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Abstract: The large scale quantification of impervious surfaces provides valuable information for
urban planning and socioeconomic development. Remote sensing and GIS techniques provide spatial
and temporal information of land surfaces and are widely used for modeling impervious surfaces. Tra-
ditionally, these surfaces are predicted by computing statistical indices derived from different bands
available in remotely sensed data, such as the Landsat and Sentinel series. More recently, researchers
have explored classification and regression techniques to model impervious surfaces. However, these
modeling efforts are limited due to lack of labeled data for training and evaluation. This in turn
requires significant effort for manual labeling of data and visual interpretation of results. In this
paper, we train deep learning neural networks using TensorFlow to predict impervious surfaces from
Landsat 8 images. We used OpenStreetMap (OSM), a crowd-sourced map of the world with manually
interpreted impervious surfaces such as roads and buildings, to programmatically generate large
amounts of training and evaluation data, thus overcoming the need for manual labeling. We con-
ducted extensive experimentation to compare the performance of different deep learning neural net-
work architectures, optimization methods, and the set of features used to train the networks. The four
model configurations labeled U-Net_SGD_Bands, U-Net_Adam_Bands, U-Net_Adam_Bands+SI,
and VGG-19_Adam_Bands+SI resulted in a root mean squared error (RMSE) of 0.1582, 0.1358, 0.1375,
and 0.1582 and an accuracy of 90.87%, 92.28%, 92.46%, and 90.11%, respectively, on the test set.
The U-Net_Adam_Bands+SI Model, similar to the others mentioned above, is a deep learning neu-
ral network that combines Landsat 8 bands with statistical indices. This model performs the best
among all four on statistical accuracy and produces qualitatively sharper and brighter predictions of
impervious surfaces as compared to the other models.

Keywords: impervious surfaces; remote sensing; machine learning; deep learning; Google Earth Engine

1. Introduction

The last five decades have seen a dramatic increase in urbanization, with over
3.5 billion people migrating to urban areas [1]. According to the United Nations, the
rate of urbanization is expected to continue, with 68% of the world’s population predicted
to live in urban areas by 2050 [2]. The rate of urbanization is growing due to the direct
impact to protected areas [3], habitat reduction and degradation, loss of biodiversity [4],
increase in the urban heat island effect [5], and impacted hydrology [6]. Globally, the rate
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of urbanization is increasing at an estimated rate of 1.56% to 3.89% of the global urban land
areas of 2000 [7,8]. Evaluating the current country and city/local level rate of urbanization
is challenging [8]. However, broadly speaking, the number of cities with a significant
population greater than 1 million has dramatically increased in the past 50 years, and half
of the world’s population lives in urban settlements [9,10]. Specifically, developing nations
have observed the most recent dramatic increase in urbanization, with the majority of
current urbanization taking place primarily in Asia, most evident in China and India, with
a large percentage of urbanization occurring in coastal areas [7,8].

Rapid urbanization has contributed to an increase in impervious surfaces. The United
States Geological Survey (USGS) defines impervious surfaces as hard areas that do not
allow water to seep into the ground. Examples include artificial structures such as cement
and asphalt roads, pavement surfaces such as parking lots and sidewalks, and building
roofs covered with water-resistant material. The increase in impervious surfaces has
severely altered the ecological balance in metropolitan areas, impacting hydrologic regimes
and leading to a reduction in adjacent pervious spaces. Impervious surfaces also trap heat,
resulting in a phenomenon known as the “urban heat island effect,” where urban areas
are becoming significantly hotter than their surrounding rural areas [11]. For instance,
according to a 2009 American Meteorological Study, temperatures can be as much as
14 degrees Fahrenheit hotter in New York City than in rural areas 60 miles away [12].
The high concentration of rainwater runoff from storm drains to nearby creeks and rivers
increases stream velocity and therefore the risk of flooding, soil erosion, and natural habitat
loss [13]. Pollutants deposited by vehicles and from the atmosphere onto impervious
surfaces are carried to local water sources by the runoff, thereby degrading the water
quality [14–16]. Accurate quantification of impervious surfaces is an important planning
tool for urban land use development. Careful planning can mitigate the adverse effects
of urban heat islands, water quality degradation, and natural habitat loss caused by the
increase in impervious surfaces [17].

Remote sensing and geographic information system (GIS) techniques provide spatial
and temporal information of land surfaces from the energy reflected by the Earth that is
measured using satellites such as Landsat 8 (e.g., [18–21]). Satellites typically carry several
sensors that measure different ranges of frequencies of the electromagnetic spectrum,
known as bands. Effectively, every observation recorded by satellites with optical sensors
such as Landsat 8 are images where each pixel is represented by N numbers, one for each
of the N bands recorded by the sensors. Landsat 8 measures 11 bands, including nine
bands [18] measured by the Operational Land Imager (OLI) sensor and two measured
by the Thermal Infrared Sensor (TIRS) sensor [18], which are widely used for modeling
impervious surfaces [22]. Remote sensing techniques provide the benefits of relatively
low-cost imagery, global coverage, and short refresh cycles that makes them attractive to
informing sustainable urban development [23]. Cloud computing and machine learning
technologies have demonstrated to be very effective in processing large amounts of satellite
imagery (e.g., [24–27]).

Remote sensing has been extensively utilized for the detection of impervious surfaces.
(see e.g., [28–33]). Historical scientific research in this domain has focused on computing
statistical indices from different bands of remotely sensed data. A statistical index is com-
puted from two or more bands and is designed to enhance specific spectral features of areas
such as vegetation, water bodies, or impervious surfaces while minimizing effects of illu-
mination, shadows, and cloud covers. Statistical indices such as the normalized difference
vegetation index (NDVI) [34], normalized difference built-up index (NDBI) [35], normal-
ized difference impervious surface index (NDISI) [36], modified NDISI (MNDISI) [37],
biophysical composition index (BCI) [38], and perpendicular impervious surface index
(PISI) [39] are commonly used to model impervious surfaces.

