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Abstract: Heavy rain associated with landfalling typhoons often leads to disasters in South China,
which can be reduced by improving the accuracy of radar quantitative precipitation estimation
(QPE). At present, raindrop size distribution (DSD)-based nonlinear fitting (QPEDSD) and traditional
neural networks are the main radar QPE algorithms. The former is not sufficient to represent
the spatiotemporal variability of DSDs through the generalized Z–R or polarimetric radar rainfall
relations that are established using statistical methods since such parametric methods do not consider
the spatial distribution of radar observables, and the latter is limited by the number of network
layers and availability of data for training the model. In this paper, we propose an alternative
approach to dual-polarization radar QPE based on deep learning (QPENet). Three datasets of
“dual-polarization radar observations—surface rainfall (DPO—SR)” were constructed using radar
observations and corresponding measurements from automatic weather stations (AWS) and used for
QPENetV1, QPENetV2, and QPENetV3. In particular, 13 × 13, 25 × 25, and 41 × 41 radar range bins
surrounding each AWS location were used in constructing the datasets for QPENetV1, QPENetV2,
and QPENetV3, respectively. For training the QPENet models, the radar data and AWS measurements
from eleven landfalling typhoons in South China during 2017–2019 were used. For demonstration,
an independent typhoon event was randomly selected (i.e., Merbok) to implement the three trained
models to produce rainfall estimates. The evaluation results and comparison with traditional QPEDSD

algorithms show that the QPENet model has a better performance than the traditional parametric
relations. Only when the hourly rainfall intensity is less than 5 mm (R < 5 mm·h−1), the QPEDSD

model shows a comparable performance to QPENet. Comparing the three versions of the QPENet
model, QPENetV2 has the best overall performance. Only when the hourly rainfall intensity is less
than 5 mm (R < 5 mm·h−1), QPENetV3 performs the best.

Keywords: polarimetric radar; quantitative precipitation estimation; deep learning; convolutional
neural network; landfalling typhoons

1. Introduction

Heavy rain from landfalling typhoons is one of the major natural disasters in South
China, which often causes life and economic losses [1]. High-resolution precipitation
estimation is a prerequisite for the typhoon rainfall forecast. The polarimetric radar (PR) is
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an efficient tool for observing precipitation and its microphysical structures [2]. The PR
has significant advantages in quantitative precipitation estimation (QPE) over the single-
polarization radar due to enhanced observations of the precipitation particle size, shape,
and orientation [3].

QPE algorithms have been studied for many years using the PR measurements. In
principle, the quantitative relation between the surface rainfall and radar observation aloft
can be obtained from measurements [3]. However, it is difficult to present this functional
relation in a simple form due to the complex spatiotemporal variability in DSDs [4,5],
especially during typhoon events which are often characterized by complicated precip-
itation microphysical processes [6]. At present, DSD-based nonlinear fitting algorithms
(hereafter referred to as the QPEDSD method) [2,5,7] and the traditional neural network
approach [8–11] are the main QPE algorithms. The precipitation estimation accuracy of
the parametric QPEDSD methods is determined by the physical model of DSD and the
relationship between the physical model and the radar parameters [2,12,13]. DSD char-
acteristics vary with the location and precipitation type. The parameter relationships
between rain rate (R) and the polarimetric radar observables, including reflectivity (ZH),
differential reflectivity (ZDR), and the specific differential phase (KDP), are not sufficient to
characterize the variation [14–17]. In addition, the traditional neural network method is
limited by the number of network layers and the availability of training data, resulting in
poor learning performance.

In recent years, deep learning has been widely used in the fields of computer
vision [18,19] and geoscience including precipitation research (e.g., [20,21]). Tan et al.
built a deep neural network to estimate precipitation based on radar and surface rain-
fall observation data [22,23]. Chen et al. proposed a neural network based on a fusion
mechanism to improve satellite precipitation retrievals using ground radar estimates [24].
Chandrasekar et al. [25] and Chen et al. [3] constructed a precipitation estimation algorithm
composed of two deep neural networks in order to establish the relationship between a
spaceborne radar and rain gauges using a ground radar as a bridge. Moraux et al. pro-
posed a deep-learning precipitation estimation method based on satellite and rain gauge
observations [26]. The abovementioned studies show that deep-learning algorithms have
great potential for improving radar-based QPE.

