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Abstract: Cliff monitoring is essential to stakeholders for their decision-making in maintaining a
healthy coastal environment. Recently, photogrammetry-based technology has shown great suc-
cesses in cliff monitoring. However, many methods to date require georeferencing efforts by either
measuring geographic coordinates of the ground control points (GCPs) or using global navigation
satellite system (GNSS)-enabled unmanned aerial vehicles (UAVs), significantly increasing the im-
plementation costs. In this study, we proposed an alternative cliff monitoring methodology that
does not rely on any georeferencing efforts but can still yield reliable monitoring results. To this
end, we treated 3D point clouds of the cliff from different periods as geometric datasets and further
aligned them into the same coordinate system using a rigid registration protocol. We examined the
performance of our approach through a few small-scale experiments on a rock sample as well as a
full-scale field validation on a coastal cliff. The findings of this study would be particularly valuable
for underserved coastal communities, where high-end GPS devices and GIS specialists may not be
easily accessible resources.

Keywords: cliff monitoring; UAV; photogrammetry; point cloud registration; iterative closest point;
coastal erosion

1. Introduction

Monitoring coastal cliffs is essential for maintaining a healthy coastal ecosystem and is
particularly crucial for the island of Guam. Being the largest island in the Marianas Chain
in the Western Pacific, Guam has a coastline of 125.5 km and 59% of it is rocky coastlines
characterized by steep cliffs and uplifted limestone terraces [1]. Due to the actions of
the sea, strong winds, ground motions, and water surges [2], coastal cliffs are prone to
erosion. For example, Typhoon Halong in 2002 struck Guam and led to erosion on the
southeast shorelines; the 1993 Guam earthquake (magnitude of 7.8) also caused slides in
coastal cliffs throughout the island [3]. Other natural impacts such as seasonal changes on
rock thermal stress and/or cliff vegetation could also influence the cliff stability and cause
geological hazards.

Cliff erosions could lead to sediments on coastal reefs and weaken the integrity of a
local coastal ecosystem. One engineering approach to address this concern is to monitor the
cliff erosion process using advanced technologies, based on which results can be delivered
to the stakeholders for making timely decisions in managing a coastal zone. Traditionally,
cartographic geological mapping [4,5] is the most popular method for surveying coastal
erosion. However, this method is labor-intensive and prone to error due to mapping
inaccuracy [6]. In addition, field deployments at inaccessible locations could be challenging
and time-consuming. As such, terrestrial laser scanning (TLS)-based technology [7,8] has
received increasing attention in coastal surveying for being able to achieve a non-contact
and accurate solution through creating dense 3D point clouds of coastal areas. Nevertheless,
the laser scanner could be costly, and inconvenient for field deployment due to its heavy
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self-weight. In addition, the scanner must be operated by trained technicians. Hence, field
cliff monitoring on a routine basis may not be easily achievable.

Recently, photogrammetry-based methods have shown great successes in coastal
monitoring. Utilizing computer vision algorithms, 2D images of the coastal cliffs can be
processed to create dense 3D point clouds. Through the usages of unmanned aerial vehicles
(UAVs), images of inaccessible coastal areas can be obtained. For example, Westoby et al. [6]
created a 3D model of a coastal cliff in northeast England using a photogrammetry-based
workflow. The authors concluded that the discrepancy between the photogrammetry model
and the one obtained by TLS technology was less than 0.04 m. Letortu et al. [7] performed
a similar investigation by comparing the datasets from TLS, terrestrial photogramme-
try, and UAV photogrammetry using a testbed in France. Hayakawa and Obanawa [9]
applied UAVs and photogrammetry to detect the volumetric changes of a coastal cliff
on the Suzume-Jima Island in Japan. The authors of [10–12] review the recent work of
photogrammetry-based remote sensing methods in coastal mapping.

A commonality from the above work is that georeferencing is required. This allows
point clouds collected at different periods to be aligned into the same geographic coordinate
system so that the geomorphological changes of the cliff can be identified. To date, the
most dominant georeferencing approach is based on ground control points (GCPs). Made
by large-size artificial targets, ideally, GCPs shall be evenly deployed to the cliff area.
Georeferencing coordinates of each GCP then are measured by global positioning system
(GPS) devices (e.g., total stations [7], global navigation satellite systems (GNSSs) [13,14]).
GCPs-based georeferencing has several limitations. First, many locations of the cliff area
could be inaccessible for deploying and measuring GCPs. For instance, a steep cliff face
would be dangerous for GCP deployments due to rock falls [7]. Second, GPS measurements
of GCPs usually require an error that is less than a few mm or cm, requiring high-cost GPS
measuring devices (e.g., more than $10,000). Lastly, geographic information system (GIS)
specialists need to be hired for the field GPS data collections and processing which would
bring the extra cost to the project.

Some researchers have proposed direct georeferencing methods without using GCPs.
The idea is to directly mount customized GNSS modules to portable digital cameras [15,16]
or onboard UAV cameras [17,18]. As a result, the geotagged photos collected in the field can
assist in the 3D mapping of a coastal cliff with accurate geographic coordinates. Methods
based on direct georeferencing can map inaccessible areas of the cliff where deploying
GCPs could be dangerous. However, methods based on direct georeferencing are still costly
and would require extensive investigations on GNSS hookups [17]. Most recently, efforts
have been made by investigating professional UAVs equipped with onboard off-the-shelf
GNSS receivers (e.g., DJI Phantom 4 real-time kinematic (RTK) [19,20]). Nevertheless, the
accuracy of elevation generated from the DJI Phantom 4 RTK could be problematic [21].

In this manuscript, we present a non-georeferenced approach for coast cliff monitoring.
We apply a photogrammetry workflow to reconstructed dense 3D point clouds of the cliff
from different periods. Then, different point clouds are aligned into the same coordinate
system through a rigid registration protocol such that the geomorphological changes of the
cliff can be identified. We examine the performance of our approach through a series of
small-scale experiments on a rock sample against different lighting conditions and surface
textures. It is followed by a full-scale field validation on a coastal cliff in Guam. Thereafter,
we discuss the results from both small-scale and full-scale validations.