More recently, researchers have explored classification and regression approaches such
as maximum likelihood [40], support vector machines [41], artificial neural networks [42],
random forests [43], and regression analysis [44] to model impervious surfaces.
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This paper proposes a deep learning convolutional neural network (CNN)-based
regression model to predict impervious surfaces from Landsat 8 images. The novelty
of our approach is threefold: 1. Using OpenStreetMap [45] data representing roads and
buildings, we systematically generate large volumes of training and evaluation data repre-
senting different terrains sampled across the globe without the need for manual labeling.
2. CNNs can effectively use spatial information in addition to individual pixel data to
improve learning and hence the prediction of impervious surfaces. 3. The deep learning
neural network model allows us to effectively combine data from the Landsat 8 bands
with the derived statistical indices, resulting in significantly accurate images of predicted
impervious surfaces.

2. Related Work
2.1. Statistical Indices

Statistical indices such as NDVI [34], NDBI [35], NDISI [36], MNDISI [37], and PISI [39]
have been studied in the literature for modeling impervious surfaces. The following
subsections describe these indices in more detail.

2.1.1. NDVI

The normalized difference vegetation index (NDVI) [34] is a standardized index that
generates a derived image that displays the “greenness” or relative biomass. NDVI is
computed as the normalized difference of the near-infrared and red bands and ranges
between the values of −1 and +1 [34]. Healthy vegetation (chlorophyll) reflects more
near-infrared and green wavelengths and absorbs red and blue. NDVI is designed to
enhance healthy vegetation, giving it values closer to +1, while water bodies and barren
surfaces give values closer to −1. Conversely, NDVI also provides valuable insight into
detecting or identifying areas with limited vegetation, such as impervious surfaces.

NDVI =
NIR − R
NIR + R

(1)

NIR represents the pixel values extracted from the near-infrared band. R represents
the pixel values extracted from the red band.

2.1.2. NDBI

The normalized difference built-up index (NDBI) [35] uses pixel values from the
near-infrared (NIR) and the short-wave infrared (SWIR) bands to emphasize human-made
built-up areas such as roads and buildings. NDBI attempts to mitigate the effects of terrain
illumination differences and atmospheric effects. The index outputs values between −1.0
and +1.0.

NDBI =
SWIR1 − NIR
SWIR1 + NIR

(2)

SWIR1 represents the pixel values extracted from the first shortwave-infrared band.
NIR represents the pixel values extracted from the near-infrared band.

2.1.3. NDISI

The normalized difference impervious surface index (NDISI) [36] is used to enhance
impervious surfaces and suppress land covers such as soil, sand, and water bodies.

MNDWI =
G − SWIR1
G + SWIR1

(3)

MNDWI represents the modified normalized difference water index, used to calculate
the NDISI, while G represents the pixel values extracted from the green band. SWIR1
represents the pixel values extracted from the SWIR1 band.
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NDISI =
Tb − (MNDWI + NIR + SWIR1)/3
Tb + (MNDWI + NIR + SWIR1)/3

(4)

The equation to calculate the NDISI index references the MNDWI, whose equation is
provided above. Tb refers to the brightness temperature of the TIRS1 thermal band. NIR
refers to the pixel values extracted from the near-infrared band. SWIR1 refers to the pixel
values extracted from the first shortwave infrared band.

2.1.4. PISI

The perpendicular impervious surface index (PISI) [39] attempts to overcome the
shortcomings of the NDISI and its successor, the modified normalized difference imper-
vious surface index (MNDISI). Specifically, since the NDISI depends on the brightness
temperature of the thermal band TIRS1, it performs poorly in geographical areas with a
weak heat island effect. MNDISI improves upon NDISI by introducing nighttime light
luminosity but is more complicated to compute and unavailable in some of the sensors.
The PISI leverages more widely available sensor data from the blue and near-infrared
bands and has shown to perform better than other indices.

PISI = 0.8192 ∗ B − 0.5735 ∗ NIR + 0.075 (5)

B represents the pixel values extracted from the blue band. NIR represents the pixel
values extracted from the near-infrared band.

2.1.5. Analysis

While the statistical index based methods are intuitive and easily implementable,
they have the following limitations. NDBI, which uses the shortwave infrared (SWIR)
and near-infrared (NIR) bands, performs poorly in geographical areas with large soil
composition because it is unable to distinguish the differences between urban land and
vegetation. The NDISI depends on land-surface temperature data and can fail to detect
impervious surfaces in geographical areas with a weaker heat island effect. Indices such as
MNDISI have limited availability, as some of the remotely sensed datasets do not measure
the required bands and transformations. Another challenge for all statistical indices is
the determination of the optimal threshold to classify each pixel as either impervious or
pervious. Extensive analysis of the statistical indices is needed to compute the threshold,
and the threshold can be adjusted for different needs (for example, terrains in various
geographical areas) to give different accuracies [39].

2.2. Classification and Regression Methods

Extensive research has been conducted on the application of classification and re-
gression techniques to predict impervious surfaces. The maximum likelihood classifier
using NDVI differencing was used for establishing urban change in the Washington D.C.
area [40]. Support vector machines (SVM) were trained to classify Landsat images into
three classes, vegetation, soil, and impervious surfaces, in Wuhan, China [41]. The classifi-
cation and regression trees (CART) algorithm was used to predict impervious surfaces in
Chicago, Venice, and Guangzhou [46]. A random forest model was explored for combining
optical data from Landsat with the synthetic aperture radar (SAR) data [47] for predicting
impervious surfaces. Multiple linear regression was employed to relate the percentage of
impervious surface to Landsat tasseled cap greenness responses in Minnesota [44].