In this study, we extended the deep learning applications for radar QPE in south China,
with an emphasis on typhoon events. This study used hybrid volume scan data of ZH,
ZDR, and KDP for precipitation estimation, which can better represent the actual cloud and
rainfall conditions and help reduce systematic biases. In particular, a deep convolutional
neural network (CNN) composed of multiscale convolutional operations was designed
to realize the complex nonlinear mapping from radar measurements to rainfall rate. This
multiscale encoding–decoding network structure had strong feature extraction and fitting
capability, as well as the invariance of displacement, scale, and deformation. It could better
extract the spatial characteristics of precipitation from radar data and learn the relationship
between multidimensional radar observations and surface rainfall. In addition, for the same
CNN structure, we used three different datasets to quantify the areal representation of radar
observables and address which range bins should be used to obtain reliable precipitation
estimates. In particular, 13 × 13, 25 × 25, and 41 × 41 radar range bins surrounding
each AWS location were used in constructing the three datasets. For training the QPENet
models, the radar data and AWS measurements from eleven landfalling typhoons in South
China during 2017–2019 were used. For demonstration, an independent typhoon event
was randomly selected (i.e., Merbok) to evaluate the trained models and compare with the
traditional QPEDSD algorithms.

The remainder of this paper is organized as follows. Section 2 introduces the datasets
used in this study. Section 3 details the deep learning-based radar QPE methodology,
including the model architecture and training strategy, as well as how to construct the
model input data for machine learning. In Section 4, the precipitation estimation accuracy of
the three trained models is evaluated, and the influence of the input data dimension on the
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model results is thoroughly discussed. Section 5 compares the data with the conventional
radar QPE algorithm while Section 6 summarizes the main findings of this research.

2. Data

Eleven heavy rainfall events caused by landfalling typhoons in South China from 2017
to 2019 were used in this study. Figure 1 shows the tracks of the eleven typhoons and the
locations of the Guangzhou radar and nearby surface automatic weather stations (AWS).
Table 1 lists the detailed information of these eleven typhoon events.
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Figure 1. Tracks of the eleven landfalling typhoons and the locations of the Guangzhou radar
(red cross) and automatic weather stations. The blue triangles and black dots denote the national
automatic weather stations and regional automatic weather stations between the 15 km and 100 km
coverage ranges (two black circles) of the Guangzhou radar.

Table 1. Detailed information on the eleven typhoon precipitation events.

# Name
(No.) Date (UTC)

Total
Time

(h)

No. of
Valued
gauges

No. of
Radar

Volumes

Mean Gauge
Accumulation

(mm)

Maximum Gauge
Accumulation

(mm)

1 Merbok
(1702) June 12–13, 2017 19 544 190 18.32 144.4

2 Hato
(1713) August 23, 2017 12 775 120 25.22 54

3 Pakhar
(1714) August 26–27, 2017 9 763 90 44.54 71

4 Mawar
(1716) September 02–04, 2017 28 720 280 31.67 211.3

5 Khanun
(1720) October 15–16, 2017 18 765 180 27.33 85.2

6 Ewiniar
(1804) June 07–08, 2018 37 793 370 212.46 311.2

7 Bebinca
(1816) August 10–15, 2018 119 804 1190 100.48 255.6

8 Mangkhut
(1822) September 16, 2018 9 797 90 77.44 148.4

9 Barijat
(1823) September 12–13, 2018 21 613 210 2.98 14

10 Wipha
(1907) August 01–02, 2019 20 806 200 44.62 170.4

11 Bailu
(1911) August 24–25, 2019 23 798 230 45.49 99.1
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2.1. Dual-Polarization Radar Data

In 2016, the Guangzhou radar was upgraded with dual-polarization capability. Ac-
cording to the standards of the China Meteorological Administration (CMA), this radar
has been calibrated by the manufacturer [27]. After the dual-polarization upgrade, the
Meteorological Observation Center of the CMA conducted a series of tests, such as the
built-in system component test and routine calibrations. The test results show that the
measurement uncertainty of ZH is less than 1 dB, and the measurement uncertainty of ZDR
is less than 0.4 dB. The radar operates with the general volume coverage pattern 21, which
scans every six minutes with nine elevation angles (0.5◦, 1.5◦, 2.4◦, 3.3◦, 4.3◦, 6.0◦, 9.9◦,
14.6◦, and 19.5◦). The radar beamwidth is 0.95◦, the radial resolution is 0.25 km, and the
commonly used maximum detection distance is 230 km.

In this study, polarimetric radar data in the range of 15–100 km from the radar (see
Figure 1) were used in order to reduce the influence of the zero-degree layer and the
interference of near-range ground objects. The selected eleven typhoon events consisted of
3150 volume scans, and the numbers of scans for each typhoon event are detailed in Table 1.
In addition, thorough quality control was performed on the collected radar data, including
removal of outliers and non-meteorological echoes, differential phase ΦDP processing, KDP
estimation, etc. [28]. The quality-controlled data were used as the input to the deep-learning
model for precipitation estimation.

