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Abstract: Road detection from images has emerged as an important way to obtain road information,
thereby gaining much attention in recent years. However, most existing methods only focus on
extracting road information from single temporal intensity images, which may cause a decrease in
image resolution due to the use of spatial filter methods to avoid coherent speckle noises. Some newly
developed methods take into account the multi-temporal information in the preprocessing stage to
filter the coherent speckle noise in the SAR imagery. They ignore the temporal characteristic of road
objects such as the temporal consistency for the road objects in the multitemporal SAR images that
cover the same area and are taken at adjacent times, causing the limitation in detection performance.
In this paper, we propose a multiscale and multitemporal network (MSMTHRNet) for road detection
from SAR imagery, which contains the temporal consistency enhancement module (TCEM) and mul-
tiscale fusion module (MSFM) that are based on attention mechanism. In particular, we propose the
TCEM to make full use of multitemporal information, which contains temporal attention submodule
that applies attention mechanism to capture temporal contextual information. We enforce temporal
consistency constraint by the TCEM to obtain the enhanced feature representations of SAR imagery
that help to distinguish the real roads. Since the width of roads are various, incorporating multiscale
features is a promising way to improve the results of road detection. We propose the MSFM that
applies learned weights to combine predictions of different scale features. Since there is no public
dataset, we build a multitemporal road detection dataset to evaluate our methods. State-of-the-art
semantic segmentation network HRNetV2 is used as a baseline method to compare with MSHRNet
that only has MSFM and the MSMTHRNet. The MSHRNet(TAF) whose input is the SAR image after
the temporal filter is adopted to compare with our proposed MSMTHRNet. On our test dataset,
MSHRNet and MSMTHRNet improve over the HRNetV2 by 2.1% and 14.19%, respectively, in the
IoU metric and by 3.25% and 17.08%, respectively, in the APLS metric. MSMTHRNet improves over
the MSMTHRNet(TAF) by 8.23% and 8.81% in the IoU metric and APLS metric, respectively.

Keywords: road detection; attention mechanism; deep learning; multi-temporal; multi-scale;
SAR imagery

1. Introduction

The road information is essential in various practical applications, such as urban
planning, traffic measurement, auxiliary navigation, GIS database update, and emergency
response [1,2]. With the help of computer technology, automatically extracting roads from
remote sensing images becomes economical and effective. Especially, synthetic aperture
radar (SAR) has received a lot of attention in the road extraction area recently due to the
wide coverage and day-and-night and all-weather observation capability [3–9].
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In the high-resolution SAR imagery, the roads may be precisely modeled as dark
elongated areas surrounded by bright edges, which are due to double-bounce reflections
by surrounding buildings or uniform backscattering by the vegetation [10]. However, in
practical, there are various interferences that includes speckle noise, layover and shadow
make the road detection be a non-trivial work.

In the past few decades, researchers have proposed various methods to automatically
extract roads from SAR images. Most of methods consist of two main steps: road detection
and road network reconstruction. Tupin et al. in [11] modified the MRF model by adding
the clique potentials to adapt the road network extarction to refine [6]. Negri et al. in [10]
proposed a multiscale feature fusion detector that extracted multiscale radiance, direction,
edge feature, and mended the MRF model in [11], considering two kinds of nodes (T-shaped
nodes and L-shaped nodes) in the road network and altering the selection of the main
parameters of the MRF optimization chain. He et al. in [12] firstly established a multiscale
pyramid on the input image and subdivided image for each level into a series of binary
squares forming a quadtree, and then employed the multi-scale linear feature detector
and beamlet to detect roads and adopted concept of regional growth to construct a road
network, and proposed a rapid parameter selection procedure for adaptive adjustment
of growth parameters. Lu et al. in [3] proposed a weighted ratio line detector (W-RLD)
to extract the faeture of the road and used an automated road seed extraction method
that combines ratio and direction information to improve the quality of road detection.
The above methods separately executed two steps, which easily incur error accumulation.
The work [5] achieved better performance using a conditional random field model to
simultaneously perform the two steps.