The major contribution of this study is to propose an alternative cliff monitoring
methodology that does not rely on any georeferencing efforts but can still yield reliable
monitoring results. Many previous researchers have focused on cliff monitoring using
GCPs and/or GNSS-enabled UAVs. These georeferencing-based methods would be inflexi-
ble due to the high cost of hiring GIS specialists and/or purchasing expensive hardware.
In contrast, our approach solely relies on computational algorithms to align point clouds
together for uncovering the geomorphological changes caused by cliff erosion, significantly
reducing the implementation cost. Although point cloud processing techniques such as
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the iterative closest point (ICP) algorithm [22,23] have been previously investigated in
cliff monitoring [24–28], the roles of the ICP algorithm in these studies are limited as
supplemental tools in improving point cloud alignment accuracy within the georeferencing
framework. To the best knowledge of the author, there is no literature developing a com-
pletely non-georeferenced cliff monitoring methodology. The findings of this study would
be particularly valuable for Guam and other underserved coastal communities, where
high-end GPS devices and trained GIS professionals may not be easily accessible resources.

The rest of this manuscript is organized as follows: Section 2 illustrates the research
methodology and explains the technical details; Section 3 demonstrates the soundness
of the proposed method through a series of small-scale experiments; Section 4 validates
the method using a full-scale coastal cliff; Section 5 further discusses applicability and
limitations of our method; and Section 6 concludes the study.

2. Methodology

The research methodology, illustrated in Figure 1, contains three major components
that include (a) image collection, (b) point cloud reconstruction, and (c) point cloud reg-
istration. Our method starts with the image collection of the cliff using UAVs. Then,
UAV images are further processed by a series of computer vision algorithms, termed
structure-from-motion with multi-view stereo (SfM-MVS), to reconstruct the point cloud
of the cliff. Next, a new point cloud of the cliff can be obtained using the same procedure
after the second field visit. Thereafter, these two point clouds are aligned into the same
coordinate system through a protocol of rigid registration, which contains a few computa-
tional algorithms for point cloud alignment. Finally, the differential changes between two
well-aligned point clouds can be extracted through computing the cloud-to-cloud distance.
As a result, the geomorphological changes of the cliff can be identified. Each component in
the research methodology is further explained in the rest of this section.
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Figure 1. Research methodology of this study where (a) image collection; (b) point cloud reconstruc-
tion; and (c) point cloud registration.

2.1. Image Collection

A large volume of digital images of the target cliff are collected using UAVs (see
Figure 1a). Many consumer-grade UAVs can fit such a role. The flight routes and camera
parameters (e.g., ISO, shutter speed, image resolution, and camera shooting interval) can
be predefined through built-in flight operation apps. UAV images are intended to cover
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the cliff with different camera positions and angles. Adjacent images shall have enough
overlapping for matching feature points that will be explained in Section 2.2.

2.2. Point Cloud Reconstruction

UAV images are processed by SfM-MVS for creating a 3D point cloud of the cliff (see
Figure 1b). SfM-MVS is a well-established photogrammetry workflow that has been widely
applied to coastal surveying [29], civil infrastructure inspection [30], river bathymetry
extraction [31], and historic building preservation [32]. To this end, feature points (i.e., tie
points, key points), which are small image patches that contain unique intensity distri-
butions, are detected from each UAV image. Because feature points are invariant against
image translation, rotation, and scaling, feature points with similar intensity distributions
can be consistently tracked and matched across multiple UAV images. Some of the well-
known features are scale-invariant feature transform (SIFT) [33], Shi-Tomasi [34], features
from accelerated segment test (FAST) [35], Harris-Stephens [36], binary robust invariant
scalable keypoints (BRISK) [37], and speeded up robust features (SURF) [38].

Next, feature points across different UAV images are matched based on their levels of
similarities in intensity distributions. A geometric transformation matrix is also estimated
in this stage to describe the relations between matched feature pairs (i.e., correspondences)
of two adjacent UAV images. Based on the transformation matrix, incorrect matching
results (i.e., outliers) can be eliminated.

Thereafter, SfM algorithms are adopted to estimate both extrinsic parameters (e.g.,
locations and orientations) and intrinsic parameters (e.g., focal length and pixel sensor size)
of the camera. The 3D geometry of the cliff scene is also calculated in this stage. Then,
camera positions and angles are further refined through bundle-adjustment algorithms to
reduce reprojection errors in MVS. Next, multiple-view UAV images and their correspond-
ing camera parameters are utilized for reconstructing the sparse 3D point cloud of the cliff.
Users can also examine the quality of reconstruction errors in the sparse point cloud, and if
needed, may change the parameters of the algorithms to re-create the sparse point cloud.
Finally, pixels are back-projected to all UAV images to create an RGB-colored dense point
cloud, which represents the 3D surface of the cliff. The detailed reviews of SfM-MVS are
summarized in [39–41].

2.3. Point Cloud Registration

To uncover the geomorphological changes of the cliff, two dense point clouds at
different periods are aligned together using the protocol of rigid registration (Figure 1c).
The protocol can find geometric similarities of two point clouds and applies rotation,
scaling, and translation to rigidly align one point cloud to another. This procedure further
contains three steps that include (1) scaling one point cloud to a real-world length unit;
(2) rough alignment of two point clouds based on manually selected correspondences; and
(3) fine alignment of two point clouds using the automated ICP algorithm. Each step is
further explained as follows.

As shown in Figure 1c, point cloud A is first scaled to the correct real-world unit using
a scaling factor, which is the ratio of the distance between two existing points measured
from the cliff site in the real world over the distance of the same two points from the point
cloud. The point cloud after scaling is considered as the reference point cloud which will
not move for the rest of the registration procedure.

Then, point cloud B (denoted as the floating point cloud) is roughly aligned to the
reference point cloud (i.e., point cloud A) through manually finding correspondences.
Correspondences are points that appear at similar locations in both reference and floating
point clouds. Selections of correspondences are flexible as long as they can be visually
identified. Based on correspondences, a geometric transformation matrix can be estimated,
allowing the floating point cloud to be rigidly translated, rotated, and scaled for matching
the reference point cloud.
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Due to the manual selection of correspondences, errors are inevitably introduced
during rough alignment. Such errors can be further reduced through fine registration.
Here we adopt the ICP algorithm to further optimize the transformation matrix. The ICP
algorithm starts with an initial guess of the rigid body transform of two point clouds, and
iteratively improves the transformation matrix through repeatedly finding correspondences
with minimum errors. The last row of Figure 1c illustrates comparisons of two point clouds
at each stage of the registration.

