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Abstract: The frequency of marine oil spills has increased in recent years. The growing exploitation of
marine oil and continuous increase in marine crude oil transportation has caused tremendous damage
to the marine ecological environment. Using synthetic aperture radar (SAR) images to monitor
marine oil spills can help control the spread of oil spill pollution over time and reduce the economic
losses and environmental pollution caused by such spills. However, it is a significant challenge
to distinguish between oil-spilled areas and oil-spill-like in SAR images. Semantic segmentation
models based on deep learning have been used in this field to address this issue. In addition, this
study is dedicated to improving the accuracy of the U-Shape Network (UNet) model in identifying
oil spill areas and oil-spill-like areas and alleviating the overfitting problem of the model; a feature
merge network (FMNet) is proposed for image segmentation. The global features of SAR image,
which are high-frequency component in the frequency domain and represents the boundary between
categories, are obtained by a threshold segmentation method. This can weaken the impact of spot
noise in SAR image. Then high-dimensional features are extracted from the threshold segmentation
results using convolution operation. These features are superimposed with to the down sampling
and combined with the high-dimensional features of original image. The proposed model obtains
more features, which allows the model to make more accurate decisions. The overall accuracy
of the proposed method increased by 1.82% and reached 61.90% compared with the UNet. The
recognition accuracy of oil spill areas and oil-spill-like areas increased by approximately 3% and
reached 56.33%. The method proposed in this paper not only improves the recognition accuracy of
the original model, but also alleviates the overfitting problem of the original model and provides a
more effective monitoring method for marine oil spill monitoring. More importantly, the proposed
method provides a design principle that opens up new development ideas for the optimization of
other deep learning network models.

Keywords: SAR; oil spill; image segmentation; deep learning; UNet; FMNet

1. Introduction

Oil spills in the ocean have become a serious environmental problem causing, long-
lasting financial costs and threats to marine life [1]. It was reported that more than a billion
dollars were spent and more than 200,000 marine lives were lost during the 2010 Deepwater
Horizon (DWH) oil spill [2]. The continuous increase of pollutants from marine oil spills
will have an increasingly negative impact on the environment, biodiversity will be reduced,
and eventually the ecosystem imbalance will endanger human survival and sustainable
development. Oil spill monitoring can quickly and accurately determine the occurrence of
oil spills and guide the emergency treatment of environmental pollution to minimize the
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harm caused by such spills. With the frequent occurrence of oil spill incidents, accurate,
efficient, and automatic marine oil spill monitoring has become a necessity.

Synthetic aperture radar (SAR) image-based oil spill detection is the most commonly
used and effective monitoring method [3]. As an active side-looking radar system [4], the
imaging geometry is an oblique projection type. The working wavelength, incidence angle,
polarization mode of the radar sensor, surface roughness, and dielectric constant of the
ground object [5] all affect the backscattering of the signal. The polarized electric field
vectors in the horizontal and vertical directions form different polarization phenomena [6].
The backscattering intensity of a rough surface is higher than that of a smooth surface. The
surface of the oil spill area with no obvious wave effect is much smoother than that of
sea water, and thus the oil spill area is shown as black pixels in the SAR image, whereas
the sea water surface is shown as bright pixels. Therefore, a low regional pixel value
indicates that the backward reflectivity of this part is low, and the probability that this
region is an oil spill area or an oil spill like area is high. The ultimate purpose of the
model is to better distinguish oil spill areas from oil spill-like areas. The model not only
needs to use pixel features to classify the overall light and dark areas, but also needs
to obtain the shape, boundary and other features of each category in order to complete
the segmentation results with high accuracy. However, a large amount of speckle noise
negatively interferes with SAR image target detection, which significantly reduces the
accuracy of image segmentation or edge extraction, posing a great challenge to the effective
monitoring of marine oil spills. In addition, the areas with a similar appearance as oil spills,
like the red part of Figure 1b, also have a black spot effect on SAR images, which makes it
more difficult to ascertain such areas correctly.
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Figure 1. Two examples of source data, (a,c) are SAR images and (b,d) are ‘image-segmentation’ labels. Cyan corresponds
to oil spills, red to look-alikes, brown to ships, green to land, and black is the sea surface.