With the a rise of deep learning, many works [13–15] for road extraction using deep
convolutional neural networks (DCNN) have emerged, which greatly promote the improve-
ment of road extraction performance. The fully convolutional neural network (FCN) [16]
that stacks several convolutional and associative layers to gradually expand the receptive
field of the network is easier to obtain road information [17,18]. The U-Net architecture [19]
that connects feature maps with different resolutions was employed to extarct road informa-
tion [20–23]. D-LinkNet [24] with encoder-decoder architecture captures the rough position
of the road extraction through the high level features with large receptive field and refines
the edge through the high resolution feature maps that retain the spatial structure details.
Xu et al. in [25] proposed a road extraction neural network based on spatial attention,
which can capture the context information between roads and buildings to extract roads
more accurately. RoadNet [26] predicted road surface, edge and centerline at the same time
under multitask learning scheme. So far, deep learning is mainly applied to road extraction
from optical remote sensing images. Less attention are paid on extracting road information
from SAR imagery via deep learning. This may due to the fact that the unique character-
istics of SAR images make labeling time-consuming and labor-intensive. Although there
have been fewer minimal works that apply deep learning for road extraction from SAR
imagery to date, it is no doubt that deep learning has colossal application potential for
extraction of road information from SAR image. Henry et al. in [7] applied Deep Fully
Convolutional Neural Networks (DFCNs) to segment roads from SAR imagery, which
achieved good performance. Wei et al. in [8] proposed a multitask learning framework
that learn road detection task and road centerline extraction based ordinal regression
task simultaneously and designed a new loss named road-topology loss to improve the
connectivity and complement of road extraction results.

Along with the development of modern acquisition technology that produces the high-
resolution SAR data stream with a short repetition period, there have been some works
using multitemporal SAR images for road extraction. Chanussot et al. in [27] designed
a directional prefilter that uses majority voting and morphological filters to adaptively
explore the possible directions of linear structures on temporal averaged SAR images. For
robust road extraction, ref. [9] estimated coherence without loss of image resolution by
homogeneous pixel selection and robust estimators. Then, ref. [9] combined coherence
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and temporal averaged intensity to detect roads. In [9,27], multitemporal information is
only used in the preprocessing stage to despeckle, which loses a lot of useful temporal
information. The roads in the remote sensing imagery change slowly, and the roads
neither suddenly appear nor disappear suddenly [28]. In a relatively short period of time,
there are temporal correlation between the roads in the SAR images acquired at different
times. Futhermore, the speckle noise in SAR images is random multiplicative noise. As
a result, SAR images acquired at different times can complement each other to reduce
the interference of coherent speckle noise [29]. These inspire us to exploit multitemporal
information for better road detection performance. In this paper, we propose a temporal
consistency enhancement module that uses temporal attention mechanism to capture long-
range temporal context information, by which the representation with temporal consistency
of SAR imagery is obtain.

In real world, the width of roads varies greatly. There exists a trade off in road
detection task that the road with smaller width of predictions are best handled at lower
inference resolution and predicting other roads with larger width are better handled at
higher inference resolution. Fine detail, such as the boundary is often better predicted with
high resolution feature maps. And at the same time, predictions of large roads, which
requires more global context, is often done better with large receptive field. As a result,
multiscale feature maps are useful for road detection task. A lot of works [23,30–32] have
emerged in recent years to address this trade off. Lu et al. in [30] proposed a multi-
scale enhanced road detection framework (DenseUNet), which employed atrous spatial
pyramid pooling (ASPP) to effectively capture multi-scale features for road detection. In
paper [31], multiscale convolution that can provide higher accuracy is applied to obtain
hierarchical features with different dimensions. Lu et al. in [23] employed multiscale
feature integration to combine features from different scales to improve the robustness of
feature extraction. In paper [32], the proposed network can produce intermediate outputs
of different scales and used multiscale losses to guide the network during training. The
pervious works [23,30,31] just leverage features from the final layer of network to detect
roads. The paper [32] penalize the prediction of each scale for each object equally, which
ignores the importance of prediction results at different scales for each objects is different. In
this paper, we leverage multiscale features instead of just the features from the final layers
of the network to obtain multiscale predictions, and propose a multiscale fusion module to
combine multiscale predictions by weight for each scale learned by scale attention module.

Our main contributions are as follows:

1. For multitemporal road detection from SAR imagery, we build our dataset with
TerraSAR-X images, which cover same areas and were obtained at different times.
Our experiments are carried out based on this dataset. Our experimental results show
that our proposed framework can achieve a better road detection performance;

2. In this paper, an temporal consistency enhancement module is proposed to obtain the
representation with temporal consistency under temporal attention mechanism that
is used to capture long range temporal context information;

3. We propose an efficient multi-scale fusion module that merges predictions of feature
maps with different receptive fields by learning weights for different scales, which
helps predict roads with various width.