2.2. Automatic Weather Station (AWS) Data

In this study, the rainfall observations from 18 national and 1041 regional automatic
weather stations were used as target labels in training the deep-learning model. The
locations of the AWS relative to the Guangzhou radar are indicated in Figure 1. The AWS
rainfall resolution is 0.1 mm, and the rainfall data is archived every five minutes, including
one-minute rainfall and five-minute accumulated rainfall. The six-minute accumulated
rainfall can be obtained through the one-minute rainfall observation in order to match
the radar observation times. Here, it should be noted that the method of Gou et al. [29]
was used to control the quality of rainfall observations from the AWS and remove the
suspicious records.

3. Methods

To test our deep-learning QPE method, the dataset was divided into two independent
parts: the training dataset and the test dataset. The former was used to train the model
by optimizing the learnable parameters of the model through the back-propagation algo-
rithm [21]. In order to ensure that our model did not overfit the training data and could
at the same time make full use of the existing data, we used the k-fold cross-validation
method to optimize the network structure and training strategy through the performance
evaluation of the k-fold validation dataset. The model and training strategy that performed
the best on the validation dataset may overfit the dataset. Therefore, an independent test
dataset was required for the final evaluation of the model.

In the following section, we describe in more detail how the data were prepared before
being fed to our model, how the dataset was made for the training model, and how we
split the data into the training dataset and the test dataset. Furthermore, we present the
architecture of our model and its training strategy.

3.1. Model Inputs

The input features of the QPENet model are the dual-polarization radar-based data,
and the target labels are rainfall measurements from the surface automatic weather stations.
The QPENet model needs to be trained by datasets with tags. The model inputs used
by Chen et al., the CAPPI reflectivity profiles with the horizontal resolution of 1 km and
heights of 1, 2, 3, and 4 km, were not used in our model [3]. To preserve the original
radar information in the network and include the polarization quantities closely related to
precipitation microphysics, this study proposed using multiple polarimetric observables
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from the hybrid scan strategy as the inputs. In order to construct the dataset, we should
have first found the corresponding relationship between the dual-polarization radar data
and surface rainfall. Properly connecting the surface rainfall values (target labels) with
multidimensional radar measurements was critical to training the machine-learning model
for enhanced precipitation estimates.

In particular, at a given time and AWS location, we built the matching samples
between rainfall measurements from the AWS and polarimetric variables at the elevation
angles and different ranges surrounding the AWS. A trustworthy data sample (Figure 2)
was obtained through adjusting the radar observation range (range bins surrounding the
AWS), observation height (elevation angles), and polarization quantity (ZH, ZDR, and KDP).
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Figure 2. Construction of data samples for machine learning. D is the distance from the automatic
weather stations to the radar; (4), (3), (2), and (1) represent the fourth, third, second, and first scan
elevation angles of the radar, respectively.

The specific steps for establishing the data sample and dataset of “DPO—SR” are as
follows (Figure 2):

(1) Automatic weather station selection: To avoid the influence of the melting layer
and ground clutter, only the automatic weather stations within 15–100 km of the radar with
rainfall greater than 0.1 mm were used in this study.

(2) Hybrid scan: It is formed by the four lowest elevation angles. To avoid the effect
of ground clutter, the fourth elevation angle (3.3◦) was selected for 15–20 km away from
the radar, the third elevation angle (2.4◦) was selected for 20–35 km, the second elevation
angle (1.5◦) was selected for 35–50 km, and the first elevation angle (0.5◦) was selected for
50–100 km.

(3) Location correspondence: According to the distance from the automatic weather
station to the radar, the range bin closest to the station at the corresponding elevation angle
was selected as the corresponding range bin.

(4) Range bin selection: The range bin matrix of (2n + 1) × (2n + 1) was composed of
the front and back n range bins in the same radial direction of the corresponding range bin
and the right and left n radial directions of the corresponding range bins at the selected
elevation angle.

(5) Generation of data samples: The matrix composed of the polarization quantities
within the radar observation range bin (called data) and the observed rainfall amount
(called label) from the corresponding automatic weather station was generated as a sample.
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(6) Steps (1)–(5) are the process of labeling (tagging) the rainfall from automatic
weather stations for dual-polarization radar observations. The “dual-polarization radar
observation—surface rainfall” dataset was generated by repeating the tagging process.

Generally, the wind is stronger in typhoon precipitation. Affected by the wind, the
range of falling raindrops is relatively wide. In other words, a wider range of radar
observations is related to the rainfall observed by surface automatic stations. In order
to obtain a better correspondence between the dual-polarization radar observations and
surface rainfall, a sample and the dataset of “DPO—SR” were established, which are more
conducive to precipitation estimation; 13 × 13, 25 × 25, and 41 × 41 bins surrounding the
range bin on top of the AWS were chosen as the radar observation range bins, that is, the
radar observation areas roughly at 1.5 km, 3 km, and 5 km away from the surface automatic
weather stations were selected to correspond to the surface rainfall, and the QPE datasets
(see Table 2 for details) for version 1 (13 × 13), version 2 (25 × 25), and version 3 (41 × 41)
of the eleven typhoon events were respectively established to analyze the influence of the
radar observation range on the typhoon precipitation estimation.