There are two main ways to identify an oil spill area i.e., manual extraction and
automatic extraction. With the rapid development of deep learning theory and practice
and its unique and powerful image recognition capabilities, most research teams in recent
years have focused on the use of deep learning methods to automatically identify oil spill
areas in SAR images. In 2000, Del Frate et al. [7] proposed the use of neural networks to
identify oil spill areas. At that time, only simple weight connections were used to build the
network. Although the effect was not very good, the idea of automation was enlightening.
Fiscella [8] developed and tested an automatic classification algorithm based on probability
statistics to obtain an oil spill area. Targeted feature extraction is conducted on dark spots
in SAR images and can replace manual inspections for large ocean areas. A fast SAR image
segmentation method based on the artificial bee colony algorithm [9] was proposed to solve
the existence of speckle noise in SAR images. In [10–12], the authors used the spatial density
function, a kernel Fuzzy C-means clustering (FCM) algorithm, and the spectral clustering
(SC) ensemble algorithm to extract dark area features, respectively. For feature extraction in
dark areas, SAR images can be understood intuitively. However, with the development of
machine learning, Topouzelis [13] proposed an oil spill feature selection and classification
technology based on decision tree forests. In addition, Yu et al. [14] proposed the adversarial
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learning of an f-divergence function in 2018. In the same year, Orfanidis [15] proposed the
use of a DCNN for SAR image segmentation. In 2019, Gallego [16] and Krestenitis [17]
proposed an end-to-end deep learning image segmentation algorithm. In summary, the
segmentation of the oil spill area in SAR images is mainly divided into specific feature
analysis and extraction and deep learning-based complex and uncertain feature extraction.
As a disadvantage of a segmentation method based on specific characteristics, oil spill areas,
oil-spill-like areas, and other types of ground features cannot be completely distinguished
through only a few features. This is the main reason for the low accuracy of a segmentation
method. Based on the deep learning algorithm for SAR image segmentation, the model can
extract and combine high-dimensional features to classify different ground feature types,
which greatly improves the accuracy of the segmentation.

In this study, the FMNet semantic segmentation model is proposed to improve the
accuracy of marine oil spill area monitoring. Firstly, a threshold segmentation algorithm
is used to process the original data to obtain the high frequency the information of the
original image in the frequency domain. This part of information represents the boundary
between the categories within the image. This traditional image processing method obtains
the approximate global characteristics of the image, and at the same time weakens the
influence of intra-class noise. Then the convolutional neural network is used to extract
high-dimensional features from the global features, and the high-dimensional features
of the original image are combined for crossover, complementing the advantages, and
finally providing better decision-making for the segmentation model. Five commonly
used threshold segmentation methods are compared in this study, and the adaptability
of each threshold method to high-frequency SAR image feature extraction was explored.
The extracted high-frequency feature information and SAR image source data were input
into the deep learning semantic segmentation network, and the network structure was
debugged to adapt the model to the data.

2. Materials and Methods

In this section, the source, processing, and numerical characteristics of the dataset are
introduced. The design idea and theoretical basis of the model, including a description of
five commonly used image threshold segmentation methods and characteristics, followed
by two different deep learning model frameworks, are enunciated then validated.

2.1. Dataset

There has long been a lack of public or industry recognized standard oil spill datasets.
Although algorithms from different research teams [18–21] can be used to compile bet-
ter image segmentation results on their respective private datasets, large errors occur
when well-directed methods are applied to other studies. Therefore, a standard industry
dataset is needed to ensure that the research results of each research team have a unified
measurement standard.

The oil spill detection dataset from the European Space Agency (ESA) was created
and provided to the scientific community by Krestenitis et al. in their work [17,22] and can
get from the website [23]. It has been used by a large number of research teams in recent
years. The oil spill detection dataset contains jpg images extracted from satellite SAR data
depicting oil spills and other relevant instances, as well as their corresponding ground truth
masks. The initial SAR data were collected from the ESA database, the Copernicus Open
Access Hub, acquired through the Sentinel-1 European Satellite missions. The required
geographic coordinates and time of the confirmed oil spills were provided by the European
Maritime Safety Agency (EMSA) based on the CleanSeaNet service records, covering a
period from 28 September 2015 to 31 October 2017.

Each oil spill area in the SAR images of the dataset was accurately located and recorded
by the ESA. All images were then re-scaled to achieve a pixel resolution of 1250 × 650.
A speckle filter was used to reduce the sensor noise, and a 7 × 7 average filter was
used to suppress the salt and pepper noise. The developed dataset (~400 MB) contains
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approximately 1002 images for training and 110 images for testing, depicting instances of
five classes, namely oil spills, look-alikes, land, ships, and sea areas. The main purpose
of the division of the five classes is to reduce the impact of land and ship regions on
the classification.

The difficulty of oil spill detection is to distinguish oil spill areas from oil-spill-like
areas. By analyzing the dataset, it can be seen that in some images, a large oil-spill-like
area is mixed with a small actual oil spill area, as shown in Figure 1. In addition, in some
other images, the characteristics of the oil spill area and oil-spill-like area are almost the
same, and thus it is difficult to distinguish them through human recognition, as shown in
Figure 2. These difficulties greatly increase the aporia of the model recognition, which is
the main problem faced by research teams.
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long stripe area (in the yellow square) may cause some problems in the model due to the relatively asymmetric mark.