2. Materials and Methods

In this section, we present the details of the proposed multiscale and multitemporal
network (MSMTHRNet) for road detection from SAR images. We first present a general
framework of our multitemporal multiscale network. Then, the temporal consistency
enhancement module which can enforce temporal consistency between features of different
temporal SAR images by capture of temporal contextual information is proposed. Finally,
we present the multiscale fusion module that can combine predictions of different resolution
feature maps.
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2.1. Overview

We denote by (I0, ..., Ic, ..., IT−1) a sequence of SAR images that cover the same area
and shot at different times. Only SAR image Ic has a corresponding road groundtruth,
which is referred to as the main image. Except for SAR image Ic, the remaining images are
referred to as auxiliary images. Our proposed multitemporal multiscale road detection
network use the multitemporal SAR images as input and aims to detect roads in SAR
image Ic.

As shown in Figure 1, the multitemporal SAR images are firstly fed into a shared
backbone to extract features, which directly follows the work [33]. Ref. [33] proposed a net-
work architecture HRNet, which has achieved better performance in various applications
including semantic segmentation, pose estimation, etc. Different with the frameworks that
frist encode the input image as a low-resolution representation through a subnetwork that
is formed by connecting high-to-low resolution convolutions in series (e.g., ResNet, VG-
GNet) and then recover the high-resolution representation from the encoded low-resolution
representation, the HRNet maintains high-resolution representations through the whole
process. As shown in Figure 2, the HRNet has two key characteristics. One is that the
HRNet connects the high-to-low resolution convolution streams in parallel, and the other
is that HRNet can repeatedly exchange the information across resolution. The resulting
representation of the HRNet is semantically richer and spatially more precise, which is
essential for road detection problems. As a result, we choose the HRNet as the backbone to
extract features.

Backbone

Backbone

Backbone

Temporal 
Consistency 

Enhancement 
Module

Temporal 
Consistency 

Enhancement 
Module

Temporal 
Consistency 

Enhancement 
Module

Temporal 
Consistency 

Enhancement 
Module

Multiscale
Fusion

Module

Figure 1. The overview of Multiscale and Multitemporal Road Detection Framework.

The HRNet produces multitemporal multiscale feature maps {F0
0 , ..., Fs

0 , ..., F3
0 }, ...,

{F0
c , ..., Fs

c , ..., F3
c }, ..., {F0

T−1, ..., Fs
T−1, ..., F3

T−1}, where Fs
t is the feature map of SAR image It

for s scale. Multitemporal feature maps with the same resolution {Fs
0 , ..., Fs

c , ..., Fs
T−1} are

input to the temporal consistency enhancement module, which can capture long-range
temporal context information and enhance the feature representation of the main image by
enforcing temporal consistency constraints. After the temporal consistency enhancement
module, the multiscale feature maps {F̂0

c , ..., F̂s
c , ..., F̂3

c } with temporal consistency of main
image Ic are obtained. Finally, the multiscale fusion module combines predictions of
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multiscale feature maps {F̂0
c , ..., F̂s

c , ..., F̂3
c } by learning the weights of feature maps for

different scales.

channel
maps

conv
uint

Strided
conv

unsample

Figure 2. The architecture of High-Resolution Network. There are four stages. The first stage consists
o high-resolution convolutions. The second, third and fourth stages repeat two-resolution, three-
resolution and four-resolution blocks, respectively. HRNet can connect high-to-low convolution
streams in parallel and maintain high-resolution features through the whole process [33].

There are abundant temporal information in multitemporal SAR images, which are
essential for road detection from SAR images. There are two reasons that motivate us to
use multi-temporal information to detect roads from SAR images. One is that the roads in
the remote sensing imagery are slowly changing objects, which neither suddenly appear
nor disappear. Especially, in a very short period of time, the roads in the remote sensing
imagery could be seen as remaining unchanged. There is temporal consistency between
the roads in remote sensing images that are taken at adjacent temporal and cover the same
area. The other is that coherent speckle noise in SAR images is random multiplicative
noise and multitemporal SAR images covering the same area can complement each other.
Huang et al. [34] proposed a criss-cross attention module to capture full-image spatial
contextual information. Huang et al. [34] used two criss-cross attention module that
only need lightweight computation and memory to replace non-local attention module.
Given local feature representations H, the criss-cross attention module firstly applies two
1× 1 convolutions to generate three dimensional feature maps Q , K, and V. And Then
Q and K are be fed into affinity operation to calculate spatial attention map. Finally, dot
multiplication result of the spatial attention map A and V add H to generate new feature
maps H′. As a result, inspired by criss-cross attention module [34] that is used to model the
full-image spatial dependencies, we propose a temporal consistency enhancement module
to impose temporal consistency constraints by capturing long-range temporal contextual
information.