Table 2. Sample information of the “DPO—SR” dataset.

# Name
(No.)

No. of Samples
in Dataset V1

No. of Samples
in Dataset V2

No. of Samples
in Dataset V3

1 Merbok (1702) 4500 4502 4510
2 Hato (1713) 19,196 19,188 19,198
3 Pakhar (1714) 30,398 30,401 30,405
4 Mawar (1716) 8995 8992 8993
5 Khanun (1720) 11,892 11,880 11,884
6 Ewiniar (1804) 115,703 115,737 115,726
7 Bebinca (1816) 63,818 63,874 63,877
8 Mangkhut (1822) 47,230 47,220 47,229
9 Barijat (1823) 1412 1412 1414

10 Wipha (1907) 32,097 32,099 32,089
11 Bailu (1911) 39,932 39,935 39,942

Total 375,173 375,240 375,267

3.2. Model Architecture

The invariance of CNN displacement, scale, and deformation was used to extract
the spatial features of radar data to better fit the relationship between radar observa-
tions and surface rainfall and give full play to the excellent feature extraction and fitting
performance of the deep neural network (DNN). QPENet training and estimation pro-
cesses (Figure 3) were designed to estimate the precipitation based on the classic DNN
and CNN architectures, modules, and concepts (such as AlexNet [30], GoogLeNet [31],
and ResNet [32]). The QPENet model is a regression deep CNN architecture directly
facing the automatic weather station rainfall. It takes radar observation data as the inputs,
automatic weather station rainfall as the target data, and mean square error as the loss
function. The features in the inception module were used to extract multiscale precipitation
features through multiple convolution kernels with different sizes. In particular, radar
observations and the corresponding surface automatic weather station precipitation were
used to train the QPENet regression network (the lower panel in Figure 3). The trained
model could estimate surface precipitation based on the new radar observations (the upper
panel in Figure 3) and evaluate its estimation accuracy through rainfall observation at new
automatic weather stations.
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precipitation estimation.

The general expression of the QPENet model is as follows [3].

y1 = f (w1X + b1) (1a)

yn = f
(
wnyn−1 + bn

)
(1b)

Z = f (wn+1yn + bn+1) (1c)

where X is the input variable which refers to multiple polarization parameters (i.e., ZH,
ZDR, and KDP) of the radar at different ranges (i.e., 1.5 km, 3 km, and 5 km.); y1 . . . yn are
the outputs of the hidden layers; w1 is the weight vector for the input data; w2 . . . wn+1
are the weights of the n hidden layers; b1 . . . bn+1 are the biases associated with the input
layers and the hidden layers; Z is the output (i.e., precipitation estimation) compared with
the target labels (i.e., AWS-measured rainfall) to update the weights.

Our problem was very similar to the semantic segmentation application, and the purpose
of the latter is to assign each pixel in the image to a category. For example, the hourglass-
shaped network (HSN) is a kind of a convolutional neural network which can analyze
the multiscale input, showing a good performance in the semantic segmentation of aerial
images [33]. Due to the abovementioned reasons, our model could be divided into two parts,
the encoder and the decoder (Figure 4). The encoder gradually reduced the input resolution
through its maximum pooling layer, allowing the convolution kernel of the next layer to cover
a larger spatial range. In addition, we used inception layers to further improve the multiscale
conversion capability of the model [31] (Figure 5 and Table 3). These layers were composed
of convolutional layers with different convolution kernel sizes to perform conversions of
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different scales. The decoder followed a pattern similar to the encoder. After the third
maximum pooling layer, the transposed convolution was used instead of the maximum
pooling layer to increase the resolution gradually. In this way, our model recovered the details
lost in the continuous maximum pooling layer, reaching the highest resolution at the input
time. Finally, the rain rate (R; units: mm·h−1) was obtained through the GlobalAvgPool2D,
Dropout, and Dense layers at the end of the decoder.
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Table 3. Filter numbers for each convolution type in the Inception module. Note: “n × n Reduce” stands for the 1 × 1
convolutions preceding the corresponding n × n convolutions.

Total # (Filter Output) # 1 × 1 # 3 × 3 Reduce # 3 × 3 # 5 × 5 Reduce # 5 × 5 # 1 × 1

256 64 128 128 64 32 32
512 65 256 384 64 32 32
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3.3. Training Strategies

To train the model, we randomly chose one of the eleven typhoon precipitation
events as the test dataset and the remaining ten as the training (validation) dataset. The
k-fold cross-validation method randomly selected nine of the ten typhoons as the training
dataset and one as the validation dataset. After ten training sessions, the hyperparameter
tuning of the network based on the network performance of the verification dataset was
determined. To prevent the model from overfitting, the test dataset was used to evaluate
its generalization ability.