Classification and regression methods need large volumes of labeled training and
evaluation data. The approaches described in the literature use visual interpretation to
create labeled data [41]. The need for manual labeling makes it difficult to collect large
volumes of data. As a result, these approaches typically focus on predicting impervious
surfaces in specific geographic regions. An additional challenge for these approaches is
deciphering mixed pixels representing a combination of impervious surfaces and other
land cover types [48].
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2.3. Deep Learning Neural Networks

Artificial neural networks have been used successfully to solve classification and
regression problems. In early work, artificial neural networks such as self organizing maps
(SOM) and multi-layer perceptrons (MLP) were trained to predict impervious surfaces in
Marion County, Indiana [42].

Recent years have seen the emergence of deep learning neural networks (DNNs) [49].
DNNs are artificial neural networks composed of multiple processing layers that learn
representations of underlying data at multiple levels of abstraction. CNNs [50] were the
first neural networks that brought the area of deep learning into prominence. CNNs are
characterized by the use of the convolution operator whose purpose is to extract relevant
features from the input data while preserving spatial and temporal relationships. Deep
networks are characterized by their large number (typically, tens or hundreds) of layers as
opposed to traditional neural networks such as MLPs, which only have a few (typically,
two to three) layers. The multiple layers enable learning progressively richer sets of features
from the input training data. Deep learning networks have been successfully applied to
computer vision, text transcription, and speech understanding tasks where large amounts
of training data are widely available [51].

Semantic image segmentation [52] involves partitioning the input image into different
human interpretative segments or objects [53]. Semantic image segmentation is well suited
to the task of impervious surface detection from images. It involves classifying each pixel
as belonging to one or more classes (e.g., the different land cover classes) or predicting a
continuous value. More recently, deep learning networks have been successfully used for
semantic image segmentation, yielding remarkable performance improvements compared
to more traditional approaches [54]. The DNN architectures for image segmentation
are based on a fundamental concept of the encoder-decoder network [55]. The encoder
section is a deep neural network that takes the input image and learns discriminative
features at progressively higher levels of abstraction. A mirror network called the decoder
takes the coarse representation of the input images and applies upsampling [56] to create
progressively fine-grained representations until the last layer reconstructs an image of the
same size as the input image.

A commonly used deep learning model for semantic image segmentation is the U-Net
architecture. The U-Net architecture is a U-shaped neural network with the encoder and
decoder layers represented side-by-side. U-Net was originally developed for biomedical
image segmentation [56]. Specifically, for the U-Net model architecture, which looks to
increase the feature space and reduce the image resolution, our team leveraged the analysis
consisting of five multiple convolution layer encoding blocks with a distinct max pooling
layer at the end of each block. Figure 1 shows an example of the U-Net architecture.

A different image segmentation approach is to use pre-trained deep learning convo-
lutional networks that have historically performed well on the ImageNet [57] challenge
problems as the encoder. The idea behind using a pre-trained network is to use the features
learned on the ImageNet dataset and transfer them to the image segmentation task. VGG-
19 (a neural network architecture designed by the Visual Geometry Group at the University
of Oxford) [58], GoogLeNet (a neural network architecture designed by researchers at
Google) [59], and ResNet (a residual neural network architecture designed by researchers
at Microsoft) [60] are pre-trained neural networks commonly used as the encoder. The
rest of the model is comprised of a decoder network just as in the regular U-Net architec-
ture. Figure 2 shows a conceptual model of a VGG-19-based encoder-decoder network for
image segmentation.
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Figure 1. U-Net deep learning neural network architecture (courtesy [56]).

Figure 2. VGG-19-based encoder-decoder network.

For the VGG modeling approach, our team utilized the U-Net Architecture and
applied a custom decoder which consists of five blocks utilizing bilinear upsampling
layers, followed by convolution layers, and lastly regularization layers. Additionally, each
convolution layer in the decoder was initialized using a He normal initialization [61] and
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was followed by a batch normalization layer [62] and rectified linear unit (ReLU) activation
function [63]. Finally, the decoder process utilizes an exit branch consisting of a 2D spatial
dropout [64] and a final 1 × 1 convolution employing a softmax activation function.

Regularization techniques were incorporated as part of the decoder architecture to
reduce overfitting. Specifically, L2 regularization, with a rate of 10−3, was applied to the
parameters of each convolution layer. Additionally, Gaussian noise was added as part
of the decoder block to speed up convergence, increase generalization, and reduce the
over-fitting [65]. Lastly, a dropout layer [66] was included after the first convolution within
each decoder block. Incorporating dropout layers promotes model generalization [66].

2.4. Gradient Descent Optimization

DNNs are trained to minimize a loss function such as mean squared error (MSE)
on the training data [67]. The loss minimization is typically performed using one of the
popular gradient descent algorithms such as stochastic gradient descent (SGD) [68] or
adaptive moment estimation (Adam) [69]. Gradient descent minimizes the loss function
by updating the weights of the DNNs in a direction opposite to the gradient of the loss
function with respect to the weights. The learning rate (η) determines the size of the step
taken while updating the weight. Stochastic gradient descent (SGD) performs the update
for each training example, which speeds up training and enables the training algorithm to
escape local minima [70]. Unlike SGD, which maintains a single learning rate, the Adam
optimizer computes individual adaptive learning rates for each weight from the gradients’
first and second moments. Adam is empirically shown to converge to the minimum of the
loss function faster [57].

