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Abstract: Polarimetric synthetic aperture radar (PolSAR) image classification is one of the basic
methods of PolSAR image interpretation. Deep learning algorithms, especially convolutional neural
networks (CNNs), have been widely used in PolSAR image classification due to their powerful feature
learning capabilities. However, a single neuron in the CNN cannot represent multiple polarimetric
attributes of the land cover. The capsule network (CapsNet) uses vectors instead of the single neuron
to characterize the polarimetric attributes, which improves the classification performance compared
with traditional CNNs. In this paper, a hierarchical capsule network (HCapsNet) is proposed for the
land cover classification of PolSAR images, which can consider the deep features obtained at different
network levels in the classification. Moreover, we adopt three attributes to uniformly describe the
scattering mechanisms of different land covers: phase, amplitude, and polarimetric decomposition
parameters, which improves the generalization performance of HCapsNet. Furthermore, conditional
random field (CRF) is added to the classification framework to eliminate small isolated regions of the
intra-class. Comprehensive evaluations are performed on three PolSAR datasets acquired by different
sensors, which demonstrate that our proposed method outperforms other state-of-the-art methods.

Keywords: land cover classification; PolSAR image; HCapsNet; CRF

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) can provide unique and useful in-
formation under all-weather and multi-climate conditions, and has been widely used in
vegetation distribution [1], disaster assessment [2], ocean research [3], and other fields.
Due to its advantages in obtaining full-polarization information, PolSAR image land cover
classification has received increasingly more attention in recent years and has become
crucial for PolSAR image interpretation.

To date, many PolSAR image classification methods have been proposed. The earliest
classification method was designed based on the statistical characteristics of PolSAR data,
such as the Wishart distribution [4], spherically invariant random vector [5], and so on.
However, these methods rely heavily on the accuracy of the statistical model. Moreover, the
parameter estimation of the statistical models is complicated and sensitive to the PolSAR
data acquired by different sensors and platforms. Therefore, these methods often fail to
obtain satisfactory classification results with different PolSAR datasets.

With the development of machine learning, many classic classification algorithms
have emerged for PolSAR image classification, such as support vector machine (SVM) [6],
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decision tree (DT) [7], Markov random field (MRF) [8], and so on. These traditional
machine learning algorithms are easy to use and suitable for different datasets. However,
these methods rely heavily on the extracted classification features, which are not robust to
different PolSAR datasets. Due to the limitation of capabilities in feature representation and
deep feature extraction, satisfactory classification results cannot be easily obtained when
dealing with the classification for the PolSAR data with polarimetric scattering ambiguity.

Benefiting from the emergence of deep learning algorithms, the shortcomings of tradi-
tional machine learning algorithms in feature representation and deep feature extraction
can be solved. In recent years, a series of deep learning algorithms made remarkable
achievements in the field of PolSAR image classification [9,10]. Chen et al. [11] established
a polarimetric feature-driven deep CNN classification scheme for PolSAR image land cover
classification. Li et al. [12] proposed a sliding window fully convolutional network with
sparse coding for PolSAR image classification. Xie et al. [13] proposed a deep learning
network combining recurrent complex-valued CNN and a Wishart classifier, and achieved
competitive classification results. However, CNNs still have some shortcomings in PolSAR
image land cover classification. The most common deficiency is the poor small sample
performance, i.e., the classification accuracy based on CNNs is generally low with a small
training sample size. Due to the complex polarimetric backscattering of different land
covers, the same class may have different scattering mechanisms or the same polarimetric
scattering mechanism can represent different land covers [14–19]. In the network structure
of CNNs, an active neuron can only represent one entity, and the unicity of its dimension
determines that the neuron itself cannot represent multiple attributes of the same entity
simultaneously. Therefore, in the PolSAR image classification based on CNNs, a class may
have more than one scattering mechanisms. The relationship of these scattering mech-
anisms can only hide into a lot of network parameters, which requires enough training
samples to update network parameters, resulting in that the adjustment of the parameters
is tedious and time-consuming. In addition, sample imbalance may also cause underfitting
or overfitting of CNN model training. Therefore, in the case of small sample training and
sample imbalance, the CNN cannot train an accurate classification model.