The rough alignment can effectively align two point clouds together but small mis-
alignments may exist. Fine alignment, on the other hand, is capable of adjusting small
misalignments but may not work well if the initial misalignment of two point clouds is large.
By successively adopting these two alignments in the correct order, the misalignments
between two point clouds can be gradually reduced.

3. Small-Scale Validation
3.1. Test Configuration

A series of small-scale tests on a rock sample was performed with the purposes of
(1) reconstructing dense 3D point clouds from the test sample under different lighting
and surface texture conditions; and (2) detecting, localizing, and quantifying differential
features of the rock sample under geometric changes. To this end, a rock sample was
collected from Tumon Bay in Guam in June 2020. The longest diameter of the sample is
about 13.5 cm, as shown in figure (a) in Table 1. Five test cases were established to mimic
different testing environments. The third column of Table 1 elaborates the different lighting
conditions and geometric changes for each test case. The rock sample in Case A had a
darker texture due to the high moisture content after the sample was collected from the
beach. Images of Cases B to E were taken a few days later; hence, the sample has a brighter
surface texture.

Table 1. Test matrix for the small-scale validation.

Test Case Surface Texture Lighting Condition Geometric Change Sample and Test
Environment

Case A Dark
Indoor lighting condition;

daylight was the only
light source

Reference dataset

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

Correspondences are points that appear at similar locations in both reference and floating 

point clouds. Selections of correspondences are flexible as long as they can be visually 

identified. Based on correspondences, a geometric transformation matrix can be esti-

mated, allowing the floating point cloud to be rigidly translated, rotated, and scaled for 

matching the reference point cloud. 

Due to the manual selection of correspondences, errors are inevitably introduced 

during rough alignment. Such errors can be further reduced through fine registration. 

Here we adopt the ICP algorithm to further optimize the transformation matrix. The ICP 

algorithm starts with an initial guess of the rigid body transform of two point clouds, and 

iteratively improves the transformation matrix through repeatedly finding correspond-

ences with minimum errors. The last row of Figure 1c illustrates comparisons of two point 

clouds at each stage of the registration. 

The rough alignment can effectively align two point clouds together but small misa-

lignments may exist. Fine alignment, on the other hand, is capable of adjusting small mis-

alignments but may not work well if the initial misalignment of two point clouds is large. 

By successively adopting these two alignments in the correct order, the misalignments 

between two point clouds can be gradually reduced. 

3. Small-Scale Validation 

3.1. Test Configuration 

A series of small-scale tests on a rock sample was performed with the purposes of (1) 

reconstructing dense 3D point clouds from the test sample under different lighting and 

surface texture conditions; and (2) detecting, localizing, and quantifying differential fea-

tures of the rock sample under geometric changes. To this end, a rock sample was col-

lected from Tumon Bay in Guam in June 2020. The longest diameter of the sample is about 

13.5 cm, as shown in figure (a) in Table 1. Five test cases were established to mimic differ-

ent testing environments. The third column of Table 1 elaborates the different lighting 

conditions and geometric changes for each test case. The rock sample in Case A had a 

darker texture due to the high moisture content after the sample was collected from the 

beach. Images of Cases B to E were taken a few days later; hence, the sample has a brighter 

surface texture. 

Table 1. Test matrix for the small-scale validation. 

Test 

Case 

Surface 

Texture 
Lighting Condition Geometric Change 

Sample and Test 

Environment 

Case A Dark 
Indoor lighting condition; daylight was the 

only light source 
Reference dataset 

 

Case B Light 
Outdoor lighting condition; the sample was 

directly under sunlight 
No geometric change was made 

 

Case C Light 
Indoor lighting condition; daylight was the 

only light source 
Three small stones were added (see Figure 2a) 

 

Case D Light 
Indoor lighting condition; the roof lamp 

was the only light source 

A thin layer of salt particles was added  

(see Figure 2b) 

 

Case B Light
Outdoor lighting condition;

the sample was directly
under sunlight

No geometric change
was made

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

Correspondences are points that appear at similar locations in both reference and floating 

point clouds. Selections of correspondences are flexible as long as they can be visually 

identified. Based on correspondences, a geometric transformation matrix can be esti-

mated, allowing the floating point cloud to be rigidly translated, rotated, and scaled for 

matching the reference point cloud. 

Due to the manual selection of correspondences, errors are inevitably introduced 

during rough alignment. Such errors can be further reduced through fine registration. 

Here we adopt the ICP algorithm to further optimize the transformation matrix. The ICP 

algorithm starts with an initial guess of the rigid body transform of two point clouds, and 

iteratively improves the transformation matrix through repeatedly finding correspond-

ences with minimum errors. The last row of Figure 1c illustrates comparisons of two point 

clouds at each stage of the registration. 

The rough alignment can effectively align two point clouds together but small misa-

lignments may exist. Fine alignment, on the other hand, is capable of adjusting small mis-

alignments but may not work well if the initial misalignment of two point clouds is large. 

By successively adopting these two alignments in the correct order, the misalignments 

between two point clouds can be gradually reduced. 

3. Small-Scale Validation 

3.1. Test Configuration 

A series of small-scale tests on a rock sample was performed with the purposes of (1) 

reconstructing dense 3D point clouds from the test sample under different lighting and 

surface texture conditions; and (2) detecting, localizing, and quantifying differential fea-

tures of the rock sample under geometric changes. To this end, a rock sample was col-

lected from Tumon Bay in Guam in June 2020. The longest diameter of the sample is about 

13.5 cm, as shown in figure (a) in Table 1. Five test cases were established to mimic differ-

ent testing environments. The third column of Table 1 elaborates the different lighting 

conditions and geometric changes for each test case. The rock sample in Case A had a 

darker texture due to the high moisture content after the sample was collected from the 

beach. Images of Cases B to E were taken a few days later; hence, the sample has a brighter 

surface texture. 

Table 1. Test matrix for the small-scale validation. 