3. Methodology

This section describes our methodology of training DNNs to predict impervious
surfaces from Landsat 8 images. We modeled the prediction as a regression task, where
the DNN is trained to predict the fraction of the area represented by each pixel of an input
image that is covered with impervious surfaces.

3.1. Input Features

Landsat 8 bands blue (B1), green (B2), red (B3), near-infrared (B4), shortwave infrared
1 (B5), and shortwave infrared 2 (B6) were used as input features to train the deep learn-
ing models. We experimented with adding statistical indices NDVI, NDBI, and PISI as
additional features and trained separate models.

3.2. Impervious Surface Labels

A significant challenge in building deep learning models to predict impervious sur-
faces is the scarcity of labeled data. In our formulation, these labels represent the percentage
of impervious surface per pixel.

We used OSM data to identify impervious surfaces. OSM relies on volunteers to
draw various features like roads, bridges, pavements, and buildings and renders this
information on the map [45]. Figure 3 summarizes the process of creating the OSM patches,
capturing the percentage of the area of each pixel that is covered by impervious surfaces.
The impervious surface label is a value ranging from 0.0 to 1.0, represented as a grayscale
image as shown by the legend in Figure 3, where 0.0 (black) represents pervious surfaces
(e.g., water bodies, soil, vegetation), and 1.0 (white) denotes a completely impervious
surface such as a road or rooftop. This process of generating the impervious surface labels
is executed in Google Earth Engine [71], and the resulting images are stored in Google
Cloud Storage.
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Figure 3. Process for generating OSM patches representing impervious surfaces. Each pixel
in the rasterized OSM patch takes a value between 0 and 100, representing the percentage of
impervious surface.

Each OSM patch is a grayscale image representing the impervious surfaces in that
geographical region. Figure 4, below, shows where all patches used during the experiments
have been sampled from. Patches that appear in clusters have been identified using red
boxes. Some countries where patches appear the most include France, Germany, Italy,
Myanmar, India, Zimbabwe, Mozambique, the Caribbean Islands, Venezuela, and the
United States, to name a few. Figure 5 shows three example images from different parts
of the world. The data from the OSM patch will be used as labels for training the deep
learning models, as described below.

Figure 4. Map indicating 1958 patches sampled across various sites for model training.
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Figure 5. Example OSM patches generated for three different geographical areas (urban, semi-urban,
and rural). Column 1 shows the image from Google Maps, column 2 shows the Landsat 8 true color
image, and column 3 is the OSM patch.

3.3. Dataset Generation

The labeled training, evaluation, and test datasets were generated using Google Earth
Engine. We started with 1958 representative OSM patches selected from different parts
of the world. For each OSM patch, we picked k (k = 10 for these experiments) randomly
generated points within the patch and marked a 10 km × 10 km area with each point
as the centroid. The aforementioned bands were selected for each 10 km × 10 km area,
and the impervious surface label representing the percentage of impervious surface was
attached. The resulting data were exported as 256 × 256 images in the TensorFlow Record
Format [72] to the Google Cloud platform. The flowchart in Figure 6 depicts the process of
generating labeled training, evaluation, and testing data.

3.4. Models

We trained deep learning neural network models using Google Colab [73] to predict
impervious surfaces. Our experiments involved training four models with different neural
network architectures (U-Net and VGG-19), different gradient descent algorithms (SGD
and Adam), and different sets of features (Landsat 8 bands and statistical indices).
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1. U-Net_SGD_Bands: U-Net trained with Landsat 8 bands as features using the
stochastic gradient descent (SGD) optimizer.

2. U-Net_Adam_Bands: U-Net trained with Landsat 8 bands as features using the
Adam optimizer.

3. U-Net_Adam_Bands+SI: U-Net trained with Landsat 8 bands and four com-
puted statistical indices as features using the Adam optimizer.

4. VGG-19_Adam_Bands+SI: VGG-19-based encoder-decoder trained with Landsat
8 bands and computed statistical indices as features using the Adam optimizer.

The models were set up as regression tasks to predict the percentage of impervious
surface per pixel. The root mean squared error (RMSE) was measured on both the training
and evaluation data after each training epoch. We employed early stopping, wherein
training was stopped if the maximum evaluation RMSE decline was lower than 0.05 over
10 epochs.

3.5. Metrics

We evaluated model performance using two metrics computed over the test data: root
mean squared error (RMSE) and accuracy. The accuracy was measured by thresholding
both the target image and the predicted image. Pixel values more than or equal to the
threshold value are set to 1 (impervious), and those below the threshold are set to 0
(pervious). Accuracy is measured using the percentage of pixels that are classified the
same in both images. For the purpose of these experiments, we set the threshold to 0.5.
This threshold value was selected by analyzing the pixel values across the training dataset
that comprises images from urban, semi-urban, and rural areas. This analysis showed the
median pixel value to be approximately 0.5.

While metrics such as RMSE and accuracy give a macro-level view of the model’s
performance, we also visually inspected multiple test set images to obtain a qualitative
view of each model’s strengths and weaknesses.

Figure 6. Impervious surfaces labeled data generation.
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4. Results
4.1. Test Set Metrics

Table 1 summarizes the test set metrics for the four different deep learning models
we trained.

4.2. Test Set Image Observations

In this section, we qualitatively analyze the performance of the four models on
different test images. These images are chosen to represent urban (Figures 7 and 8),
semi-urban (Figure 9), and rural areas (Figure 10). The test set predictions for the U-
Net_Adam_Bands+SI model are sharper and better able to capture individual rooftops and
roads compared to the other models.