To explore the influence of the radar observation range on the precipitation estimation,
three versions (V1, V2, and V3) of the QPE dataset were used to train the model. The
numerical stability of deep-learning model training is related to the quality of the training
results [31]. In order to ensure the numerical stability of the training process and obtain
better training results, we normalized the input data (radar observation) and target data
(automatic weather station precipitation) so that their mean value was 0, variance was 1,
and their values were between 0 and 1.

Finally, based on the deep learning library of MXNet/Gluon from Amazon, the model
selected Xavier for parameter initialization [34]. The Adam optimization algorithm with
a learning rate of 10−3 and the method of early stopping were adopted, and four Nvidia
Tesla P100s were used for training. The specific hyperparameter, the convergence epochs
of our model, and the time spent on each batch are shown in Table 4.

Table 4. The hyperparameters of the QPENet model.

Dataset Version Batch Size Convergence Epochs Learning Rate Time per Epoch (s) Weight Decay

V1 512 2 0.001 114.5 0.0001
V2 512 12 0.001 231.2 0.0001
V3 256 26 0.001 615.4 0.0001

3.4. Evaluation Method

Based on the test dataset, the automatic weather station rainfall was taken as the
reference, and then the 6-min radar data was input into the network. By accumulating
the output, the hourly rainfall intensity could be obtained. Furthermore, five indicators
of correlation coefficient (CC), root-mean-square error (RMSE), normalized relative bias
(NB), normalized absolute error (NE), and bias ratio were used to evaluate the estima-
tion accuracy comprehensively. The results were then compared with the results of the
QPEDSD method.
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In the equations above, RA is the one-hour accumulated rainfall from the radar
or automatic stations, and the overline indicates the average value; n is the number of
RAi

gauge–RAi
radar pairs; the units of measurement of the RMSE are millimeters; NE and

NB are both percentages; and the bias ratio greater (or less) than 1 indicates overestimation
(or underestimation).

4. Results

In this section, one typhoon from the eleven typhoon events in South China in
2017–2019 was randomly chosen to examine the QPENet algorithm for the operational
Guangzhou radar. The Merbok (1702) typhoon event was taken as an example, and the
QPEDSD and QPENetV2 algorithms were used to estimate the hourly average rainfall in-
tensity (Figure 6) and accumulated rainfall intensity of this event. Figures 6 and 7 show
that the spatial distributions of hourly average rainfall intensity and accumulated rainfall
intensity of these two estimation algorithms were basically the same, both consistent with
actual precipitation events.
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4.1. Performance of the QPENet Algorithm

Table 1 shows the eleven typhoon events that occurred in South China. The evaluated
scores on four kinds of QPE algorithms for all rainfall intensities for the Merbok (1702)
event are shown in Table 5, the scores for the rainfall intensity less than 5 mm·h−1 are
shown in Table 6, the scores for the rainfall intensity greater than or equal to 5 mm·h−1

and less than 30 mm·h−1 are shown in Table 7, and the scores for the rainfall intensity
greater than or equal to 30 mm are shown in Table 8. The four kinds of QPE algorithms are
QPENetV1, QPENetV2, QPENetV3, and QPEDSD [35,36]. QPENetVn refers to the QPENet
deep-learning model trained with the dataset of version n (n = 1, 2, or 3). QPEDSD refers to
the QPE algorithm based on DSD fitting.

Table 5. Evaluated scores for four kinds of QPE algorithms for the Merbok event for all
rainfall intensities.

QPE Algorithm CC RMSE NB (%) NE (%) Bias Ratio

QPENetV1 0.93 2.15 4.14 38.05 1.04
QPENeV2 0.95 1.75 7.32 33.92 1.07
QPENetV3 0.96 1.97 −19.42 36.72 0.81
QPEDSD 0.94 2.87 −15.27 41.11 0.85

Table 6. The same as Table 5 except that the rainfall intensity is less than 5 mm·h−1 (R < 5 mm·h−1).

QPE Algorithm CC RMSE NB (%) NE (%) Bias Ratio

QPENetV1 0.78 0.96 22.25 45.10 1.22
QPENetV2 0.81 0.87 22.54 42.35 1.23
QPENetV3 0.74 0.84 −14.14 41.58 0.86
QPEDSD 0.68 1.17 −2.83 44.42 0.97

Table 7. The same as Table 5 except that the rainfall intensity is greater than or equal to 5 mm and
less than 30 mm (5 ≤ R < 30 mm·h−1).