Test 

Case 

Surface 

Texture 
Lighting Condition Geometric Change 

Sample and Test 

Environment 

Case A Dark 
Indoor lighting condition; daylight was the 

only light source 
Reference dataset 

 

Case B Light 
Outdoor lighting condition; the sample was 

directly under sunlight 
No geometric change was made 

 

Case C Light 
Indoor lighting condition; daylight was the 

only light source 
Three small stones were added (see Figure 2a) 

 

Case D Light 
Indoor lighting condition; the roof lamp 

was the only light source 

A thin layer of salt particles was added  

(see Figure 2b) 

 

Case C Light
Indoor lighting condition;

daylight was the only
light source

Three small stones were
added (see Figure 2a)

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

Correspondences are points that appear at similar locations in both reference and floating 

point clouds. Selections of correspondences are flexible as long as they can be visually 

identified. Based on correspondences, a geometric transformation matrix can be esti-

mated, allowing the floating point cloud to be rigidly translated, rotated, and scaled for 

matching the reference point cloud. 

Due to the manual selection of correspondences, errors are inevitably introduced 

during rough alignment. Such errors can be further reduced through fine registration. 

Here we adopt the ICP algorithm to further optimize the transformation matrix. The ICP 

algorithm starts with an initial guess of the rigid body transform of two point clouds, and 

iteratively improves the transformation matrix through repeatedly finding correspond-

ences with minimum errors. The last row of Figure 1c illustrates comparisons of two point 

clouds at each stage of the registration. 

The rough alignment can effectively align two point clouds together but small misa-

lignments may exist. Fine alignment, on the other hand, is capable of adjusting small mis-

alignments but may not work well if the initial misalignment of two point clouds is large. 

By successively adopting these two alignments in the correct order, the misalignments 

between two point clouds can be gradually reduced. 

3. Small-Scale Validation 

3.1. Test Configuration 

A series of small-scale tests on a rock sample was performed with the purposes of (1) 

reconstructing dense 3D point clouds from the test sample under different lighting and 

surface texture conditions; and (2) detecting, localizing, and quantifying differential fea-

tures of the rock sample under geometric changes. To this end, a rock sample was col-

lected from Tumon Bay in Guam in June 2020. The longest diameter of the sample is about 

13.5 cm, as shown in figure (a) in Table 1. Five test cases were established to mimic differ-

ent testing environments. The third column of Table 1 elaborates the different lighting 

conditions and geometric changes for each test case. The rock sample in Case A had a 

darker texture due to the high moisture content after the sample was collected from the 

beach. Images of Cases B to E were taken a few days later; hence, the sample has a brighter 

surface texture. 

Table 1. Test matrix for the small-scale validation. 

Test 

Case 

Surface 

Texture 
Lighting Condition Geometric Change 

Sample and Test 

Environment 

Case A Dark 
Indoor lighting condition; daylight was the 

only light source 
Reference dataset 

 

Case B Light 
Outdoor lighting condition; the sample was 

directly under sunlight 
No geometric change was made 

 

Case C Light 
Indoor lighting condition; daylight was the 

only light source 
Three small stones were added (see Figure 2a) 

 

Case D Light 
Indoor lighting condition; the roof lamp 

was the only light source 

A thin layer of salt particles was added  

(see Figure 2b) 

 

Case D Light
Indoor lighting condition; the

roof lamp was the only
light source

A thin layer of salt particles
was added

(see Figure 2b)

Remote Sens. 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

Correspondences are points that appear at similar locations in both reference and floating 

point clouds. Selections of correspondences are flexible as long as they can be visually 

identified. Based on correspondences, a geometric transformation matrix can be esti-

mated, allowing the floating point cloud to be rigidly translated, rotated, and scaled for 

matching the reference point cloud. 

Due to the manual selection of correspondences, errors are inevitably introduced 

during rough alignment. Such errors can be further reduced through fine registration. 

Here we adopt the ICP algorithm to further optimize the transformation matrix. The ICP 

algorithm starts with an initial guess of the rigid body transform of two point clouds, and 

iteratively improves the transformation matrix through repeatedly finding correspond-

ences with minimum errors. The last row of Figure 1c illustrates comparisons of two point 

clouds at each stage of the registration. 

The rough alignment can effectively align two point clouds together but small misa-

lignments may exist. Fine alignment, on the other hand, is capable of adjusting small mis-

alignments but may not work well if the initial misalignment of two point clouds is large. 

By successively adopting these two alignments in the correct order, the misalignments 

between two point clouds can be gradually reduced. 

3. Small-Scale Validation 

3.1. Test Configuration 

A series of small-scale tests on a rock sample was performed with the purposes of (1) 

reconstructing dense 3D point clouds from the test sample under different lighting and 

surface texture conditions; and (2) detecting, localizing, and quantifying differential fea-

tures of the rock sample under geometric changes. To this end, a rock sample was col-

lected from Tumon Bay in Guam in June 2020. The longest diameter of the sample is about 

13.5 cm, as shown in figure (a) in Table 1. Five test cases were established to mimic differ-

ent testing environments. The third column of Table 1 elaborates the different lighting 

conditions and geometric changes for each test case. The rock sample in Case A had a 

darker texture due to the high moisture content after the sample was collected from the 

beach. Images of Cases B to E were taken a few days later; hence, the sample has a brighter 

surface texture. 

Table 1. Test matrix for the small-scale validation. 

Test 

Case 

Surface 

Texture 
Lighting Condition Geometric Change 

Sample and Test 

Environment 

Case A Dark 
Indoor lighting condition; daylight was the 

only light source 
Reference dataset 

 

Case B Light 
Outdoor lighting condition; the sample was 

directly under sunlight 
No geometric change was made 

 

Case C Light 
Indoor lighting condition; daylight was the 

only light source 
Three small stones were added (see Figure 2a) 

 

Case D Light 
Indoor lighting condition; the roof lamp 

was the only light source 

A thin layer of salt particles was added  

(see Figure 2b) 

 

Case E Light
Outdoor lighting condition;

the sample was placed in
the shadow

A thin layer of salt particles
was added to a different
location (see Figure 2c)

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 17 
 

 

Case E Light 
Outdoor lighting condition; the sample was 

placed in the shadow 

A thin layer of salt particles was added to a 

different location (see Figure 2c) 

 

To mimic the landscape changes that one would see in a cliff, some geometric features 

of the rock sample were intentionally changed in Cases C, D, and E (see the fourth column 

of Table 1). Briefly, in Case C, three small stones denoted S1, S2, and S3 were placed on 

the top of the rock sample (see Figure 2a). In Case D, instead of adding stones, a thin layer 

of salt particles was added on the top of the sample (see Figure 2b). Thereafter, such a 

layer was removed, and a new layer of salt particles was added to a different location of 

the sample in Case E (see Figure 2c). 