Figure 3 illustrates our proposed temporal consistency enhancement module that uses
multitemporal feature maps for s scale {Fs

0 , ..., Fs
c , ..., Fs

T−1} as input and outputs temporal
enhanced feature representation of main SAR image Ic, i.e., F̂s

c . Each Fs
t (t = 0, ..., c, ...T − 1)

firstly fed into two encoder layers. The first encoder layer is used to encode different
representations {F̃s

0 , ..., F̃s
c , ..., F̃s

T−1} of differnet temporal SAR images, which is composed
of one 1× 1 convolution and one 3× 3 convolution. Directly using original output of
backbone is computationally expensive because of the high-dimensional channel. As a
result, the second encoder layer is adopted to channel reduction by encoding key features
{Ks

0, ..., Ks
c, ..., Ks

T−1} of different temporal SAR images. We separately enhance the temporal
consistency of each temporal feature map.
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Figure 3. Temporal Consistency Enhancement Module.

2.2. Temporal Consistency Enhancement Module

For feature map F̃s
t of SAR image It, we firstly adopt our proposed temporal attention

module to capture long-range temporal contextual information. Except for the feature map
F̃s

t , the feature maps of other temporal SAR images and the key features of all temporal are
input into temporal attention module.

As depicted in Figure 4, we concatenate the feature maps and key features of other
temporal SAR images along the temporal dimension generating a 4-dimension matrix, and
permute them to Mt

F ∈ RHs×Ws×Cs
F×(T−1) and Mt

K ∈ RHs×Ws×(T−1)×Cs
K , respectively. We

permute and reshape the key feature of SAR image It to Qt
K ∈ RHs×Ws×Cs

K×1. Next, we
multiply Mt

K and Qt
K, and then apply a softmax layer to calculate the temporal attention

map At ∈ RHs×Ws×(T−1)×1. Especially, At′
t ∈ At is the degree of correlation between key

feature Kt and Kt′ and is given as:

At′
t =

exp(Kt · Kt′)

∑t′′ 6=t exp(Kt · Kt′′)
, (1)
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where At′
t (i, j) measures the impact of the (i, j) position in the key feature Kt on the same

position in the key feature Kt′ . It should be noted that the larger impact from the It to the
It′ , the greater relation between them. After obtaining the correlation map At, we multiple
At and Mt

F to combine temporal relation with multitemporal features. Finally, we reshape

and permute M̃t
F to obtain temporal attention feature F̃

s
t .

P &R

P

P

Softmax

R&P

P   Matrix Permute
 R   Matrix Reshape

Figure 4. Temporal Attention Module.

As shown in Figure 3, after obtaining the long-range temporal context information
via temporal attention module, we add the temporal attention feature F̃

s
t and feature F̃s

t to
enhance the representation of image It. The aggregation feature Fs′

t is given by:

Fs′
t = F̃

s
t + F̃s

t . (2)

After the first round temporal consistency enhancement, we obtain the multitemporal
feature representations with temporal consistency for s scale, i.e., {Fs′

0 , ..., Fs′
c , ..., Fs′

T−1}. In
the second round, we use multitemporal feature maps {Fs′

0 , ..., Fs′
c , ..., Fs′

T−1} \ Fs′
c (\ is minus

operation of set) to enhance the representation of main image. As shown in Figure 3, the
output of temporal consistency enhancement module is the aggregation feature of main
image Ic for s scale, i.e., F̂s

c .