QPE Algorithm CC RMSE NB (%) NE (%) Bias Ratio

QPENetV1 0.70 3.92 −5.22 29.05 0.95
QPENeV2 0.74 3.67 −1.17 25.59 0.99
QPENetV3 0.76 4.10 −22.74 32.70 0.77
QPEDSD 0.77 5.37 −26.94 36.97 0.73

Table 8. The same as Table 5 except that the rainfall intensity is greater than or equal to 30 mm
(R ≥ 30 mm·h−1).

QPE Algorithm CC RMSE NB (%) NE (%) Bias Ratio

QPENetV1 1.00 22.03 −35.88 35.88 0.64
QPENeV2 0.98 16.01 −24.89 24.89 0.75
QPENetV3 0.98 19.24 −29.63 29.63 0.70
QPEDSD 0.96 30.02 −37.67 37.67 0.62

From Tables 5–7, it is found that the QPENet algorithms had better estimation per-
formance than the QPEDSD algorithm, whether for the process with 5 ≤ R < 30 and
R ≥ 30 mm·h−1 or for all the rainfall intensities. Only when R < 5 mm·h−1, the under-
estimation of the QPEDSD algorithm was small, and the overestimation of the QPENet
algorithm was large. However, the RMSE of QPENet was small and the algorithm was
relatively stable. Considering that weak precipitation has a small impact on daily life, these
two algorithms are both applicable.

The evaluation indicators of the QPENet and QPEDSD algorithms were analyzed as
follows. For all the rainfall intensities, the CC, RMSE, NB, NE, and bias ratio were increased
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by 0.2%, 39%, 73%, 17%, and 73% at the most, respectively. When R was greater than or
equal to 5 mm·h−1 and less than 30 mm·h−1, the CC, RMSE, NB, NE, and bias ratio could
be increased by −1%, 32%, 96%, 31%, and 96% at the most, respectively. When R was
greater than or equal to 30 mm·h−1, the CC, RMSE, NB, NE, and bias ratio were increased
by 4%, 47%, 34%, 34%, and 34% at the most, respectively. For the three situations of rainfall
intensity above, the QPENet algorithms had apparent advantages. However, when R was
less than 5 mm·h−1, the CC, RMSE, NB and bias ratio were increased by 19%, 28%, 6%, and
−37% at the most, respectively. The performance of the QPEDSD algorithm was slightly
better, indicating that the QPENet algorithm still has room for improvement when there is
weak precipitation.

4.2. Effect of Input Data on the Performance of the QPENet Algorithms

During the rainfall episode of landfall typhoons, the wind is relatively strong. When
establishing the corresponding relationship between dual-polarization quantities and sur-
face automatic weather station observations, the influence of wind needs to be considered.
Therefore, according to the distance from the surface automatic weather stations, this study
established three versions of the QPE dataset: version 1 was 1.5 km away from the surface
rainfall observation station, version 2 was 3 km away from the rainfall station, and version
3 was 5 km away from the rainfall station. After the QPENet model training for the three
versions of the dataset, three precipitation estimation models of QPENetV1, QPENetV2,
and QPENetV3 were obtained. According to Tables 5–8, QPENetV2 had the best compre-
hensive estimation performance on all the rainfall intensities, 5 ≤ R < 30 mm·h−1 and
R ≥ 30 mm·h−1. It shows that radar observations 3 km away from the stations were the
most relevant to surface precipitation observations in the three cases above. When hourly
rainfall intensity was less than 5 mm, QPENetV3 had the best estimation performance out
of the three deep-learning algorithms. This may have been because the position of light
rain falling to the surface is uncertain, and lighter rain has smaller drops that are advected
further between the height of the radar beam and the surface.

5. Performance Comparisons between the QPEDSD and QPENetV2 Algorithms

According to the analysis in Section 4, the QPENetV2 algorithm had the best compre-
hensive performance among the three trained deep-learning models. This section compares
the performance of QPENetV2 and the traditional QPEDSD method in detail in three aspects.

5.1. Performance of QPEDSD and QPENetV2 under Different Rainfall Intensities

The scatterplots of the radar rainfall estimates from QPEDSD and QPENetV2 versus
AWS measurements under different rainfall intensities are shown in Figure 8. When
R < 5 mm·h−1, the estimation accuracy of QPEDSD was slightly better than that of QPENetV2.
It may have been due to the relatively large measurement uncertainty of the polarimetric
radar variables (ZDR and KDP) during light rain. Since the QPEDSD algorithm was based
on the segmentation of rain intensity, which takes into account the distribution of light rain,
it showed a slightly better performance. However, for all the other rainfall intensities, the
QPENetV2 algorithm had obvious advantages.
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Figure 8. Scatterplots of rainfall estimates from the automatic weather stations versus radar during
typhoon Merbok. (a–d) QPEDSD. (e–h) QPENetV2. (a,e), (b,f), (c,g), and (d,h) correspond to all
rainfall intensities, R < 5 mm·h−1, 5 ≤ R < 30 mm·h−1, and 30 mm·h−1 ≤ R, respectively.