 

Figure 2. Bird’s-eye views of the rock sample to show the geometric changes under different test cases. (a) three stones 

were added in Case C; (b) a thin layer of salt particles was added in Case D; and (c) a thin layer of salt particles was added 

in Case E at a different location. 

A consumer-grade digital camera (Sony Alpha 6400 with the E PZ 16–50 mm Lens) 

was adopted for image collection. The auto mode was selected to allow the camera to 

define its preferred shooting parameters. The distance between the lens and the rock sam-

ple varied from 20 to 40 cm during image collection. Images were shot with a resolution 

of 6000 pixels by 4000 pixels. In Cases A to E, 199, 86, 70, 67, and 98 images were collected, 

respectively. 

3.2. Point Cloud Reconstruction 

The 3D point clouds of the sample were reconstructed using the off-the-shelf soft-

ware Agisoft Metashape (version 1.6.2) [42] installed on a mobile workstation (Lenovo 

ThinkPad P72 with 16 GB of RAM and a 2.2 GHz CPU). Here, we use Case A as an exam-

ple to illustrate the workflow. Figure 3a shows 7 out of 199 images of the rock sample in 

Case A. The collected images were then aligned together through the SfM-MVS algorithm. 

A sparse point cloud (Figure 3c) is first constructed, based on which a dense point cloud 

is built, as shown in Figure 3d. The camera positions are estimated in Figure 3b where 

small blue patches indicate the camera positions and angles. 

 

Figure 3. A 3D reconstruction of the rock sample in Case A. (a) Sample input images; (b) camera positions; (c) sparse point 

cloud; and (d) dense point cloud. 



Remote Sens. 2021, 13, 3152 6 of 17

Remote Sens. 2021, 13, x FOR PEER REVIEW 6 of 17 
 

 

Case E Light 
Outdoor lighting condition; the sample was 

placed in the shadow 

A thin layer of salt particles was added to a 

different location (see Figure 2c) 

 

To mimic the landscape changes that one would see in a cliff, some geometric features 

of the rock sample were intentionally changed in Cases C, D, and E (see the fourth column 

of Table 1). Briefly, in Case C, three small stones denoted S1, S2, and S3 were placed on 

the top of the rock sample (see Figure 2a). In Case D, instead of adding stones, a thin layer 

of salt particles was added on the top of the sample (see Figure 2b). Thereafter, such a 

layer was removed, and a new layer of salt particles was added to a different location of 

the sample in Case E (see Figure 2c). 

 

Figure 2. Bird’s-eye views of the rock sample to show the geometric changes under different test cases. (a) three stones 

were added in Case C; (b) a thin layer of salt particles was added in Case D; and (c) a thin layer of salt particles was added 

in Case E at a different location. 

A consumer-grade digital camera (Sony Alpha 6400 with the E PZ 16–50 mm Lens) 

was adopted for image collection. The auto mode was selected to allow the camera to 

define its preferred shooting parameters. The distance between the lens and the rock sam-

ple varied from 20 to 40 cm during image collection. Images were shot with a resolution 

of 6000 pixels by 4000 pixels. In Cases A to E, 199, 86, 70, 67, and 98 images were collected, 

respectively. 

3.2. Point Cloud Reconstruction 

The 3D point clouds of the sample were reconstructed using the off-the-shelf soft-

ware Agisoft Metashape (version 1.6.2) [42] installed on a mobile workstation (Lenovo 

ThinkPad P72 with 16 GB of RAM and a 2.2 GHz CPU). Here, we use Case A as an exam-

ple to illustrate the workflow. Figure 3a shows 7 out of 199 images of the rock sample in 

Case A. The collected images were then aligned together through the SfM-MVS algorithm. 

A sparse point cloud (Figure 3c) is first constructed, based on which a dense point cloud 

is built, as shown in Figure 3d. The camera positions are estimated in Figure 3b where 

small blue patches indicate the camera positions and angles. 

 

Figure 3. A 3D reconstruction of the rock sample in Case A. (a) Sample input images; (b) camera positions; (c) sparse point 

cloud; and (d) dense point cloud. 

Figure 2. Bird’s-eye views of the rock sample to show the geometric changes under different test cases. (a) three stones
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in Case E at a different location.

To mimic the landscape changes that one would see in a cliff, some geometric features
of the rock sample were intentionally changed in Cases C, D, and E (see the fourth column
of Table 1). Briefly, in Case C, three small stones denoted S1, S2, and S3 were placed on the
top of the rock sample (see Figure 2a). In Case D, instead of adding stones, a thin layer of
salt particles was added on the top of the sample (see Figure 2b). Thereafter, such a layer
was removed, and a new layer of salt particles was added to a different location of the
sample in Case E (see Figure 2c).

A consumer-grade digital camera (Sony Alpha 6400 with the E PZ 16–50 mm Lens) was
adopted for image collection. The auto mode was selected to allow the camera to define its
preferred shooting parameters. The distance between the lens and the rock sample varied
from 20 to 40 cm during image collection. Images were shot with a resolution of 6000 pixels
by 4000 pixels. In Cases A to E, 199, 86, 70, 67, and 98 images were collected, respectively.

3.2. Point Cloud Reconstruction

The 3D point clouds of the sample were reconstructed using the off-the-shelf software
Agisoft Metashape (version 1.6.2) [42] installed on a mobile workstation (Lenovo ThinkPad
P72 with 16 GB of RAM and a 2.2 GHz CPU). Here, we use Case A as an example to
illustrate the workflow. Figure 3a shows 7 out of 199 images of the rock sample in Case A.
The collected images were then aligned together through the SfM-MVS algorithm. A sparse
point cloud (Figure 3c) is first constructed, based on which a dense point cloud is built,
as shown in Figure 3d. The camera positions are estimated in Figure 3b where small blue
patches indicate the camera positions and angles.
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Figure 3. A 3D reconstruction of the rock sample in Case A. (a) Sample input images; (b) camera positions; (c) sparse point
cloud; and (d) dense point cloud.