2.2. Algorithm Theory Analysis and Design

The disparity between the accuracy of the training results and the test results of the ex-
isting models indicates that the overfitting problem of the algorithm might be conspicuous.
From this point of view, an innovative model based on the analysis of theoretical knowl-
edge was designed in this study to reduce the overfitting problem of the model. Insufficient
datasets, an inconsistent feature distribution, and excessive sample noise may lead to an
overfitting of the final results of the algorithm. SAR images show the characteristics of
speckle noise in areas without oil spills. This type of noise contains a large number of pixels
with the same backscattering intensity as the oil spill area, which significantly interferes
with the image feature extraction of the network model during the convolution process. In
this study, the characteristics of noise in datasets are analyzed, and the traditional image
threshold segmentation technology is proposed to process the datasets, classify the datasets
from the numerical features, extract the high-frequency information from the datasets,
highlight the global features of the image, and serve as the feature input layer of the
model. At the same time, the deep learning network model extracts the high-dimensional
information features of the data from the source dataset; that is, the detailed features, as
the source data layer of the model. By combining two feature input layers to build a deep
network model, an innovative deep learning network model structure is formed. The
algorithm exhibits an overfitting phenomenon. The reasons include fewer datasets [24],
an inconsistent feature distribution [25], and excessive sample noise [26]. This algorithm
analysis mainly focuses on the algorithm design and optimization in terms of excessive
noise in the dataset. At the front end of the network architecture, the traditional image
segmentation method was first used to extract the dataset features.

2.3. Global Feature Extraction Methods for SAR Image

The purpose of image thresholding is to divide pixel into different sets according
to the gray level, and each subset forms a region corresponding to the real scene. Each
region has the same attribute, but adjacent regions do not. Such a division can be achieved
by selecting one or more thresholds from the gray level. High-frequency information is
expressed, and low-frequency information is weakened during this process. In a simple
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form, the image masks the detailed features and highlights the global features. This study
compares the effects of five commonly used threshold segmentation techniques on SAR
image segmentation.

2.3.1. Binary Threshold

Segmentation principle [27]: Select a specific threshold, and set the gray value of
the pixel points greater than or equal to the threshold to the maximum value of 255, and
the gray value of the pixel points smaller than the threshold value to zero, as shown in
Equation (1) and the schematic diagram in Figure 3b.

dst(x, y) =
{

maxVal , i f src(x, y) > thresh
0 , otherwise

(1)
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2.3.2. Truncate Threshold

Segmentation principle [28]: A user-defined threshold value first needs to be selected.
The gray value of the pixel points in the image greater than or equal to the threshold
value is set as the threshold value. The gray value of the pixel points that are less than the
threshold value remains unchanged, as shown in Equation (2) and the schematic diagram
in Figure 3c.

dst(x, y) =
{

threshold , i f src(x, y) > thresh
src(x, y), otherwise

(2)

2.3.3. ToZero Threshold

Segmentatfion principle [29]: Select a threshold value customarily, where the gray
value of pixels greater than or equal to the threshold value remains unchanged, and the
gray value of pixels less than the threshold value is set to zero, as shown in Equation (3)
and the schematic diagram in Figure 3d.

dst(x, y) =
{

src(x, y), i f src(x, y) > thresh
0 , otherwise

(3)

2.3.4. Triangle Threshold

Segmentation principle [30]: This method uses histogram data to find the best thresh-
old based on the geometry method. Its established condition assumes that the maximum
wave peak of the histogram is near the brightest side, and the maximum linear distance
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d is then obtained using a triangle. The gray level of the histogram corresponding to the
maximum linear distance, b, is the segmentation threshold. A schematic diagram is shown
in Figure 4.
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2.3.5. OTSU Threshold

The maximum inter-class variance, proposed by Otsu in 1979, is an adaptive threshold
determination method [31]. The algorithm assumes that the image pixels can be divided
into background and target parts according to the threshold. Here, ω0 represents the
proportion of target pixels in the image, µ0 is the average gray value, ω1 is the proportion
of background pixels in the image, and µ1 is the average gray value. The average gray
value of all pixels in the image is represented by µ, and the variance between classes is
represented by g. The optimal threshold T is calculated using Equation (4) to distinguish
the two types of pixels, which makes the maximum discrimination between these two
pixels. This global binarization-based algorithm is simple and fast and is unaffected by
image brightness and contrast. The disadvantages of this algorithm are that it is sensitive
to image noise and can only segment a single object. When the ratio of the target and
background is significantly different, the variance function between classes may exhibit a
double- or multi-peak phenomenon, and the segmentation effect will become poor.

g = [ω0ω1(µ0 − µ1)]
2 (4)

where g is the variance between classes, ω0, ω1 are the ratio of foreground and background
pixels to the entire image, µ0, µ1 are the average value of foreground and background pixels.