2.3. Multiscale Fusion Module

In practice, low-resolution feature map with large receptive field is easier to predict
larger objects in a scene. However, due to multiple downsampling operations, it is difficult
to detect small objects. High-resolution feature map with small receptive field is just the
opposite. Due to the less down-sampling operations, high-resolution feature map retains
more details, which resolves fine detail better. In the real world, the width of roads varies
greatly. Low-resolution feature map with larger receptive field have difficulty to predict
narrow roads and ensure accurate road edges. High-resolution feature map with smaller
receptive field can not distinguish between wide roads and rivers. In order to make full
use of the advantages of different resolution feature map, we propose a multiscale fusion
module based on the scale attention mechanism that is similar to the paper [35]. As shown
in the Figure 5, feature map for the s scale of main SAR image Fs

c (s = 0, 1, 2, 3) is fed into
the corresponding segmentation head to obtain the road detection prediction map ys for
the scale s. The segmentation head for each scale is the same, which consists of a 3× 3
convolution layer, BatchNorm layer, ReLU activation layer, a 1× 1 convolution layer and a
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Softmax activation layer. When s = 1, 2, 3, we need to upsample Ŷs to guarantee that the
size of road prediction map for each scale is identical.

Segmentation

Segmentation

Segmentation

Scale Attention 
Module

Segmentation

Unsample

Unsample

Unsample

Unsample

Unsample

Unsample

Output

Figure 5. Multiscale Fusion Module.

As shown in Figure 6, the scale attention module feds with the multiscale feature
maps {F̂0

c , F̂1
c , F̂2

c , F̂3
c }. We upsample F̂1

c , F̂2
c and F̂3

c , so that these feature maps have the
same width and height with the feature map F̂0

c . As shown in Figure 6, the multiscale
feature maps are input to the scale attention module to learn the weights corresponding to
each scale {W0, W1, W2, W3}. The scale attention module is composed of (3× 3conv) →
(1× 1conv)→ (So f tmax). The weight Ws(s = 0, 1, 2, 3) is computed by the Equation (3).

Ws =
exp(Gs)

∑4
s′=0 exp(Gs′)

, (3)

where Gs is last layer output before SoftMax produced by the scale attention module for
scale s.

The final prediction Ŷ is the weighted sum of Ŷs for all scales, i.e.,

Ŷ =
4

∑
s=0

Ws ◦ Ŷs, (4)

where ◦ is Hadamard multiply.

Figure 6. Scale Attention Module.
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3. Experiment
3.1. Dataset

In this subsection, we aim to introduce the dataset used in this paper. There is no
public data set suitable for our research. We create our dataset using high-resolution
TerraSAR-X images obtained by the stripe mode. As shown in Table 1, we select two study
areas, which contain urban, suburban, and rural regions. There are seven SAR images that
are obtained at different times for each study areas. We split raw SAR images to patches,
the size of which are 1024× 1024. In other SAR road detection datasets, the size of patch is
usually 256× 256 [7]. The reason why we split the raw SAR images to 1024× 1024 is to
be able to capture a longer range of spatial context information, which is very important
for road detection task. We remove the samples, which do not have road regions or have
few road regions. In this way, we obtain 495 samples in our dataset. We randomly select
397 samples as our train dataset and 98 samples as our test dataset. Our train set contains
multitemporal SAR patches and the groundtruth of main SAR patches. For the first study
area, the main SAR images are obtained at 9 May 2013. For the second study area, the main
SAR images are obtained at 4 March 2013.

Table 1. Metadata of the TerraSAR-X Images Used in Our Data Set.

Area1 Beijing, China

Size 21,800 × 15,500 px
Range Sample Distance 0.909627 m/px
Azimuth Sample Distance 1.848561 m/px
Spatial Resolution 3 m/px
Center Coordinate [39.8798466, 116.4503446]
Polarization HH

Date
19 January 2013, 21 February 2013, 26 March 2013,
9 May 2013,
31 May 2013, 3 July 2013, 5 August 2013

Area2 Beijing, China

Size 27,600 × 18,700 px
Range Sample Distance 0.908790 m/px
Azimuth Sample Distance 1.888833 m/px
Spatial Resolution 3 m/px
Center Coordinate [39.957164, 116.6996268]
Polarization HH

Date
11 May 2012, 20 September 2012, 23 October 2012
4 March 2013,
22 June 2013, 14 July 2013, 16 August 2013