Figure 4 shows the 3D reconstruction results of Cases B to E. The dense point clouds of
the sample have different surface colors due to changes in lighting conditions. For instance,
the dense point clouds have a lighter color representation in Cases B and E (Figure 4a,d)
compared with dense point clouds in Cases C and D (Figure 4b,c). This is because the
sample was in an outdoor environment for the former test cases. Additionally, notice that
the dense point cloud in Case A (Figure 3d) has a slightly darker color than Cases C and D
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(Figure 4b,c). This is caused by the fact that Case A has a higher moisture content, despite
all three test cases being under indoor lighting conditions.
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3.3. Point Cloud Registration

To align dense point clouds together, we adopt open-source software, CloudCompare
(version 2.10.2) [43], and first scale the point cloud in Case A with the real-world unit. To do
this, two points (#4332244 and #3697936 in Figure 5a) were selected in the unscaled point
cloud. The distance between these two points was measured as 7.753 from CloudCompare.
Notice that there is no real-world dimension associated with this distance. Next, the loca-
tions of these two points were identified in the rock sample and the corresponding distance
was measured as 10.5 cm. This further led to a scaling factor of 10.5 cm/7.753 = 1.354 cm/1.
Thereafter, the initial point cloud was scaled up by multiplying 1.354 to the coordinates
of each point. The new point cloud, after scaling, is treated as the reference point cloud.
Figure 5b illustrates the comparison of the point clouds before and after scaling.
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Figure 5. (a) The unscaled point cloud from Case A; (b) a comparison of unscaled and scaled point clouds in Case A; and (c) the
unscaled point cloud in Case C can be aligned to the reference point cloud by manually selecting four correspondences
(A0-R0, A1-R1, A2-R2, and A3-R3).

Next, a point cloud from a new test case is aligned to the reference point cloud. We
use Case C as an example here for illustration. First, rough registration was performed
using four correspondences (A0-R0, A1-R1, A2-R2, and A3-R3 in Figure 5c) from both
point clouds. Thereafter, fine registration was conducted through the ICP algorithm. Point
clouds from Case B, D, and E were aligned with the point cloud in Case A using the same
procedure, but the procedures of these alignments are not shown in this manuscript due to
the length constraint.
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3.4. Point Cloud Comparison

Once point clouds of Case B to E are aligned with the reference point cloud in Case
A, the differential features can be identified through computing cloud-to-cloud distance
in CloudCompare. The cloud-to-cloud distance between Case A–B and Case A–C are
illustrated in Figure 6. As shown in the figure, the test sample in Case B experienced no
geometric change but was under a different lighting condition. As a result, the cloud-
to-cloud distance between Case B and reference point cloud (i.e., Case A) is extremely
small (0.07 cm in Figure 6a,b), indicating two point clouds match well with each other.
The three stones in Case C can be identified from the cloud-to-cloud distance as shown
in Figure 6d,e. The locations of stones agree well with the ground truth measurements in
Figure 6f. Furthermore, the height of S1, S2, and S3 can be roughly quantified as 0.4, 0.3,
and 0.7 cm.
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Figure 6. (a,b) Cloud-to-cloud distance between Case A and B; (c) point cloud in Case B serves as the
ground truth measurement; (d,e,g,h,j,k) cloud-to-cloud distance between Case A and C; and (f,i,l) point
clouds in Case C serves as the ground truth measurements. Results in (a,d,g,j) are in log scale with
the unit of cm; and results in (b,e,h,k) are in linear scale with the unit of cm.

The cloud-to-cloud distances between Case A–D and Case A–E are shown in Figure 7.
As can be seen in the first and second columns of the figure, salt particles in the test samples
in Cases D and E can be identified. The cloud-to-cloud distance in log scale has better
demonstrations on finding the boundary of the particles; while the result in linear scale
is more suitable for quantifying the thickness of the salt layer. Results indicate that the
proposed method can reliably find geometric changes that occurred in the test sample,
regardless of changes in the lighting conditions, as seen in Cases D and E.
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clouds in Case E serves as the ground truth measurements. Results in (a,d,g,j) are in log scale with
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4. Field Validation
4.1. Site Description

A cliff at Tagachang Beach in Guam is selected as the testbed for field validation.
Tagachang Beach is located on the east side of the island. Showing in Figure 8d, the cliff
starts at the south end of the beach and extends to the south. A small portion of the cliff
is selected in this study (see the white circle in Figure 8d). Figure 9 illustrates the testbed
from different views. The target cliff is about 30 m high measured from the cliff bottom
and has a relatively flat top surface covered by vegetation (Figure 9a). Both north and east
sides of the target cliff are steep rock surfaces (Figure 9b,c). A rock slide can be observed
on the east vertical plane of the cliff due to the previous erosion (Figure 9d).

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 7. (a,b,d,e) Cloud-to-cloud distance between Case A and D; (c,f) point clouds in Case D 

serves as the ground truth measurements; (g,h,j,k) cloud-to-cloud distance between Case A and E; 

and (i,l) point clouds in Case E serves as the ground truth measurements. Results in (a,d,g,j) are in 

log scale with the unit of cm; and results in (b,e,h,k) are in linear scale with the unit of cm. 

4. Field Validation 

4.1. Site Description 

A cliff at Tagachang Beach in Guam is selected as the testbed for field validation. 

Tagachang Beach is located on the east side of the island. Showing in Figure 8d, the cliff 

starts at the south end of the beach and extends to the south. A small portion of the cliff is 

selected in this study (see the white circle in Figure 8d). Figure 9 illustrates the testbed 

from different views. The target cliff is about 30 m high measured from the cliff bottom 

and has a relatively flat top surface covered by vegetation (Figure 9a). Both north and east 

sides of the target cliff are steep rock surfaces (Figure 9b,c). A rock slide can be observed 

on the east vertical plane of the cliff due to the previous erosion (Figure 9d). 

 

Figure 8. The location of the testbed. (a) shows the island of Guam. (b–d) are blow-up orthographic satellite views accord-

ingly. Tagachang Beach and the target cliff are illustrated in Figure 8d. All satellite images are generated from Google 

Earth. Map data in (a,b) are from Google, NOAA, Maxar Technologies, and CNES/Airbus; map data in (c,d) are from 

Google and CNES/Airbus. 