2.4. Introduction of Deep Learning Algorithm

In 2015, Ronneberger et al. [32] proposed a UNet network structure, which greatly
promoted research on medical image segmentation. UNet is based on the expansion and
modification of a fully convolutional network. Figure 5 demonstrates the framework of
UNet [32]. The architecture is characterized by end-to-end image segmentation technology,
and in the up sampling process, the depth features obtained by convolution operation are
used as an important basis for each up sampling decision. The network consists of two
parts: a contracting path to obtain context information and a symmetrical expanding path
to determine the position. The entire network has 19 convolution operations, 4 pooling
operations, 4 up-sampling operations, and 4 cropping and copying operations. The convo-
lution layer uses the “valid, padding = 0, stride = 1” mode for convolution, and thus the
final output image is smaller than the original image. When the convolution operation uses
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the “same” mode for processing, the output image with the same size as the original can
be obtained. The structure of the model loss function is described in Equations (5) and (6):

pk(x) = exp(ak(x))/
K

∑
k′

exp(ak′(x)), (5)

w(x) = wc(x) + w0∗ exp

(
−(d1(x) + d2(x))2

2σ2

)
, (6)

where ak(x) represents the value of position x in the kth channel, and K represents the num-
ber of categories. In addition, wc is the input segmentation image mask, d1(x) represents
the distance from pixel x to the first category closest to it, and d2(x) represents the distance
from pixel x to the second closest category.

Remote Sens. 2021, 13, x FOR PEER REVIEW 7 of 18 
 

 

2.4. Introduction of Deep Learning Algorithm 

In 2015, Ronneberger et al. [32] proposed a UNet network structure, which greatly 

promoted research on medical image segmentation. UNet is based on the expansion and 

modification of a fully convolutional network. Figure 5. demonstrates the framework of 

UNet [32]. The architecture is characterized by end-to-end image segmentation 

technology, and in the up sampling process, the depth features obtained by convolution 

operation are used as an important basis for each up sampling decision. The network 

consists of two parts: a contracting path to obtain context information and a symmetrical 

expanding path to determine the position. The entire network has 19 convolution 

operations, 4 pooling operations, 4 up-sampling operations, and 4 cropping and copying 

operations. The convolution layer uses the “valid, padding = 0, stride = 1” mode for 

convolution, and thus the final output image is smaller than the original image. When the 

convolution operation uses the “same” mode for processing, the output image with the 

same size as the original can be obtained. The structure of the model loss function is 

described in Equation (5) and (6): 

𝑝𝑘(𝑥) = exp(𝑎𝑘(𝑥)) / ∑ exp (𝑎𝑘′(𝑥))𝐾
𝑘′ , (5) 

𝑤(𝑥) = 𝑤𝑐(𝑥) + 𝑤0 ∗ exp (
−(𝑑1(𝑥)+𝑑2(𝑥))2

2𝜎2 ), (6) 

where 𝑎𝑘(𝑥) represents the value of position x in the kth channel, and K represents the 

number of categories. In addition, 𝑤𝑐  is the input segmentation image mask, 𝑑1(𝑥) 

represents the distance from pixel x to the first category closest to it, and 𝑑2(𝑥) represents 

the distance from pixel x to the second closest category. 

 

Figure 5. U-net architecture [32] (example for 32 × 32 pixels in the lowest resolution). Each blue box 

corresponds to a multi-channel feature map. The number of channels is denoted on top of the box. 

The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature 

maps. The arrows denote the different operations. 

Through the processing of this algorithm, the weight of pixels at the boundary of the 

category will be larger, and the weight of pixels farther from the boundary will be smaller. 

The reason for this is that, within the category, the pixel features are similar; therefore, 

this similarity should be weakened. The boundary area between the different categories 

was the main influencing factor for segmentation. Therefore, it is necessary to strengthen 

Figure 5. U-net architecture [32] (example for 32 × 32 pixels in the lowest resolution). Each blue box
corresponds to a multi-channel feature map. The number of channels is denoted on top of the box.
The x-y-size is provided at the lower left edge of the box. White boxes represent copied feature maps.
The arrows denote the different operations.

Through the processing of this algorithm, the weight of pixels at the boundary of the
category will be larger, and the weight of pixels farther from the boundary will be smaller.
The reason for this is that, within the category, the pixel features are similar; therefore, this
similarity should be weakened. The boundary area between the different categories was
the main influencing factor for segmentation. Therefore, it is necessary to strengthen the
boundary features and provide greater weight to make it easier after training. Moreover,
the segmentation results are more accurate.

2.5. Feature Merging Network (FMNet)

According to the design idea, first, the source data are segmented by a threshold. The
threshold segmentation divides the levels according to the gray value of the pixel and uses a
simple clustering principle to distinguish the different categories from the numerical value.
The function is to extract the global features of the image and strengthen the local features.
After threshold segmentation, the texture features in the source data image are highlighted,
the boundaries between categories are clearer, and the global features of the source data are
enhanced. In addition, local features within the category are weakened. Because the pixel
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values within the same category are similar, similar pixel values are converted similarly
through the threshold, such as in Equation (1), which reduces the impact of noise within
the category. In this study, we use the above five threshold segmentation methods to extract
the global features of the image and combine them with the depth convolution network to
build the FMNet model.