3.2. Metric
3.2.1. Pixel-Based Metrics

To evaluate the performance of our method for road detection from a pixel perspective,
we adapt the metrics [36] including precision (P), recall (R), Intersection over Union (IoU),
and pixel-based F1-score denoted as F1P. Pixel-based precision (P) measures the ratio
of the number of the pixels which are labeled as road pixels in the ground truth and are
predicted as road pixels to the number of pixels that are inferred as road pixels. Pixel-based
recall (R) calculates the ratio of the number of the pixels which are labeled as road pixels in
the ground truth and are predicted as road pixels to the number of pixels that are labeled
as road pixels. F1P is used to balance precision and recall, which is a harmonic average
between precision and recall. Intersection over union (IoU) is the ratio of the intersection
of prediction and groundtruth to the union of prediction and groundtruth, which can
trade-off between recall and precision. Specifically, the four metrics are defined as:

P =
TP

TP + FP
, (5)
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R =
TP

TP + FN
, (6)

IoU =
TP

TP + FN + FP
, (7)

F1P =
2× P× R

P + R
, (8)

where TP is true positive, FP is false positive and FN is false negative. Since there is a
deviation between the manually labelled roads and the real roads, we relax metrics using
the buffer method given in [37]. Specifically, if the regions in the prediction result are
within the two pixels range, they are regarded as matching regions.

3.2.2. Topology-Based Metric

Pixel-based metrics are universal metrics for segmentation tasks, which are not enough
for evaluating the performance of roads detection results. Pixel-based metrics evaluate the
prediction results of each pixel equally. The loss of a few pixels has little effect on road
segmentation results, but it does have a significant effect on road connectivity. As a result,
we adopt three topology-based metric: the average path length similarity (APLS) [38]
and Biagioni F1-score (F1Bi) [39] to measure the estimated topology and road connectivity.
These two metrics will be described below.

The first metric APLS captures the deviation of the shortest path distance between
all of the node pairs in the graph. We obtain the groundtruth graph G and predicted road
network graph Ĝ from Y and Ŷ, respectively. SP→T measures the sum of difference of
shortest path for each node pair in groundtruth graph G = (V, E) and estimated graph
Ĝ = (V̂, Ê). To penalize the positives, symmetric term ST→P is added to APLS metric
which considers predicted graph as groundtruth and true graph as prediction.

SP→T = 1− 1
|V|∑ min

(
1,
|L(a, b)− L(â, b̂)|

L(a, b)

)
(9)

APLS =
1
N ∑

(y,ŷ)

 1
1

SP→T(G,G)
+ 1

ST→P(G,G)

 (10)

where a, b ∈ V, â, b̂ ∈ V̂, |V| is the number of nodes in groundtruth graph, and N is
the number of images in a minibatch. L(a, b) and L(â, b̂) are path length of a → b and
â→ b̂, respectively.

The second metric F1Bi compares the sets of accessible locations by moving a prede-
termined distance away from the corresponding points in the two graphs. To this end, a
starting position is randomly selected in the ground truth network. The closest point in the
prediction network is identified. Then, the local subgraphs are extracted by breadth-first
exploration of the graphs far away from the starting position. The calculation of the F1Bi
is based on spatial coincidence “Control points” are inserted into the subgraph at regular
intervals. The control point in ground truth is called hole. The control point in predicted
network is called marble. If a marble is close enough to a hole in predicted network, the
marble is considered to be matched marble. If a hole is close enough to a marble in ground
truth network, the hole is considered to be matched hole. Control points that do not match
in the predicted and annotated subgraphs are considered spurious marbles and empty
holes, respectively. The sampling and matching of the local subgraph are repeated many
times, and the spurious and missing are calculated based on the total number of matched
and unmatched control points. According to spurious and empty, the F1Bi is calculated as:

F1Bi = 2× (1− spurious) + (1−missing)
(1− spurious)× (1−missing)

(11)
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where:

spurious =
spuriousmarbles

spuriousmarbles + matchedmarbles
, (12)

missing =
emptyholes

emptyholes + matchedholes
(13)

3.3. Implementation Details

We adopt the Pytorch framework to implement networks trained on a single NVIDIA
Tesla V100 with 16G memory using batch size of one. We train the networks with AdamW
optimizer with the initial learning rate of 1.0× 10−3. To improve the robustness of network,
we apply data augmentation for images in our train dataset including random horizontal
flip, random vertical flip, and random rotation 90 degree. There are 397 SAR images in the
train dataset. After data augmentation, there are 3176 SAR images in train dataset. Roads
are the objects whose areas must be larger than a certain number of pixels that can be set
according to the spatial resolution. As a result, in the postprocessing stage, we discards the
small-area regions whose areas smaller than eighty pixels to improve the performance of
road detection results.