Figure 8. The location of the testbed. (a) shows the island of Guam. (b–d) are blow-up orthographic satellite views
accordingly. Tagachang Beach and the target cliff are illustrated in Figure 8d. All satellite images are generated from Google
Earth. Map data in (a,b) are from Google, NOAA, Maxar Technologies, and CNES/Airbus; map data in (c,d) are from
Google and CNES/Airbus.
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4.2. UAV Operation, Data Collection, and Point Cloud Reconstruction

Two visits were carried out on 25 June and 11 July 2020, respectively. The east side of
the cliff was inaccessible due to high tides during both visits. Hence, the deployment work
was performed at the north side of the cliff (i.e., see the deployment area in Figure 8d). Two
off-the-shelf UAVs, the DJI Air (SZ DJI Technology Co., Ltd, Shenzhen, China) and DJI
Phantom 4 Pro + V2.0 (DJI Phantom 4, hereafter, SZ DJI Technology Co., Ltd, Shenzhen,
China), were adopted as tools for image collection.

To evenly capture the testbed under different camera positions, two image collection
strategies were proposed. The first strategy was to take a series of images under a pre-
programmed flight route to scan the cliff from the top. This was achieved by operating
the DJI Air through an off-the-shelf smartphone app, Pix4Dcapture (version 4.10.0) [44],
installed on an iPhone 11. A double-grid mapping mission was created in the app. The
altitude of the flight was defined as 90.2 m with front and side overlapping of 90% and
75%, respectively, based on which the app calculated the UAV locations for shooting each
image. As a result, 83 images were collected by the DJI Air for both field visits with an
image resolution of 4056 pixels by 3040 pixels. The UAV camera angle was selected as
80 degrees.

For the second image collection strategy, images were captured by the DJI Phantom
4 through an intelligent mode, named point of interest (POI), using the smartphone app
DJI Go 4 (version 4.3.36) [45]. The app was preinstalled in the all-in-one DJI remote
controller. The POI mode allowed the UAV to fly along a circular path horizontally with a
predefined center point and a radius. The center point was defined at the cliff’s top (see the
white cross in Figure 9a), and the radius was selected as 62 m. Then, multiple POI flights
were performed under altitudes of 25 m to 45 m. Images were automatically collected by
the onboard UAV camera using a camera shooting interval of 2 seconds with an image
resolution of 4864 pixels by 3648 pixels. In total, 284 and 251 images were collected in the
field visits of 25 June and 11 July, respectively.

Figure 10a,c show the sample UAV images from the DJI Phantom 4 under the POI
mode for both field visits. Figure 10b,d show the camera positions where the backgrounds
are sparse point clouds of the testbed. As can be seen in the figures, the DJI Air follows
flight missions of a 3-by-3 grid to cover the top of the cliff area. The DJI Phantom 4
is operated in POI mode to mainly scan the east and north sides of the cliff from four
different altitudes.

Based on the collected UAV images from the DJI Air and Phantom 4, the dense point
clouds of two field visits are reconstructed using Agisoft Metashape on a workstation (Dell
XPS 8930-7814BLK-PUS with 32 GB of RAM and a 3.0 GHz CPU). Figure 11 illustrates
the dense point clouds from both field visits where point clouds outside the scope of the
testbed are truncated. The point cloud in the 25 June visit contains 48.5 million points,
while the point cloud on 11 July contains 55.8 million points.
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from both point clouds for rough alignment.

4.3. Point Cloud Registration

To align the point clouds, we first scale the point cloud into a correct real-world unit
in CloudCompare. To this end, we treat the point cloud in the second visit on 11 July as
the reference point cloud. During this visit, three markers (M1, M2, and M3) were placed
in the testbed as seen in Figure 12d. M1 and M2 were X marks made by the blue paint
tape, while M3 was the UAV landing pad. The distances between the three markers were
taken by a measuring tape (see the second column in Table 2). Next, the markers were
visually identified from the dense point cloud (Figure 12a–c). The distances between three
markers in the point cloud were also measured (see the third column in Table 2). Finally,
three scaling factors were calculated, based on which the average scaling factor of 1.054 m
was applied for scaling the point cloud in the second visit.

Thereafter, the scaled point cloud in the first visit was aligned to the reference
point cloud through the registration protocol. Figure 11 demonstrates the selections of
correspondences (A1-R1, A2-R2, A3-R3, and A4-R4) from both point clouds for rough
alignment. Next, the point cloud in the first visit was further aligned by the automated
ICP algorithm.

Figure 13 shows the comparison of point clouds under different views of the cliff
from two visits during the registration procedure. The point cloud from the 25 June visit is
rendered in blue. As can be seen in Figure 13b,e,h, small misalignments can be observed
after rough alignment. Such misalignments can be minimized after fine alignment is
performed (Figure 13c,f,i).
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Figure 12. Deployment of markers during the visit on 11 July where (a) shows the dense point cloud in the top view;
(b) shows the blow-up detail of the point cloud with three markers; (c) shows blow-up details of three markers truncated
from the dense point cloud; and (d) shows the images of markers collected by a smartphone camera in the field.

Table 2. Scaling factor calculation.

Marker
Distance

Field
Measurement

CloudCompare
Measurement Scaling Factor Calculation

M1 to M2 17.48 m 16.61 1.052 m/1
Average:

1.054 m/1
M1 to M3 10.06 m 9.52 1.057 m/1
M 2 to M3 14.99 m 14.22 1.054 m/1
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Figure 13. Investigation of point cloud registration. (a,d,g) are rough alignments results of point clouds from the top, north,
and east views; (b,e,h) are the blow-up details; and (c,f,i) are the same observation locations after applying fine alignment.
The point cloud from the June 25 visit is rendered in blue.

4.4. Cliff Monitoring

The cloud-to-cloud distance is computed in CloudCompare and the results are shown
in Figure 14. As can be seen from the figure, the majority of the cliff area is covered in
green, indicating the discrepancies between two point clouds are about or less than 1.47 cm
(read from the figure). However, scattered yellow and red spots can be also found from
the results. The cloud-to-cloud distances for these locations span from 19 cm (yellow) to
2.47 m (red), showing significant discrepancies that occurred in the point clouds from two
field visits.
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Figure 14. Cloud-to-cloud distance between point clouds from two visits from (a) bird’s-eye view;
(b) top view; (c) east elevation view; and (d) north elevation view. Results are in log scale with the
unit of m.