The next step is to input the source and feature data into the encoder network and use
a convolution operation to extract high-dimensional features. This part of the convolution
operation mainly uses a convolution kernel size of 3 × 3. The convolution results were
then normalized and activated. To improve the receptive field of the model, the maximum
pooling operation is then conducted using a 2 × 2 pooling core, where the step size is
set to 2. At the same time, the index of the position of the maximum value is recorded
in the maximum pool, which is used to apply nonlinear up-sampling in the decoder
process. Feature maps contain the high-dimensional features of the source data, and the
high-dimensional features of the global features are finally output by the encoder network.

Next, the feature maps, namely, the decoder operation, are sampled. The explicit
path consists of several blocks, and different decoder networks have different numbers of
blocks. Within each block, the size of the input feature maps is doubled, and the number is
halved. The feature maps of the left symmetric compression path were then clipped to the
same size as the extended path and normalized. The deconvolution kernel size used in the
sampling was 2 pixels × 2 pixels. Finally, the prediction results of k (number of categories,
k = 5) channels with the same size as the original image are input into the softmax layer for
the final classification.

The following pseudo-code (see Algorithm 1) was completed according to the design
process shown in Figure 6. In this study, five threshold segmentation algorithms and a
basic semantic segmentation network model, UNet, are combined to form five feature
merge semantic segmentation network models. They are compiled through the Keras
framework [33], including training and testing. For 1002 SAR images in the training
dataset, they were divided into 50 batches, where each batch has 450 iterations, and the
total number of iterations is more than 20,000. As a parameter setting of the network that
needs to be explained, the feature merging does not affect the parameter quantity of the
semantic segmentation model; however, the basic network model is the factor determining
the number of parameters. The overall parameter quantity of the UNet model is 3.6 million.
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Figure 6. Schematic depiction of FMNet architecture used for segmentation. The traditional threshold
segmentation algorithm is combined with the deep learning model to form FMnet. The global features
provided by the threshold segmentation model reduce the noise for the feature extraction of the
depth model, and also provide more clear boundary features in the segmentation process.
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The equipment used in this experiment included a GeForce RTX 2060 with a core
frequency of 1770 MHz and a video memory capacity of 6 GB. The CPU is a 10,400 version
of Intel i5, with a frequency of 2.9 GHz. The memory size of the device was 16 GB.

Algorithm 1. Pseudo code of the FMNet segmentation algorithm.

Input: Oil Spill Dataset
Function: Threshold Segmentation (TS)

If src(x,y) > the value of threshold then
src(x,y) = 0 or maxValue Depending on the algorithm of TS

Return feature image
Function: Merge

Merge feature image and original image
Return: fusion data

Encoder Network:
Repeat:

Convolutional: ( f ∗ g)(1, 1) = ∑2
k=0 ∑2

h=0 f (h, k)g(1− h, 1− k)
Rectified Linear Unit (ReLU) activation: a(l) = f

(
Wa(l−1) + b

)
Max Pooling: Select the largest value in the kernel and record the position
Return: feature maps

Decoder Network:
Repeat:

Transposed Convolution: Combine the down-sampling features to reproduce the segmented image
Return: k segmentation maps

Softmax:
Decision making: Each pixel position selects the category with the greatest probability

Output: Segmentation image

Another important network parameter is the learning rate. If the learning rate is too
high, the training result may not converge or diverge. The change in the range of weight
may be extremely large, making the optimization over the minimum value and worsening
the loss function. When the learning rate is too low, the training will become more reliable;
however, the optimization process takes a long time because each step toward the minimum
value of the loss function is small. This paper compares the initial learning rates of 10-3,
10-4, and 10-5 experimentally, and the results show that the training effect of the 10-4 sized
learning rate model is the best. The optimizer chooses the best Adam algorithm and uses
cross entropy to isolate the parameters, which also reduces the possibility of an overfitting.

3. Results and Discussion

This chapter mainly presents the results in three parts. The first part is the results of
the SAR image threshold segmentation using five different methods (see Figures 7 and 8).
The training and test results of the baseline UNet and five FMNet models are introduced in
the second part (see Figures 9 and 10). The test results of the oil spill image segmentation
are shown in Figure 11.
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Figure 7. (a) The original image, (b) the label of the original image, (c) the segmentation result using a threshold of 40, (d) the
segmentation result using a threshold of 75, and (e) the segmentation result using a threshold 125. The higher the threshold is set
75, the more speckle noise is retained. Setting the threshold to 75 not only removes most of the spots, but also has little impact on
the oil spill area and oil spill like area (dark area).
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Figure 8. (a) Original image, (b) Binary segmentation, (c) ToZero segmentation, (d) Truncate segmentation, (e) OSTU
segmentation, and (f) Triangle segmentation. The four processing methods of (b,d–f) are mainly for bright areas. (c) is
mainly to strengthen the characteristics of dark areas.
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Figure 11. (a) SAR images, (b) Labels, (c) Segmentation results by baseline method, (d) Segmentation results of the proposed
method. There are more errors in the recognition effect (c) for UNet compared with (d) for FMnet.