5.2. Performance of QPEDSD and QPENetV2 on Different Segments of ZH, ZDR, and KDP

The bias ratio and RMSE of the derived rainfall estimates using the QPEDSD and
QPENetV2 algorithms were compared for different segments of ZH and ZDR (Figure 9).
When ZH was small (<20 dBZ), the bias ratios of the two algorithms first increased and
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then decreased as ZDR increased, and the bias ratio of QPENetV2 decreased faster. When
ZH was moderate (20–30 dBZ), the bias ratios increased with ZDR, and the bias ratio of
QPENetV2 increased slower. When ZH was large (≥30 dBZ), the bias ratio of QPEDSD first
increased and then decreased with the increase in ZDR, while the bias ratio of QPENetV2
decreased with the increase in ZDR.
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Figure 9. Bubble charts of the bias ratios and RMSEs of the radar-derived hourly rainfall estimates during typhoon Merbok:
(a) QPEDSD; (b) QPENetV2. The bias ratios and RMSEs were calculated for different ZH and ZDR ranges using observations
from the automatic weather stations as references. ZH is divided into “<20 dBZ”, “20–30 dBZ”, and “≥30 dBZ”. ZDR is
divided into “<0.2 dB”, “0.2–0.4 dB”, and “≥0.4 dB”. The size of the dots represents the RMSE, the color of the dots indicates
the bias ratio.

Overall, the RMSE of QPENetV2 was smaller than that of QPEDSD, indicating that the
former was more stable. But the RMSEs of both algorithms in the upper right corner were
rather large, which means when ZH and ZDR are large, the stability of both algorithms has
room for improvement.

On specific segments of ZH and KDP, the bias ratio and RMSE of precipitation estimates
from QPEDSD and QPENetV2 are shown in Figure 10. It can be seen that when ZH was small
(<20 dBZ), the bias ratio of the QPEDSD algorithm increased when KDP increased, whereas
the bias ratio of the QPENetV2 algorithm first increased and then decreased with the
increase in KDP. When ZH was moderate (20–30 dBZ), the bias ratios of the two algorithms
increased with the increase in KDP. When ZH was large (≥30 dBZ), the bias ratios of the
two algorithms decreased with the increase in KDP.

However, overall, the RMSE of the QPENetV2 algorithm was smaller than that of
QPEDSD. In particular, when ZH was small or moderate, the RMSEs of the two algorithms
were both small. When ZH was large, the RMSEs of the two algorithms increased, and
the increase in the QPEDSD algorithm was more significant. Similar to the ZH and ZDR
segmentation, the RMSEs of the two algorithms were both large when ZH and KDP were
large, suggesting that the stability of both algorithms could be improved.
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Figure 10. Bubble charts of the bias ratios and RMSEs of the radar-derived hourly rainfall estimates during typhoon Merbok:
(a) QPEDSD; (b) QPENetV2. The bias ratios and RMSEs were calculated for different ZH and KDP ranges using observations
from the automatic weather stations as references. ZH is divided into “<20 dBZ”, “20–30 dBZ”, and “≥30 dBZ”. KDP is
divided into “<0.1◦·km−1”, “0.1−0.25◦·km−1”, and “≥0.25◦·km−1”. The size of the dots represents the RMSE, the color of
the dots indicates the bias ratio.

5.3. Spatial Distribution of the Errors Associated with QPEDSD and QPENetV2

The performance of QPEDSD and QPENetV2 was further analyzed in terms of the
spatial distribution of the bias ratio and RMSE of the estimated precipitation (Figure 11).
As can be seen, the large bias ratios were mainly distributed around 22.4◦N 112.75◦E,
which is due to the partial beam blockage of the Guangzhou radar (i.e., the beam in this
area is blocked by an iron tower). The large RMSE areas were mainly distributed in two
areas near 22.5◦N 113.5◦E and 23.1◦N 114◦E, where the intense rainfall was located (see
Figure 6). Overall, the bias ratios and RMSEs of the QPENetV2 algorithm were smaller
than those of QPEDSD. Especially around 22.6◦N 113.25◦E, the bias ratio of QPENetV2 was
much smaller. In addition, the RMSE of QPENetV2 was much smaller around 23.1◦N 114◦E,
further demonstrating that the QPENetV2 algorithm had better performance.
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(b) QPENetV2 during typhoon Merbok. The bias ratios and RMSEs were calculated based on the automatic weather station
observations. The red cross represents the location of the Guangzhou radar. The size of the dots represents the RMSE, the
color of the dots indicates the bias ratio.
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6. Concluding Remarks