In recent years, the capsule network (CapsNet) has been applied to many image
applications and it has obtained more competitive results than CNNs [20–22]. Sabour
and Hinton et al. [23] proposed the CapsNet, which encapsulates multiple neurons into a
vector. CapsNet uses the length of the capsule to represent the probability that the entity
exists and uses the direction of the capsule to represent the instantiation parameters, which
breaks the limitation that an active neuron in traditional CNNs can only represent one
entity [24]. Guo et al. [25] used an improved capsule network for SAR target recognition,
which indicates that the capsule network has good robustness in terms of recognition
accuracy, convergence, image changes, and viewpoint changes. Phaye et al. [26] proposed
frameworks customizing the CapsNet by replacing the standard convolutional layers
with densely connected convolutions, which essentially adds a deeper convolutional
network. Wang et al. [27] combined CapsNet and residual network (ResNet) to improve the
classification accuracy of LiDAR data. As PolSAR images contain complex backscattering
information, which is more difficult to interpret than optical and hyperspectral images,
only a few studies have used CapsNet in PolSAR images. Zhang et al. [28] used the
CNN as CapsNet’s feature extractor for PolSAR image scene classification, which enhances
the CapsNet’s ability to extract deep features. Until now, it has not been discovered that
researchers have used CapsNet in land cover classification of PolSAR images. One of the
problems that make PolSAR image classification difficult is that the same land cover may
have different scattering mechanisms, and the same scattering mechanism may represent
different land covers. CapsNet can jointly represent multiple attributes of objects, which
is useful for representing multiple scattering mechanisms of land covers. In this paper,
we will explore the potential ability of CapsNet in PolSAR image land cover classification
and make some contributions in network structure and parameter settings based on the
characteristics of PolSAR data.
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The typical CapsNet uses a single convolutional layer in the feature extraction stage,
which is insufficient in deep feature extraction. To overcome this problem, many studies
replace a single convolutional layer with a deeper convolutional network [29–31]. However,
in the land cover classification of PolSAR images, the deeper network will bring two
problems: one is that when the number of training samples is poor, the model is difficult
to train and easy to overfit. The other is that the loss backpropagation distance increases,
which is not conducive to weight update. In the deep learning network, with the deepening
of the network depth, the problem of gradient disappearance will become increasingly
more obvious. In addition, the deep features contain more discriminative information
than raw features, but the detailed information contained in the raw features is lost. As
stated before, one land cover may have multiple scattering mechanisms, and multiple
land covers may also exhibit the same scattering mechanism. Thus, sample labeling is
difficult for PolSAR images and the number of training samples is often small, which is
not conducive for the training of deep CNN [32]. How to achieve the extraction of deep
features and simultaneously shorten the backpropagation distance in CapsNet has become
a challenging problem.

In this paper, we propose an improved capsule network structure, called the hierar-
chical capsule network (HCapsNet) for PolSAR image classification, as shown in Figure 1.
HCapsNet uses two convolutional layers to extract deep information from polarimetric
features. The primary capsules are composed of deep features obtained at different network
levels. Therefore, the primary capsules contain shallow and deep features. The capsules
of each layer are connected to the higher-level capsules through dynamic routing, which
means that the backpropagation of the loss can directly reach the capsules of each layer in-
stead of backpropagating layer by layer. A shorter backpropagation distance can make the
gradient transmission more efficient and the network converges faster. Therefore, rich deep
features and short backpropagation distance enable the proposed method to learn more
useful features from the small-size training samples. In addition, the authors of [27] pointed
out that the higher-level capsule represents more complex entities and should have more
degrees of freedom than the lower-level capsule. The dimension of the higher-level capsule
represents the number of entity attributes. However, in PolSAR data, due to the complexity
of polarimetric scattering mechanisms, the number of scattering mechanisms included in
different land covers is uncertain. Therefore, we divide the polarimetric features into three
discriminative attributes, i.e., phase, amplitude, and polarimetric decomposition, which are
used to uniformly describe the scattering mechanism of land covers with different sensors,
bands, and resolutions. For example, the main scattering mechanism of forest areas and
potato areas is volume scattering. It is difficult to distinguish forest and potato accurately
only by relying on the features of volume scattering, but the amplitude of the forest is
higher than potato. Due to the refraction of the double-bounce scattering path, the phase
difference with the co-polarization is close to 180◦, so the building areas have a higher
phase difference than other areas. Polarimetric decomposition parameters can divide the
feature space into 16 regions, and each region corresponds to a scattering mechanism,
so they can also be used as a general attribute to describe the scattering mechanism of
land covers. Based on the number of polarimetric feature attributes, we attempt to reduce
the dimension of the higher-level capsule, thereby intuitively reducing the number of
parameters in the dynamic routing process.

In the field of image classification, the conditional random field (CRF) [33,34], as a
postprocessing technique, has been widely used in combination with many classification
methods [35]. Wang et al. [36] used a CNN combined with the CRF to extract the spatial
distribution of winter wheat from remote sensing images. Zhang et al. [37] used the
probability result obtained by the SVM as the potential energy term of the CRF. We combine
the proposed HCapsNet with the CRF to construct a land cover classification framework for
PolSAR images, as shown in Figure 1. In this framework, the HCapsNet and the CRF are
used to describe the polarimetric information and spatial information of PolSAR images,
respectively, to reduce the misclassification of class boundaries and intra-class, respectively.
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Furthermore, we test the generalization performance of our proposed method. We attempt
to use the model trained on the AIRSAR dataset to classify on the RADARSAT-2 dataset.
As the proposed method can uniformly and accurately describe scattering mechanisms of
land covers, it shows a certain generalization performance in different sensor data. The
experimental results on three PolSAR datasets show that the proposed method achieves a
better classification results compared with state-of-the-art methods.
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Figure 1. The architecture of the proposed classification method.