3.1. SAR Image Threshold Segmentation

Among these five different methods, Triangle and Otsu are adaptive threshold seg-
mentation methods, both of which use their own algorithms to automatically select the
appropriate threshold, whereas Binary, Truncate, and ToZero are manual threshold ad-
justment methods, and thus the size of the threshold needs to be determined first. In the
experiment, 40, 75, and 125 thresholds were used to determine the optimal threshold. In
terms of the effect, the three thresholds can obtain the texture of the oil spill area or area
similar two an oil spill; however, when the threshold is set to 40, as shown in Figure 7c,
the algorithm filters out more features with noise, and only retains the most central part of
the dark area, which loses some of the features in the edge between the dark and bright
regions. When the threshold is set to 125, as shown in Figure 7e, too much noise is retained,
which cannot meet the design requirements of this experiment. When the threshold value
is 75, as shown in Figure 7d, it not only keeps the trunk of the oil spill and oil-spill-like
areas, but it also filters out most of the noise.

After the 75 thresholds were determined, 5 threshold segmentation methods were
used to segment the SAR image, the results of which are shown in Figure 8b–d), which
represent the results obtained by three custom threshold segmentation methods: binary,
ToZero, and Truncat. In addition, Figure 8e,f shows the results obtained by the two adaptive
threshold segmentation methods, OTSU and triangle. It can be seen from the results that
the segmentation effects of binary and triangle are similar and are the most different from
the original image in Figure 8a. Because the pixel value of the oil spill and the oil-spill-like
areas is low, and most areas of the image are brighter, the custom threshold is set lower, and
the pass rate of the pixel value in the binary algorithm is high. In addition, the overflow of
the dark region of the oil and oil- spill-like areas are retained. The triangle algorithm uses
the histogram feature to automatically find the best threshold of an image, which varies
for images with different levels of brightness. Two algorithms, Binary and Triangle, filter
the pixel values of the oil spill and oil-spill-like areas, highlighting the characteristics of
bright areas and reducing the speckle noise of the image. By contrast, the ToZero algorithm
mainly strengthens the characteristics of the dark area, uniformly changing the value of
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the dark area to zero, and does not process the other areas; thus, the results are extremely
similar to the source image in Figure 8a. Unlike other strategies, the Truncate algorithm
uniformly changes the bright areas to greater than the threshold to be equal to the threshold,
while keeping the other dark areas less than the threshold unchanged. As a result of this
change, the pixel value between the dark and bright areas is reduced, and may be in the
wrong direction, misleading the model. The OSTU algorithm is an adaptive threshold
segmentation method. It can be seen from Figure 8e that, compared to the original image,
the areas with slightly dark features are significantly enhanced, and only the areas with
obvious bright features are retained, indicating that a characteristic of the threshold method
is to highlight the dark areas and weaken the light areas.

3.2. Oil Spill Dataset Model Training

Using 90% of the images in the training dataset to train the model, the remaining 10%
of the dataset was used as the validation set of the training model to verify the robustness
of the model. The data are then input into the compiled model for the training process,
and each iteration process will verify the prediction accuracy of the model. The loss value
and accuracy rate of the training and verification processes are shown in Figure 9. The
figure shows the performance of the UNet prototype and five FMNet network structures
on the training set. From the perspective of the changing state of accuracy, the overall
trend is the same. From the very beginning, the accuracy rate was approximately 0.86, and
the accuracy rate quickly reached approximately 91% during the early stage of training,
and the fluctuation then rose to approximately 98% in the later stage. The figure on
the right shows the change in accuracy of the last 10 models. From Table 1, it can be
seen that the final training accuracy of the UNetOriginal model is 98.16%, the loss value
is 0.051, the verification accuracy rate is 93.2%, and the loss value is 0.235, which are
considered baselines. The accuracy of the three models BinaryFMNet, OSTUFMNet, and
TriangleFMNet are 98.02%, 98.06%, and 98.08%, respectively, which are almost the same
as those of the original model; however, these models have negative characteristics in
comparison to the original model, i.e., the volatility changes in the later period are severe.
The ToZeroFMNet model not only achieves the best stability, but also the highest accuracy,
reaching 98.40%. In addition, TruncFMNet also achieves a good stability, but its accuracy
rate of 98.26% ranks second. The change trend of the loss value of each model is almost the
same as that of the accuracy, although the numerical value is the opposite. From Figure 8,
it can also be seen that the loss value has the best stability in the later ToZeroFMNet model,
and the lowest loss value is 0.047. Several other models are volatile at this stage. Larger
volatility indicates that the model experiences a serious overfitting.

Table 1. Comparison of training and verification results between six models. N.B. the bold text
indicates the best results.