Figure 7. Impervious surface predictions from the four deep learning models on an image represent-
ing an urban area.
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The following figures show the differences in predictions between the OSM patch and
the four different predictions. Green boxes have been drawn around specific areas on the
OSM patch, corresponding to the ground truth. On the predictions, green boxes represent
areas over 93% in accuracy, yellow boxes represent areas between 75% and 93% in accuracy,
and red boxes represent areas below 75% in accuracy.

Figure 8. Impervious surface predictions from the four deep learning models on another image
representing an urban area.
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Figure 9. Impervious surface predictions from the four deep learning models on an image represent-
ing a semi-urban area.
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Figure 10. Impervious surface predictions from the four deep learning models on an image repre-
senting a rural area.
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Table 1. Model performance on testing data as measured by RMSE and test accuracy.

Model Names Evaluation RMSE Test RMSE Test Accuracy

U-Net_SGD_Bands 0.1587 0.1582 90.87%
U-Net_Adam_Bands 0.1356 0.1358 92.28%

U-Net_Adam_Bands+SI 0.1360 0.1375 92.46%
VGG19_Adam_Bands+SI 0.1525 0.1582 90.11%

5. Discussion

As indicated by the test set metrics used, whose results are shown in Table 1, the
U-Net_Adam_Bands performs better than U-Net_SGD_Bands on both RMSE and test
accuracy scores. The U-Net_Adam_Bands+SI has the highest accuracy, while the U-
Net_Adam_Bands has the best evaluation and test RMSE. In contrast, both the U-Net_SGD_
Bands and VGG19_Adam_Bands+SI perform with lesser test accuracy and RMSE scores.
Furthermore, in Figures 7c, 8c, 9c, and 10c, the U-Net_SGD_Bands model shows significant
blurring and an inability to capture individual rooftops and narrow roads. We decided to
use the Adam optimizer for the other experiments.

As shown in Table 1, the U-Net_Adam_Bands and U-Net_Adam_Bands+SI are similar
in performance on the quantitative metrics. Studying Figures 7e, 8e, 9e, and 10e shows that
the predicted U-Net_Adam_Bands+SI images are sharper and able to represent brighter
surfaces such as lighter colored rooftops better. This highlights the benefit of using statistical
indices as higher level features to better discriminate impervious surfaces in addition to
the Landsat 8 bands.

The VGG-19_Adam_Bands+SI underperformed in comparison to the other models,
both on test set metrics and when visually inspecting specific test set images. We hypothe-
size that since the VGG-19 encoder was trained on ImageNet data [57], which only contain
household objects and animals, it was not able to effectively discriminate impervious
surfaces from the data we provided.

An objective comparison of our models’ results with the statistical indices-based
approach and other classification and regression techniques proposed in related literature
is difficult because the methods proposed in the literature were based on data constructed
at vastly different time periods and focused on specific geographical regions, and threshold
calculation in these methods was optimized for specific needs.

The average classification accuracies reported for impervious surfaces computed
using NDBI, BCI, MNDISI, and PISI are 64.6%, 83.27%, 87%, and 93.4%, respectively.
While we cannot directly compare these accuracies to the average accuracy of the U-
Net_SGD_Bands+SI model (92.46%) due to the above reasons, the advantage of our ap-
proach is that the model was trained using representative OSM patches from all over the
world, and its performance generalizes well to different terrains worldwide.

6. Conclusions and Future Work

Accurately quantifying impervious surfaces is crucial for urban planning, sustainable
development, and understanding the environmental impacts of impervious surface land
cover. Historically, impervious surface modeling is based on statistical indices computed
to accentuate the impervious surfaces in satellite imagery. The past few years have seen
tremendous advances in deep learning. In this paper, we have demonstrated how deep
learning can be effectively used to predict impervious surfaces. The advantages of our
approach are the ability to programmatically generate large volumes of globally repre-
sentative labeled training data from OpenStreetMap, the ability to use CNNs to harness
spatial properties of Landsat 8 images in addition to the individual pixel values, and the
effectiveness of combining statistical indices together with Landsat 8 bands as features
in training to build models that can better predict impervious surfaces. In summary, we
found that the U-Net_Adam_Bands+SI model performed best, both taking into account
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quantitative metrics (RMSE and accuracy) and visual inspection of predictions on test set
images representing urban, semi-urban, and rural areas around the world.

We identified a few areas that merit further research. The brightness of the model’s
predicted impervious surfaces is lower than the labeled data from the OSM patches. It will
be interesting to explore if a post-processing brightness filter can better accentuate impervi-
ous surfaces, resulting in improved model performance. The thresholding approach used
to compute test accuracy in our experiments is simplistic. More sophisticated thresholding
approaches have been proposed in related literature [39]. Exploring these approaches and
comparing our models’ resulting accuracy in the same geographical areas as used in other
research will enable obtaining a more objective comparison of the different approaches.
In a follow up study, we intend to study the urban–rural interfaces in the context of land
cover mapping with impervious surfaces as one class among others.

An interesting application of our DNN model to predict impervious surfaces is in
identifying missing roads and buildings in maps such as OSM. Since OSM is manually
curated by volunteers, it is conceivable that newer constructions, including buildings and
roads, may not yet be represented on the map. Applying the impervious surface model
to the most recent Landsat 8 imagery and comparing the prediction to the impervious
surfaces appearing on the map will identify geographical areas where the impervious
surfaces are not yet represented on the map. This approach can therefore complement
existing maps and ground-based data to potentially be used for filling gaps such as missing
roads and buildings on the map and tasking OSM volunteers to focus their attention on
these missing structures. The data used in this product can be kept up-to-date using the
newest satellite imagery provided. This product has the power to globally transform
infrastructure mapping.