The main contributions of the paper are briefly summarized as follows.

(1) The HCapsNet is proposed for land cover classification of PolSAR images. It can
simultaneously consider the deep features obtained at different network levels, which
describes the polarimetric scattering information of land covers more comprehensively
with small training sample size, and significantly reduces the misclassification of
class boundaries.

(2) The CRF is combined with the HCapsNet to further refine the classification results.
The intra-class misclassifications can be reduced by the spatial information constraints
of the CRF.

(3) We adopt three discriminative attributes for land covers of PolSAR data, i.e., phase,
amplitude, and polarimetric decomposition, to uniformly describe the scattering
mechanism of land covers with different sensors, bands, and resolutions. Moreover,
the generalization performance of the proposed method is verified to be better than
other comparison methods.

The rest of this paper is organized as follows. In Section 2, the proposed method is
introduced, including polarimetric features extraction, primary capsule layer construction,
higher-level capsule layer construction, and the CRF. Section 3 lists the experimental
results of our proposed method on two AIRSAR and one GF-3 PolSAR datasets as well as
the comparisons with other state-of-the-art methods. Evaluations of different method in
convergence speed, small sample performance, and extracted discriminative features are
also performed. Section 4 gives the discussion of different polarimetric features, different
structures, and generalization performance. Finally, conclusions are given in Section 5.

2. Methodology

Figure 1 shows a schematic diagram of the proposed method. The proposed method
consists of 4 parts: polarization feature extraction, primary capsule layer construction,
higher-level capsule layer construction, and the CRF model optimization. First, the polari-
metric features are extracted and constructed into a feature vector. Second, deep features
are extracted from the original polarimetric features through two convolutional layers.
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Moreover, the primary capsules are composed of deep features at different network levels.
Then, the primary capsules are connected to the higher-level capsules through dynamic
routing. Finally, the probability map of the classification result is calculated and input into
the CRF model to further optimize the classification result.

2.1. Polarimetric Feature Extraction

In the full polarization observation, the scattering matrix represents all the information
of the target scattering characteristics, the backscattering matrix [S] is expressed as

[S] =
[

SHH SHV
SVH SVV

]
, (1)

in which H and V represent horizontal and vertical polarization, respectively. Each element
SXY is called the scattering amplitude, which represents the complex backscattering coeffi-
cient of the target when it is transmitted in Y polarization and received in X polarization.

In the case of satisfying the reciprocity theorem, the covariance matrix [C3] and
coherence matrix [T3] of the target can be defined as follows [38]:

[C3] =


〈
|SHH |2

〉 √
2
〈
SHHS∗HV

〉 〈
SHHS∗VV

〉
√

2〈SHVS∗HH〉 2
〈
|SHV |2

〉 √
2
〈
SHVS∗VV

〉
〈SVVS∗HH〉

√
2
〈
SVVS∗HV

〉 〈
|SVV |2

〉
, (2)

[T3] =


1
2

〈
|SHH + SVV |2

〉
1
2
〈
(SHH + SVV)(SHH − SVV)

∗〉 〈
(SHH + SVV)S∗HV

〉
1
2
〈
(SHH − SVV)(SHH + SVV)

∗〉 1
2

〈
|SHH − SVV |2

〉 〈
(SHH − SVV)S∗HV

〉〈
SHV(SHH + SVV)

∗〉 〈
SHV(SHH − SVV)

∗〉 2
〈
|SHV |2

〉
. (3)

The co-polarization ratio [39] is defined as the ratio of the scattered energy between
the co-polarization channels, which can be written as

Rco =
〈SHHS∗HH〉〈

SVVS∗VV
〉 =

〈
|SHH |2

〉
〈|SVV |2〉

=
C11

C33
. (4)

The cross-polarization ratio [39] is defined as the scattering energy ratio of the cross-
polarization channel and the co-polarization channel, which can be written as

Rcr =

〈
SHVS∗HV

〉〈
SVVS∗VV

〉 =

〈
|SHV |2

〉
〈|SVV |2〉

=
C22

2C33
. (5)

Note that the co- and cross-polarization ratios can also be defined with respect to
scattered energy in the HH channel.