Model Name Phase Accuracy (%) Difference (%) Loss

UNetOriginal Training 98.16
4.89

0.051
Validation 93.27 0.235

BinaryFMNet Training 98.02
4.95

0.058
Validation 93.10 0.321

TruncFMNet
Training 98.26

4.62
0.051

Validation 93.64 0.284

OSTUFMNet
Training 98.06

4.93
0.057

Validation 93.15 0.255

ToZeroFMNet
Training 98.40

4.36
0.045

Validation 94.04 0.230

TriangleFMNet Training 98.08
4.87

0.054
Validation 93.21 0.231
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Figure 10 shows the change process of the accuracy and loss value of the training model
on the validation set. Through a comparison, three models, UNetOriginal, BinaryFMNet,
and ToZeroFMNet, were screened out. They performed better than the other three models
and showed different stabilities during the process. In addition, TruncFMNet, OSTUFMNet,
and TriangleFMNet experience large jitter at the beginning of the training, regardless of the
accuracy or loss, indicating that the model has a staged instability. The accuracy change
curve of the BinaryFMNet model is the best during the early stage, but there is a period
of severe fluctuations in the middle of the progression, and at this point, ToZeroFMNet
shows more lasting stability. In addition, during the early stage, it has an accuracy similar
to that of the BinaryFMNet Trend. From the numerical results, the accuracy rate of the
ToZeroFMNet model on the validation set was 94.04, which was the highest, and the loss
value was 0.230, which was also the lowest. As the most important aspect, the differences
in the accuracy and loss value of the model between the training and validation sets are the
smallest, indicating that the model alleviates the overfitting phenomenon of the original
approach because the smaller the difference, the lower the overfitting effect.

Among the FMNet models built on the modified of end-to-end network, ToZeroFMNet
achieved the best results and alleviated the overfitting problem, which is an improvement
over the original model. At the same time, the performances of the other threshold segmen-
tation models are almost the same as those of the original model. Based on the principle
of the ToZero threshold segmentation model, the ToZero model is used to strengthen the
processing of the dark area of the SAR image, that is, to highlight the characteristics of
the oil spill and oil-spill-like areas, whereas the other areas are not processed. The model
obtained through the segmentation method Truncate, whose treatment is almost the same
as that of ToZero, and UNet is also more accurate than the original model. The difference
here is that the truncated threshold segmentation model was used to unify the non-dark
areas to the threshold. Binary uses a threshold to divide the dark and non-dark areas
more extremely. The dark areas were all set to zero, and the non-dark areas were set
to 255. As the final result, the model fused with UNet had the worst effect. This may
be because the threshold segmentation destroys the original numerical correlation in the
images. This is only a binary distinction, and the feature parameters that can be provided
to the network model are insufficient. From the above results, it can be concluded that
when the threshold segmentation strengthens the characteristics of a certain category, it is
not able to distinguish the categories at the same time. In this way, it can provide more
parameter characteristics to the model, and better results can be obtained.

3.3. Test Results of the Model

After analyzing the effects of the fusion model in the training and verification stages,
the model was evaluated on the test set, and 110 SAR images in the test set were segmented
using the network structure obtained through training. Figure 11 shows a partial display of
the results. The segmentation results obtained by the FMNet algorithm combining ToZero
and UNet are more detailed than the baseline model, and the recognition results of some
areas are even more accurate than the shape in the label. The original model had a relatively
large segmentation error for the oil-spill-like areas. The two segmentation results in the
example failed to identify these areas.

In terms of visual effects, the fusion model achieved a better performance. It also
showed better results than the original model in terms of numerical statistics. The model
performance is measured in terms of intersection-over-union (IoU), which is described as

IOU =
prediction ∩ ground truth
prediction ∪ ground truth

=
TP

FP + TP + FN
(7)

where TP, FP, and FN denote the number of true positive, false positive, and false negative
samples, respectively. The IoU was measured for every class (five in total) of the dataset.
Because the Sea Surface category occupies 88.32% of the number of pixels in the dataset, this
proportion will lead to unconvincing conclusions when calculating the mean intersection
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over the union. This study uses the recognition results of the other four categories to
calculate the weighted MIoU:

MIoU =
1
K

K

∑
i=1

Pi ∗ Ioui (8)

where K represents the number of classes, Pi is the weight of ith class.
Another measurement is Recall defined as Equation (9). This parameter represents

the number of pixels that are correctly predicted, which accounts for the proportion
of the total number of pixels of the category in the sample. And IoU represents the
intersection of the number of correct predictions in the number of samples of this type and
the number of predictions of this type. The large values of these two parameters indicate
that in the prediction results, there are more correct prediction results and fewer incorrect
prediction results.