3.4. Results

In this subsection, we will firstly introduce the networks to verify the effectiveness of
the MSFM and TCEM. And then we will show the performance of baseline method and
our proposed methods.

3.4.1. Baseline and Variants of the Proposed Method

We choose the HRNetV2 [33] as benchmark to study the performance of multiscale
fusion module (MSFM). As shown in Figure 7, we modify the HRNet with multiscale
fusion module to obtain the network MSHRNet. Next, we adopt the image after temporal
average filter as input of MSMTHRNet to study the performance of temporal consis-
tency enhancement module (TCEM). As shown in Figure 7, we denoted this method
as MSMTHRNet(TAF).

3.4.2. Comparative Evaluation

To compare the performance of road detection, all the methods are evaluated based
on the test samples in the test set for road detection.

We present quantitative comparisons in Table 2. According to Table 2, MSHRNet out-
performs the HRNetV2, this is due to the modified MSFM. By adding TCEM, our proposed
MSMTHRNet achieves better performance than MSMTHRNet(TAF). The reason is that
the TCEM can capture long range temporal contextual information to obtain enhanced
representation. The differences are greater when using the metric specifically designed to
gauge the quality of road network reconstruction. For pixel-based metric IoU, MSHRNet
and MSMTHRNet improve over the HRNetV2 by up to 2.1% and 14.19%, and MSMTHR-
Net improve over the MSHRNet (TAF) by up to 8.23%. Form the Table 2, we can discover
that the MSMTHRNet improves the APLS by 17.08% and 8.81% over the HRNetV2 and
MSHRNet(TAF) respectively, which reveals that our proposed method can improve road
connectivity. For topology-based metric TOSM, our proposed method greatly improves
the correctness of road topology and decrease the number of infeasible paths that indicates
missing links.
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Figure 7. HRNetV2 is baseline method; MSHRNet is modify the baseline method with multiscale
fusion module. MSMTHRNet(TAF) use the image after temporal average filter.

Table 2. Comparative quantitative Evaluation Among Different Methods for Road Detection on our
dataset. It should be noted that the results are the average performance of all images in the test set. A
higher value indicates a better performance. With the best results marked in bold.

Pixel-Based Metrics

P R IoU F1

HRNetV2 0.9383 0.6367 0.6125 0.7488
MSHRNet 0.9113 0.6751 0.6335 0.7662
MSHRNet(TAF) 0.9352 0.7038 0.6721 0.7972
MSMTHRNet 0.9252 0.8011 0.7544 0.8549

Topology-Based Metrics

APLS F1Bi
HRNetV2 0.3730 0.5013
MSHRNet 0.4055 0.5301
MSHRNet(TAF) 0.4557 0.5624
MSMTHRNet 0.5438 0.6529

For qualitative comparison, we present the results produced by all methods based on
example images depicted in Figures 8 and 9. There are both six columns of subfigures in
Figures 8 and 9. The first, third and fifth columns illustrate the results of three sampled
images, and the second, fourth, and sixth columns illustrate the close-ups of the corre-
sponding regions of red rectangles in the first, third, and fifth columns, respectively. It can
be seen from Figure 8 that our proposed methods detect more true road structures and
eliminates false negative in the foreground without predicting too much spurious road
regions. From Figure 9, we can discover that the road detection result of MSMTHRNet
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have better road connectivity than the prediction of MSHRNet(TAF) by applying temporal
consistency enhancement module.

Google Map Google Map Google Map Google Map Google Map Google Map

SAR SAR SAR SAR SAR SAR

HRNetV2

MSHRNet

MSMTHRNet

HRNetV2HRNetV2

MSHRNet

MSMTHRNet

MSHRNet

MSMTHRNet

HRNetV2

MSHRNet

MSMTHRNet

HRNetV2 HRNetV2

MSHRNet MSHRNet

MSMTHRNet MSMTHRNet

Reference Reference Reference Reference Reference Reference

depicts the obvious advantage of our methods 

MSMTHRNet

Figure 8. Qualitative comparison of road detection results produced by different methods based on three images from our
test set.
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MSHRNet(TAF) MSHRNet(TAF) MSHRNet(TAF) MSHRNet(TAF) MSHRNet(TAF) MSHRNet(TAF)

MSMTHRNet MSMTHRNet MSMTHRNet MSMTHRNet MSMTHRNetMSMTHRNet

Reference Reference Reference Reference Reference Reference

depicts the obvious advantage of our methods 

Figure 9. Qualitative comparison of road detection results produced by different methods based on three images from our
test set.