For this study, we designed a deep neural network algorithm termed QPENet for po-
larimetric radar QPE. To train this deep-learning model, three versions of the
“DPO—SR” dataset were constructed using observations from the radar and AWS during
eleven typhoon events in South China. Through evaluation and comparison with the tradi-
tional QPEDSD method using the test event, the performance and applicability of QPENet
were investigated. In order to quantify the influence of the radar observation range on QPE,
three datasets of “DPO—SR” were constructed based on the radar observational areas aloft.
In particular, 13 × 13, 25 × 25, and 41 × 41 radar range bins centered by the range bin right
on top of the AWS were used to match the AWS measurements in constructing the three
datasets. Accordingly, three versions of the QPENet model were then trained. The primary
findings are summarized as follows.

(1) Based on the evaluation results for all the rainfall intensities during typhoon
Merbok, the new QPENet method has better performance than QPEDSD. The overall CC,
RMSE, NB, NE, and bias ratio improved by 0.2%, 39%, 73%, 17%, and 73%, respectively,
demonstrating the promising performance of the proposed algorithm.

(2) The evaluation results for different (hourly) rainfall intensities during typhoon
Merbok also show that QPENet is superior to QPEDSD for most rain intensities. When
5 mm·h−1 ≤ R < 30 mm·h−1, the CC, RMSE, NB, NE, and bias ratio improved by –1%, 32%,
96%, 31%, and 96%, respectively. When R ≥ 30 mm·h−1, the CC, RMSE, NB, NE, and bias
ratio improved by 4%, 47%, 34%, 34%, and 34%, respectively. Only when R < 5 mm·h−1,
the QPEDSD algorithm performed similarly to QPENet, which was likely due to the large
measurement uncertainty of ZDR and KDP in weak precipitation.

(3) Among the three versions of QPENet, QPENetV2 has the best overall performance,
suggesting that the areal radar observations within ~3 km from the AWS location can
represent the pointwise surface precipitation the best. Although more experiments are
required to further demonstrate this, we can interpret such results from two aspects: on the
one hand, during the precipitation particle falling processes, the particle location drift from
the radar range gate aloft to the surface can be as large as several kilometers, especially
when the wind is strong. Using a 3 km area could resolve the drift fairly well (better than a
1.5 km area); on the other hand, we should not use an area that is too large to capture the
fine structure of precipitation. Based on the results in this study, we conclude that 5 km
may be too large to represent high-intensity precipitation gradients, resulting in reduced
performance in rainfall-mapping heavy-rain regions. However, when R < 5 mm·h−1, the
QPENetV3 algorithm performed the best because light rain falls to the surface in a wider
area due to the wind effect. In this case, surface precipitation is more correlated with areal
radar observations within ~5 km from the AWS.

(4) The performance of the QPEDSD and QPENetV2 algorithms was analyzed by using
the bias ratio and RMSE on different segments of ZH, ZDR, and KDP. Overall, in most cases,
both Figures 9 and 10 show that the bias ratios of QPENetV2 were smaller than those of
QPEDSD. Only when ZH was large and ZDR or KDP was small, the bias ratios of QPEDSD
were slightly smaller than those of QPENetV2. Figures 9 and 10 show that the RMSEs of
QPENetV2 were smaller than those of QPEDSD in both Figures 9 and 10; only when ZH,
ZDR, and KDP were large, the RMSEs of the two algorithms were both large, indicating
that there is room for improvement in the stability of the two algorithms. In general, the
QPENetV2 algorithm is better than QPEDSD.

(5) The performance of the QPEDSD and QPENetV2 algorithms was further investi-
gated by using the spatial distribution of the bias ratios and RMSEs. In the area around
22.4◦N 112.75◦E in Figure 11, the bias ratios of the two methods were both large, which
may have been caused by the partial beam blockage of the radar. Near 22.5◦N 113.5◦E
and 23.1◦N 114◦E, the RMSE was larger, which was caused by the larger hourly rainfall
intensity (Figure 6). In general, the bias ratio and RMSE of the QPENetV2 algorithm were
both smaller and its performance was better than those of QPEDSD.
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In summary, the QPENet algorithm has a better performance to estimate surface
rainfall intensity from polarimetric radar observations. When precipitation intensity is
greater than or equal to 30 mm/h, the advantage of the QPENet algorithm is especially
obvious. Nevertheless, the current QPENet algorithm is greatly affected by the quality of
radar data. For example, when the rain intensity is less than 5 mm·h−1, the observational
error of ZDR and KDP may be large, resulting in a large bias ratio of the QPENet algorithm.
In addition, the limited amount of training and test data could have a negative impact
on the performance of the QPENet algorithm. To address this, we need to extend the
application to cover a variety of severe precipitation events for both training and testing.
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