Author Contributions: J.R.P., A.P., B.B., T.M. and D.S. conceptualized the methodology and designed
the study. D.S. and T.M. provided the resources. A.P. and B.B. collected the data. J.R.P. performed the
formal analysis and validation, with guidance from F.C., J.P. prepared the original draft. J.R.P., T.M.,
and F.C. reviewed and edited the draft. All authors read and approved the submitted manuscript.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank data providers including the National Aeronautics and Space
Administration (NASA), the United States Geological Survey (USGS), Google, TensorFlow, and the
OpenStreetMap (OSM) community for provision of resources which made this study possible.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. United Nations Department of Economic and Social Affairs (UN DESA). World’s Population Increasingly Urban with more

than Half Living in Urban Areas. Available online: https://www.un.org/en/development/desa/news/population/world-
urbanization-prospects-2014.html (accessed on 1 May 2021).

2. Brabec, E.; Schulte, S.; Richards, P.L. Impervious surfaces and water quality: A review of current literature and its implications
for watershed planning. J. Plan. Lit. 2002, 16, 499–514. [CrossRef]

3. Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.; Gimmi, U.; Pidgeon, A.M.; Flather, C.H.; Hammer, R.B.; Helmers, D.P. Housing
growth in and near United States protected areas limits their conservation value. Proc. Natl. Acad. Sci. USA 2010, 107, 940–945.
[CrossRef] [PubMed]

4. Opoku, A. Biodiversity and the built environment: Implications for the Sustainable Development Goals (SDGs). Resour. Conserv.
Recycl. 2019, 141, 1–7. [CrossRef]

5. Arnfield, A.J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat
island. Int. J. Climatol. A J. R. Meteorol. Soc. 2003, 23, 1–26. [CrossRef]

6. Carlson, T.N.; Arthur, S.T. The impact of land use—land cover changes due to urbanization on surface microclimate and
hydrology: A satellite perspective. Glob. Planet. Chang. 2000, 25, 49–65. [CrossRef]

7. Seto, K.C.; Fragkias, M.; Güneralp, B.; Reilly, M.K. A meta-analysis of global urban land expansion. PLoS ONE 2011, 6, e23777.
[CrossRef]

8. Seto, K.C.; Parnell, S.; Elmqvist, T. A global outlook on urbanization. In Urbanization, Biodiversity and Ecosystem Services: Challenges
and Opportunities; Springer: Dordrecht, The Netherlands, 2013; pp. 1–12.

https://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.html
https://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.html
http://doi.org/10.1177/088541202400903563
http://dx.doi.org/10.1073/pnas.0911131107
http://www.ncbi.nlm.nih.gov/pubmed/20080780
http://dx.doi.org/10.1016/j.resconrec.2018.10.011
http://dx.doi.org/10.1002/joc.859
http://dx.doi.org/10.1016/S0921-8181(00)00021-7
http://dx.doi.org/10.1371/journal.pone.0023777


Remote Sens. 2021, 13, 3166 17 of 19

9. World Health Organization. The World Health Report, Life in the 21st Century, A Vision for All, Report of the Director-General.
1998. Available online: https://apps.who.int/iris/handle/10665/42065 (accessed on 1 May 2021).

10. Moore, M.; Gould, P.; Keary, B.S. Global urbanization and impact on health. Int. J. Hyg. Environ. Health 2003, 206, 269–278.
[CrossRef]

11. Madhumathi, A.; Subhashini, S.; VishnuPriya, J. The Urban Heat Island Effect its Causes and Mitigation with Reference to the
Thermal Properties of Roof Coverings. In Proceedings of the International Conference on Urban Sustainability: Emerging Trends,
Themes, Concepts & Practices (ICUS), Jaipur, India, 16–18 March 2018; Malaviya National Institute of Techonology: Jaipur, India,
2018.

12. Polycarpou, L. No More Pavement! The Problem of Impervious Surfaces; State of the Planet, Columbia University Earth Institute: New York,
NY, USA, 2010.

13. Frazer, L. Paving Paradise: The Peril of Impervious Surfaces; National Institute of Environmental Health Sciences: Research Triangle
Park, NC, USA, 2005; pp. A456–A462.

14. Melesse, A.M.; Weng, Q.; Thenkabail, P.S.; Senay, G.B. Remote sensing sensors and applications in environmental resources
mapping and modelling. Sensors 2007, 7, 3209–3241. [CrossRef]

15. Liu, Z.; Wang, Y.; Li, Z.; Peng, J. Impervious surface impact on water quality in the process of rapid urbanization in Shenzhen,
China. Environ. Earth Sci. 2013, 68, 2365–2373. [CrossRef]

16. Kim, H.; Jeong, H.; Jeon, J.; Bae, S. The impact of impervious surface on water quality and its threshold in Korea. Water 2016, 8, 111.
[CrossRef]

17. Arnold, C.L., Jr.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc.
1996, 62, 243–258. [CrossRef]

18. Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.;
Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014,
145, 154–172. [CrossRef]

19. Saah, D.; Tenneson, K.; Poortinga, A.; Nguyen, Q.; Chishtie, F.; San Aung, K.; Markert, K.N.; Clinton, N.; Anderson, E.R.; Cutter, P.;
et al. Primitives as building blocks for constructing land cover maps. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101979. [CrossRef]

20. Potapov, P.; Tyukavina, A.; Turubanova, S.; Talero, Y.; Hernandez-Serna, A.; Hansen, M.; Saah, D.; Tenneson, K.; Poortinga, A.;
Aekakkararungroj, A.; et al. Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000–2017
Landsat time-series. Remote Sens. Environ. 2019, 232, 111278. [CrossRef]

