of only one Sentinel-1 image, it does not
allow us to generalize this conclusion and requires further research.

The research confirmed the possibility of using a single Sentinel-2 image to screening
control farmers’ declarations registered several weeks before the harvest. This conclusion
is essentially due to the difficulty of acquiring cloudless multitemporal images over large
areas in central Europe.

In the random forest classification method, it is recommended to use all data from the
training set. It is not possible to input large training data to SNAP, but it is possible with
the use of own scripts written e.g., in Python. In accuracy analyses, it is not recommended
to use the metrics: accuracy and specificity, which are commonly used in machine learning,
and overall accuracy should not be confused with the class mean value of accuracy. How-
ever, the following metrics seem reliable: overall accuracy, sensitivity = producer accuracy,
precision = user accuracy, F1-score. The conclusion in the last paragraph, according to the
authors, fills the gap in the use of the random forest algorithm in crop classification that
are characterized by high variability of the spectral response within individual crops.
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OA overall accuracy
PA producer accuracy
UA user accuracy
TP true positives
TN true negatives
FP false positive
FN false negatives
RS remote sensing
ML machine learning
PP accuracy assessment pixel-approach in Python
PO accuracy assessment object-oriented in Python
RF random forest
SVM supported vector machine
CNN convolutional neural network



Remote Sens. 2021, 13, 3176 21 of 23

Appendix A

Table A1. Full confusion matrix calculated for RF classification of Combination4VV based on entire training set (1,412,092 pixels) using the object-oriented accuracy analysis (2386 objects).

Predicted/ Winter Winter Winter Winter Winter Oilseed Winter Spring Spring Oat Maize Sugar Potato Lucerne Grass Pasture Sum
True Wheat Rye Triticale Barley Rape Turnip Wheat Barley Beet Row

winter wheat 190 0 82 2 1 0 0 1 0 2 1 0 0 0 0 279
winter rye 2 79 51 2 0 0 0 1 0 2 0 0 0 0 0 137

winter triticale 34 13 400 0 0 0 0 2 1 1 0 0 1 0 0 452
winter barley 2 2 32 132 1 0 0 8 0 1 0 0 0 0 0 178

winter oilseed rape 1 0 2 1 113 0 0 0 0 1 0 0 0 0 1 119
winter turnip 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 5
spring wheat 5 0 2 0 0 0 1 3 0 0 0 0 0 0 0 11
spring barley 4 3 29 4 0 0 0 79 2 0 1 0 0 0 0 122

oat 4 8 7 0 1 0 0 23 7 1 0 0 0 0 0 51
maize 0 0 4 0 0 0 0 1 0 439 1 0 0 0 2 447

sugar beet 0 0 0 1 0 0 0 0 0 2 122 0 0 0 0 125
potato 0 0 0 1 0 0 0 1 0 4 7 8 0 0 1 22
lucerne 0 0 0 0 0 0 0 0 0 2 1 1 17 1 26 48
grass 0 0 1 0 0 0 0 2 0 9 0 0 0 18 32 62

pasture 0 2 0 0 0 0 0 0 0 0 0 0 0 0 326 328
sumCol 242 107 610 143 120 1 1 121 10 464 133 9 18 19 388 2386
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