To further investigate such discrepancies, two locations (Patch A and B) are identified
from the bird’s-eye view in Figure 14a. Patch A contains a steep cliff face covered by
scattered vegetation as shown in Figure 15b; Patch B locates at the flat top of the cliff filled
by vegetation (Figure 15d). As observed from the figures, the cloud-to-cloud distances are
large in the area of vegetation (yellow spots in Figure 15a,c) and become smaller around the
cliff rock face (e.g., the green area in Figure 15a). This is because the SfM-MVS algorithm
has difficulties reconstructing thin structures such as plants [41], leading to reconstruction
errors to the point clouds.
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Figure 15. Investigation of Patch A and B in Figure 14 where (a,b) are cloud-to-cloud distance and the point cloud in the
area defined by Patch A; and (c,d) are cloud-to-cloud distance and point cloud in the area defined by Patch B.

To reduce the errors caused by vegetation, we truncate the cloud-to-cloud distance
result in Figure 14 by only reserving the steep cliff faces on the east and north sides. The
new results of cloud-to-cloud distance are shown in Figure 16. As a result, the maximum
cloud-to-cloud distance has been reduced from 2.47 m in Figure 14 to 0.66 m in Figure 16.
Red spots can be still observed from the figures, mainly caused by the scattered vegetation
on the cliff faces. We further inquiry three cloud-to-cloud distances from typical cliff faces
and the results range from 0.7 cm to 2.2 cm. Considering the size of the entire cliff (about
30 m in height), such differences are negligible.
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5. Discussion

We validated the proposed method through a few small-scale experiments using a
rock sample. Although SfM-MVS is a well-established workflow for reconstructing point
clouds, few studies in the literature focused on the robustness of SfM-MVS against different
lighting conditions and surface textures in the context of coastal cliffs. The small-scale
validation in this study serves as the mean for addressing such concerns. The lighting
conditions and surface textures (see the second and third columns in Table 1) would
simulate the different weather conditions of a cliff one could see in the field. For instance,
the lighting conditions of the cliff site would change across different periods of the day; the
surface texture of rock may become dark after rain or a typhoon. The geometric changes in
small-scale validation include abrupt changes, such as adding stones (Case C); or gradual
changes, such as adding salt particle layers (Cases D and E). These changes mimic the
geomorphological changes of the cliff. For the erosion behavior of the cliff, instead of
adding contents, landscape features of the cliff would be removed. In this case, point
clouds in Case C, D, and E can be considered as the initial models, while the point cloud in
Case A shall be the new model after erosion.

Results from the small-scale validation demonstrated the effectiveness of our method
in detecting, identifying, and quantifying geometric changes in the rock sample, regardless
of variations in lighting conditions and surface texture. Although the cliff in the field
validation of this study did not experience visible erosion due to a short inspection interval,
the findings in the small-scale validation would serve as the basis for the success of our
method in monitoring cliff erosion over the long term.

In terms of correspondence selection, four pairs of correspondences are selected on
the top of the test sample in small-scale validation showing in Figure 5. Selecting corre-
spondences from other locations of the rock sample is also feasible. Since correspondence
selection only serves as the mean for rough alignment, errors that occurred in this regis-
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tration stage can be further reduced during fine alignment and would not affect the final
registration result.

One difference between small-scale and field validations is that extra errors are in-
duced in the field validation due to vegetation in the cliff area. Vegetation fully covers the
top surface of the cliff and appears in scattered patterns at the vertical cliff faces. Estimating
the locations of true rock surfaces in these areas from the point cloud could be very chal-
lenging as the surfaces are barely visible from UAV images. However, the false-positive
results can be easily identified through visual inspections between cloud-to-cloud distance
and ground truth measurements (see Figure 15).

Since the nature of our method is a non-georeferenced approach, the point cloud
generated by our method is not intended to contain any geographic information. Although
most consumer-grade UAVs (including the ones in this study) provide geotagged images,
such UAV images are not suitable for georeferencing due to the low accuracy of GIS
coordinates. Secondly, the point cloud produced by our method cannot be directly linked
to georeferenced datasets (e.g., geotagged maps, point clouds, or models). However, if
a georeferenced point cloud of a cliff exists in the past, one can align a newly collected
non-georeferenced point cloud from our method to the existing georeferenced one through
the registration method established in this study. In terms of geomorphological changes,
our method assumes that only a small portion of the cliff experiences erosion while the
remainder of the cliff remains unchanged during inspections, which could be commonly
found in coastal surveying [46]. Investigating dramatic geomorphological changes of a cliff
due to severe erosions is out of the scope of this study.

6. Conclusions

Monitoring cliff erosion is essential for maintaining a healthy coastal ecosystem. The
usage of photogrammetry-based workflows and UAVs have been proven effective in moni-
toring coastal cliffs. To date, many photogrammetry-based methods rely on georeferencing
frameworks for point cloud alignments. Despite the successes reported in these studies,
georeferencing efforts significantly increase the project cost through securing high-end
GPS equipment, hiring GIS specialists, and/or relying on GNSS-enabled UAVs. This may
hinder the usage of photogrammetry technology for monitoring cliffs on a routine basis,
particularly in underserved coastal communities where expensive hardware and trained
GIS specialists are limited resources.

In this study, we proposed a novel photogrammetry-based approach for identifying
geomorphological changes of coastal cliffs that does not rely on any georeferencing efforts.
The SfM-MVS algorithms were adopted in reconstructing 3D dense point clouds of the
cliff. Then, a rigid registration protocol was established to gradually align two point clouds
at different periods together to uncover the differential changes caused by cliff erosion.
Our method has been examined by a series of small-scale experiments on a rock sample.
Results indicated the proposed method can detect, localize, and quantify small changes
that occurred in the rock sample, regardless of variations in lighting and surface texture
conditions. Thereafter, we further validated our method on a full-scale coastal cliff in
Guam. Point clouds from two field visits were reconstructed and aligned together to
find the differential features caused by geomorphological changes. The findings of this
study are highly impactful for being able to offer a low-cost and flexible cliff monitoring
methodology to government agencies and stakeholders for their decision-making in coastal
zone management.
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