21. Poortinga, A.; Tenneson, K.; Shapiro, A.; Nquyen, Q.; San Aung, K.; Chishtie, F.; Saah, D. Mapping plantations in Myanmar by
fusing Landsat-8, Sentinel-2 and Sentinel-1 data along with systematic error quantification. Remote Sens. 2019, 11, 831. [CrossRef]

22. Schneider, A.; Friedl, M.A.; Potere, D. A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 2009, 4, 044003.
[CrossRef]

23. Saah, D.; Tenneson, K.; Matin, M.; Uddin, K.; Cutter, P.; Poortinga, A.; Nguyen, Q.H.; Patterson, M.; Johnson, G.; Markert, K.; et al.
Land cover mapping in data scarce environments: Challenges and opportunities. Front. Environ. Sci. 2019, 7, 150. [CrossRef]

24. Markert, K.N.; Markert, A.M.; Mayer, T.; Nauman, C.; Haag, A.; Poortinga, A.; Bhandari, B.; Thwal, N.S.; Kunlamai, T.; Chishtie,
F.; et al. Comparing sentinel-1 surface water mapping algorithms and radiometric terrain correction processing in southeast asia
utilizing google earth engine. Remote Sens. 2020, 12, 2469. [CrossRef]

25. Poortinga, A.; Aekakkararungroj, A.; Kityuttachai, K.; Nguyen, Q.; Bhandari, B.; Soe Thwal, N.; Priestley, H.; Kim, J.; Tenneson, K.;
Chishtie, F.; et al. Predictive Analytics for Identifying Land Cover Change Hotspots in the Mekong Region. Remote Sens. 2020,
12, 1472. [CrossRef]

26. Phongsapan, K.; Chishtie, F.; Poortinga, A.; Bhandari, B.; Meechaiya, C.; Kunlamai, T.; Aung, K.S.; Saah, D.; Anderson, E.;
Markert, K.; et al. Operational flood risk index mapping for disaster risk reduction using Earth Observations and cloud computing
technologies: A case study on Myanmar. Front. Environ. Sci. 2019, 7, 191. [CrossRef]

27. Poortinga, A.; Clinton, N.; Saah, D.; Cutter, P.; Chishtie, F.; Markert, K.N.; Anderson, E.R.; Troy, A.; Fenn, M.; Tran, L.H.; et al. An
operational before-after-control-impact (BACI) designed platform for vegetation monitoring at planetary scale. Remote Sens. 2018,
10, 760. [CrossRef]

28. Slonecker, E.T.; Jennings, D.B.; Garofalo, D. Remote sensing of impervious surfaces: A review. Remote Sens. Rev. 2001, 20, 227–255.
[CrossRef]

29. Bauer, M.E.; Heinert, N.J.; Doyle, J.K.; Yuan, F. Impervious surface mapping and change monitoring using Landsat remote
sensing. In ASPRS Annual Conference Proceedings; American Society for Photogrammetry and Remote Sensing Bethesda: Rockville,
MD, USA, 2004; Volume 10.

30. Khanal, N.; Matin, M.A.; Uddin, K.; Poortinga, A.; Chishtie, F.; Tenneson, K.; Saah, D. A comparison of three temporal smoothing
algorithms to improve land cover classification: A case study from NEPAL. Remote Sens. 2020, 12, 2888. [CrossRef]

31. Weng, Q. (Ed.) Remote Sensing of Impervious Surfaces; CRC Press: Boca Raton, FL, USA, 2007.
32. Liu, Z.; Wang, Y.; Peng, J. Remote sensing of impervious surface and its applications: A review. Prog. Geogr. 2010, 29, 1143–1152.
33. Wang, Y.; Li, M. Urban impervious surface detection from remote sensing images: A review of the methods and challenges. IEEE

Geosci. Remote Sens. Mag. 2019, 7, 64–93. [CrossRef]
34. Pettorelli, N. The Normalized Difference Vegetation Index; Oxford University Press: Oxford, UK, 2013.

https://apps.who.int/iris/handle/10665/42065
http://dx.doi.org/10.1078/1438-4639-00223
http://dx.doi.org/10.3390/s7123209
http://dx.doi.org/10.1007/s12665-012-1918-2
http://dx.doi.org/10.3390/w8040111
http://dx.doi.org/10.1080/01944369608975688
http://dx.doi.org/10.1016/j.rse.2014.02.001
http://dx.doi.org/10.1016/j.jag.2019.101979
http://dx.doi.org/10.1016/j.rse.2019.111278
http://dx.doi.org/10.3390/rs11070831
http://dx.doi.org/10.1088/1748-9326/4/4/044003
http://dx.doi.org/10.3389/fenvs.2019.00150
http://dx.doi.org/10.3390/rs12152469
http://dx.doi.org/10.3390/rs12091472
http://dx.doi.org/10.3389/fenvs.2019.00191
http://dx.doi.org/10.3390/rs10050760
http://dx.doi.org/10.1080/02757250109532436
http://dx.doi.org/10.3390/rs12182888
http://dx.doi.org/10.1109/MGRS.2019.2927260


Remote Sens. 2021, 13, 3166 18 of 19

35. Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J.
Remote Sens. 2003, 24, 583–594. [CrossRef]

36. Xu, H. Analysis of impervious surface and its impact on urban heat environment using the Normalized Difference Impervious
Surface Index (NDISI). Photogramm. Eng. Remote Sens. 2010, 76, 557–565. [CrossRef]

37. Liu, C.; Shao, Z.; Chen, M.; Luo, H. MNDISI: A multi-source composition index for impervious surface area estimation at the
individual city scale. Remote Sens. Lett. 2013, 4, 803–812. [CrossRef]

38. Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012,
127, 247–259. [CrossRef]

39. Tian, Y.; Chen, H.; Song, Q.; Zheng, K. A novel index for impervious surface area mapping: Development and validation. Remote
Sens. 2018, 10, 1521. [CrossRef]

40. Masek, J.; Lindsay, F.; Goward, S. Dynamics of urban growth in the Washington DC metropolitan area, 1973–1996. from Landsat
observations. Int. J. Remote Sens. 2000, 21, 3473–3486. [CrossRef]

41. Shi, L.; Ling, F.; Ge, Y.; Foody, G.M.; Li, X.; Wang, L.; Zhang, Y.; Du, Y. Impervious surface change mapping with an uncertainty-
based spatial-temporal consistency model: A case study in Wuhan City using Landsat time-series datasets from 1987 to 2016.
Remote Sens. 2017, 9, 1148. [CrossRef]

42. Hu, X.; Weng, Q. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and
multi-layer perceptron neural networks. Remote Sens. Environ. 2009, 113, 2089–2102. [CrossRef]

43. Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing
images. Remote Sens. Environ. 2014, 141, 155–167. [CrossRef]

44. Bauer, M.E.; Loffelholz, B.C.; Wilson, B. Estimating and mapping impervious surface area by regression analysis of Landsat
imagery. In Remote Sensing of Impervious Surfaces; CRC Press: Boca Raton, FL, USA, 2008; pp. 3–19.

45. Map, O.S. Open street map. Retr. March 2014, 18, 2014.
46. Wang, J.; Wu, Z.; Wu, C.; Cao, Z.; Fan, W.; Tarolli, P. Improving impervious surface estimation: An integrated method of

classification and regression trees (CART) and linear spectral mixture analysis (LSMA) based on error analysis. GIScience Remote
Sens. 2018, 55, 583–603. [CrossRef]

47. Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar; Wiley: New York, NY, USA, 1991.
48. Zhang, X.; Du, S. A Linear Dirichlet Mixture Model for decomposing scenes: Application to analyzing urban functional zonings.

Remote Sens. Environ. 2015, 169, 37–49. [CrossRef]
49. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
50. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324.

[CrossRef]
51. Dargan, S.; Kumar, M.; Ayyagari, M.R.; Kumar, G. A survey of deep learning and its applications: A new paradigm to machine

learning. Arch. Comput. Methods Eng. 2019, 27, 1071–1092. [CrossRef]
52. Noh, H.; Hong, S.; Han, B. Learning deconvolution network for semantic segmentation. In Proceedings of the IEEE International

Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1520–1528.
53. Szeliski, R. Computer Vision: Algorithms and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010.
54. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey.

arXiv 2020, arXiv:2001.05566.
55. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation.

IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]
56. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the

International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; Springer: Munich, Germany, 2015; pp. 234–241.

57. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

58. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
59. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June
2015; pp. 1–9.

60. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

61. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

62. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings
of the International Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015; pp. 448–456.

63. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010.

64. Tompson, J.; Goroshin, R.; Jain, A.; LeCun, Y.; Bregler, C. Efficient object localization using convolutional networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 648–656.

http://dx.doi.org/10.1080/01431160304987
http://dx.doi.org/10.14358/PERS.76.5.557
http://dx.doi.org/10.1080/2150704X.2013.798710
http://dx.doi.org/10.1016/j.rse.2012.09.009
http://dx.doi.org/10.3390/rs10101521
http://dx.doi.org/10.1080/014311600750037507
http://dx.doi.org/10.3390/rs9111148
http://dx.doi.org/10.1016/j.rse.2009.05.014
http://dx.doi.org/10.1016/j.rse.2013.10.028
http://dx.doi.org/10.1080/15481603.2017.1417690
http://dx.doi.org/10.1016/j.rse.2015.07.017
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/s11831-019-09344-w
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1007/s11263-015-0816-y


Remote Sens. 2021, 13, 3166 19 of 19

65. An, G. The effects of adding noise during backpropagation training on a generalization performance. Neural Comput. 1996, 8, 643–674.
[CrossRef]

66. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

67. Wang, Q.; Ma, Y.; Zhao, K.; Tian, Y. A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 2020, 1–26.
[CrossRef]

68. Bottou, L.; Curtis, F.E.; Nocedal, J. Optimization methods for large-scale machine learning. Siam Rev. 2018, 60, 223–311. [CrossRef]
69. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
70. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
71. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial

analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]
72. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A

system for large-scale machine learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI’16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

73. Carneiro, T.; Da Nóbrega, R.V.M.; Nepomuceno, T.; Bian, G.B.; De Albuquerque, V.H.C.; Reboucas Filho, P.P. Performance
analysis of google colaboratory as a tool for accelerating deep learning applications. IEEE Access 2018, 6, 61677–61685. [CrossRef]

http://dx.doi.org/10.1162/neco.1996.8.3.643
http://dx.doi.org/10.1007/s40745-020-00253-5
http://dx.doi.org/10.1137/16M1080173
http://dx.doi.org/10.1016/j.rse.2017.06.031
http://dx.doi.org/10.1109/ACCESS.2018.2874767

	Introduction
	Related Work
	Statistical Indices
	NDVI
	NDBI
	NDISI
	PISI
	Analysis

	Classification and Regression Methods
	Deep Learning Neural Networks
	Gradient Descent Optimization

	Methodology
	Input Features
	Impervious Surface Labels
	Dataset Generation
	Models
	Metrics

	Results
	Test Set Metrics
	Test Set Image Observations

	Discussion
	Conclusions and Future Work
	References