Recacll =
TP

TP + FN
(9)

As can be seen in Table 2, OSTUFMNet and ToZeroFMNet rank first and second with
almost the same recognition accuracy on the sea surface, at nearly 1% higher than that
of BaselineUnet. For the recognition of the two categories of oil spill and oil-spill-like
areas, the ToZeroFMNet model ranked first at 3.46% and 1.93% higher than BaselineUNet,
respectively. In terms of ship recognition, the BaselineUNet model still has the highest
accuracy rate, whereas in terms of land recognition, BinaryFMNet ranks first at 2.29%
higher than the BaselineUNet model, and the ToZeroFMNet model ranks second at 1.42%
higher than the original model. The ToZeroFMNet model achieved a weighted MIoU
accuracy rate of 61.90, which was the highest among the six models. In the performance of
the six models in the recall parameters, ToZero performed best in categories sea surface, oil
spill and like-oil spill, reaching 98.29%, 56.33% and 44.61% respectively, 1.42%, 2.56% and
6.85% higher than the baseline. In the performance of the Ship category, the original model
still maintains the best performance. But in the recognition of the land category, Binary got
a better result.

Table 2. Comparison between Baseline_UNet and five FMNets in terms of intersection-over-union or IoU (%). N.B. the bold
text indicates the best results.

Classes Evaluation
Index

Baseline
Unet

Binary
FMNet

OSTUFM
Net

ToZero
FMNet

Triangle
FMNet

TruncFM
Net

Sea Surface
IoU 93.74 93.84 94.53 94.53 91.28 92.78

Recall 96.87 97.27 98.03 98.29 94.30 98.27

Oil Spill IoU 46.49 49.56 48.11 49.95 40.98 41.52
Recall 53.77 56.09 56.31 56.33 41.80 43.51

Like-oil spill IoU 39.47 37.73 37.95 41.40 33.75 35.92
Recall 37.76 38.93 43.03 44.61 29.25 42.16

Ship IoU 33.44 23.07 15.35 25.44 21.57 14.47
Recall 29.63 23.23 17.00 21.38 14.31 2.69

Land
IoU 85.69 87.98 85.35 87.11 85.24 28.40

Recall 91.27 95.70 92.79 93.92 92.09 34.73

MIoU 60.08 60.48 59.29 61.90 56.64 30.09

The proposed model not only improves the recognition accuracy, it also achieves a
better performance in alleviating the overfitting problem of the model. Therefore, the
smaller the difference is between the training set and the test set, the less obvious the
overfitting problem of the model. The training and verification results of the new algo-
rithm on the training set were 0.4% higher than those of the original model, whereas the
recognition accuracy on the test set was increased by 3.5%. With a similar performance on
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the training set, there was a relatively different performance on the test set. This difference
is an external manifestation of the model overfitting phenomenon and shows that the new
model for the training set and the original model have almost the same number of pixel
values recognized correctly, whereas for the test set, the new model has more pixel values
recognized correctly than the original model.

4. Conclusions

Accurate and timely identification of oil spills is of significance for the treatment
of marine environmental pollution. The most effective way to monitor marine oil spills
is to use SAR images, because the difference in backscattering capabilities between the
smooth surface of an oil spill area and the surface of the sea causes their performance on
the SAR image to differ. However, oil spill areas and oil-spill-like areas have similar image
characteristics, which is also an important factor that affects the accuracy of oil spill area
identification. Owing to its powerful image feature mining capabilities, deep learning
has made considerable progress in helping to ocean oil spills. The idea of UNET model
is to provide decision-making for the segmentation of the up sampling process by using
different levels of features in the convolution process. Through the experiment and analysis
of image segmentation algorithm the UNet, the speckle noise in SAR image will affect the
effect of image feature extraction in the process of feature extraction. Based on this, this
paper proposes a new feature fusion network structure, which improves the accuracy of
the original model and alleviates the over fitting problem of the original model.

Deep learning has powerful image feature mining capabilities, particularly when
convolution operations are introduced into image processing. It is precisely owing to this
powerful learning ability that some noise in the image will provide some out-of-order
information, and this feature may lead to overfitting problems in the model. There is much
speckle noise in SAR images, and such noises may provide a lot of invalid information
or even interference information in the model. Based on this, five traditional threshold
segmentation algorithms are used to analyze the pixel value differences of various cate-
gories of SAR images, and the pixel value of 75 is used as the threshold to remove the
speckle noise in the SAR image, and at the same time it highlights the difference between
the bright and dark areas and provides the model with global and concise features. The
network model obtained better results after a fusion of the features, indicating that this
feature fusion model has a theoretical foundation and practical value.

The use of deep learning for marine oil spill monitoring has been the main method for
a long time. Although the recognition accuracy of the network structure proposed in this
paper has been further improved compared to the original model, the recognition accuracy
still needs further improvement. This requires a continuous exploration of the potential
of the deep learning network model. The characteristics of different network structures
need to be analyzed and leverage the advantages of different algorithms to obtain multiple
features of data to provide better features for model decision-making to provide better
results. In addition, this can adjust the structure of the original model based on the data
characteristics, allowing the new model to maximize the advantages of the data themselves
while avoiding their defects. Using different algorithms to obtain different features of data
is an important direction for the applicationand development of deep learning to improve
marine oil spill identification using SAR images.
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