4. Discussion

In this section, we will discuss how the number of input SAR images affects the
performance of our proposed method. We evaluate the MSHRNet whose input is a single
SAR image, the MSMTHRNet (T = 3) with three input SAR images, the MSMTHRNet
(T = 5) with five input SAR images and the MSMTHRNet (T = 7) with seven input SAR
images on the test samples in the test set. The quantitative comparisons are summarized in
Table 3 and Figure 10. And the qualitative comparisons are illustrated in Figure 11. Form
Table 3 and Figure 10 , we can see that by increasing the number of input SAR images, the
performance of road detection continuously improved. From the pixel-wise perspective,
MSMTHRNet (T = 3), MSMTHRNet (T = 5) , MSMTHRNet (T = 7) are 6.61%, 8.6% and
12.99% higher than the MSHRNet, respectively, in the IoU metric. From the topology-wise
perspective, MSMTHRNet (T = 3), MSMTHRNet (T = 5), and MSMTHRNet (T = 7) are
9.48%, 11.78%, and 14.54% higher than the MSHRNet, respectively in the APLS metric,
which reveals that the connectivity of road is enhanced continuously by increasing the
input SAR images. As shown in Figure 11, increasing input SAR images makes the missing
road regions consistently decrease and road detection results have better road connectivity.
The reason is that the more SAR images input, the better the temporal consistency of the
enhanced feature representation obtained through the temporal consistency enhancement
module, which can reduce the affects of occlusion, coherent spots, and shadows.
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Table 3. Comparative quantitative Evaluation Among Different Methods for Road Detection on our
dataset. It should be noted that the results are the average performance of all images in the test set. A
higher value indicates a better performance. With the best results marked in bold.

Pixel-Based Metrics

P R IoU F1

MSHRNet 0.9113 0.6751 0.6335 0.7662
MSMTHRNet (T = 3) 0.9350 0.7336 0.6992 0.8176
MSMTHRNet (T = 5) 0.8954 0.7837 0.7196 0.8320
MSMTHRNet (T = 7) 0.9252 0.8011 0.7544 0.8549

Topology-Based Metrics

APLS F1Bi
MSHRNet 0.4055 0.5301
MSMTHRNet (T = 3) 0.4920 0.6177
MSMTHRNet (T = 5) 0.5218 0.6514
MSMTHRNet (T = 7) 0.5438 0.6529

T=1 T=3 T=5 T=7

0.4

0.5

0.6

0.7

0.8

0.9

1.0
IOU
F1
APLS
F1_BI

Figure 10. Various metrics IOU, F1-score, APLS, and F1Bi vs. the number of SAR input images.
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MSMTHRNet(T=7) MSMTHRNet(T=7) MSMTHRNet(T=7) MSMTHRNet(T=7) MSMTHRNet(T=7) MSMTHRNet(T=7)

Figure 11. Qualitative comparison of road detection results produced by different methods based on three images from our
test set.

5. Conclusions

This paper has proposed automatic road detection from SAR imagery exploiting
multitemporal SAR images. The results reveal that our proposed method can achieve
satisfactory results. For road segmentation, this paper adapts a state-of-the-art model
HRNet as backbone to extract multiscale features. In order to take advantage of feature
mapping at different scales, we have proposed a multiscale fusion module that combines
the predictions of different scale features using the weights learned by the scale attention
mechanism. The results show that our multiscale fusion module achieve better perfor-
mance than baseline method. To make full use of multitemporal information, we have
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proposed a temporal consistency enhancement module, which adopts temporal atten-
tion mechanism to capture long-range temporal context information. By using temporal
consistency enhancement module, our network can make different SAR images obtained
at different time complement each other. The experimental results demonstrate that the
enhanced representation of main SAR imagery which is obtained by temporal consistency
enhancement module can help improve the performance of our network in the pixel-based
metrics and topology-based metrics. Our experimental results also display that the more
multi-temporal images input, the better the road detection results.

Although, our proposed method have achieved better performance than previous
methods, there are also a lot of missing roads specially the narrower ones. In the future, we
will add a superresolution module to our model so that the narrower roads can be detected.
In order to make our model achieve better generalization performance, we will continue to
expand our dataset in the future by adding SAR images from other sensors.
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