Cloude and Pottier [40] proposed a method to extract sample mean parameters using a
smoothing algorithm with second-order statistics. Three important polarimetric scattering
parameters can be extracted from the coherence matrix [T3]—Entropy (H), Anisotropy (A),
and Scattering angle (α)—can be defined as

ᾱ =
3

∑
k=1

gkαk, gk = λk/
3

∑
n=1

λn, (6)

H = −
3

∑
k=1

gklog3(gk), (7)

A =
λ2 − λ3

λ2 + λ3
, (8)
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where λk, (k = 1, 2, 3) represents the eigenvalue of the coherence matrix [T3]. ᾱ is the key
parameter to identify the main scattering mechanism. H describes the statistical disorder
of different scattering types. As a supplementary parameter, A can improve the ability to
distinguish different types of scattering mechanisms.

In this paper, the eight polarimetric features are extracted for the land cover classi-
fication, as shown in Table 1. The eight polarimetric features can be divided into three
categories, which are phase, amplitude, and polarimetric decomposition. The first one con-
sists of cross-polarization ratio (Rcr) and co-polarization ratio (Rco), which are widely used
for vegetation classification of PolSAR images [41,42]. The second one includes T11, T22, T33.
As the diagonal elements of the [T3], they contain comprehensive amplitude information
and can be directly or indirectly used for PolSAR image classification [43,44]. Moreover,
the last one consists of Entropy (H), Anisotropy (A), and Scattering angle (α), which are
commonly used to describe the scattering mechanisms [45]. As the change intervals of
these features are of different orders of magnitude, we adopt a normalization operation to
map the features to the range of 0 to 1.

Table 1. The polarimetric feature set.

f1 f2 f3 f4 f5 f6 f7 f8

Rcr Rco T11 T22 T33 H A α
phase amplitude polarimetric decomposition

2.2. Construction of the Primary Capsule Layer

In CNNs, an activated neuron can only represent one entity, which greatly limits the
ability of CNNs to represent object attributes. The CapsNet [23] overcomes this shortcoming
of CNNs by encapsulating multiple neurons into a neuron capsule (NC). The length of the
NC represents the probability of the existence of the entity, and its direction represents the
instantiation parameter. Figure 2 shows the difference between classic CNN and CapsNet.
In the deep feature extraction stage, the CapsNet still uses a single convolutional layer as
the feature extractor. CNNs are widely used in the PolSAR image classification, which can
extract discriminative spatial features and achieve excellent classification accuracy [46].
A convolutional operation can be defined as [47]

Zl
j = f (

N

∑
i=1

Xl−1
i ∗ kl

ij + bl
j), (9)

where Xl−1
i is the i-th feature map of the (l− 1)-th convolutional layer, Zl

j is the j-th feature
map of the l-th convolutional layer, N is the number of feature maps of the (l − 1)-th
convolutional layer, kl

ij denotes the weight matrix (i.e., the convolution kernel) connecting
the i-th feature map of the (l− 1)-th layer and the j-th feature map of the l-th layer. Moreover,
bl

j denotes the bias of the j-th feature map of the convolutional layer. f (•) denotes the
activation function.

Forest

Grasses

CNN Forest

Grasses

CapsNet

Phase Amplitude Polarimetric decomposition 

Figure 2. Illustration of the difference between classic CNN and CapsNet.
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Huang et al. [48] proposed a densely connected convolutional network (DenseNet)
to strengthen the feature propagation and encourage the feature reuse. Inspired by this
idea, we design a way to construct a primary capsule layer. This design can shorten the
distance of backpropagation. As shown in Figure 3b, the backpropagation of the loss
can directly reach the capsules of each layer instead of backpropagating layer by layer.
The DenseNet connects each layer to every other layer in a feedforward fashion. In our
proposed HCapsNet framework, we do not need too deep network levels to extract deep
features, and do not encourage deep features to be convolved multiple times. We construct
capsules at the input layer and two convolutional layers and use these capsules to construct
the primary capsule layer directly.

Input 

layer

Convolutional 

layer 1

Convolutional 

layer 2

Primary 

Capsule 

layer

Higher-

level 

Capsule 

layer

Input 

layer

Convolutional 

layer 1

Convolutional 

layer 2

Primary 

Capsule layer

Higher-level 

Capsule layer
(a)

(b)

Forward propagation

Back propagation

Figure 3. Schematic diagram of constructing the primary capsule layer. (a) Traditional method.
(b) Proposed method.

The construction process of the primary capsule layer (P) can be defined as

P = {p1, p2, p3}, pl = R(Fl), (10)

in which Fl represents the output of l-th layer. R(•) denotes the “reshape” process, which
is used to obtain the capsules (pl) on each layer. As shown in Figure 3a, in traditional
methods, the primary capsule layer only has deep features. However, the primary capsule
layer constructed by our proposed method can contain both shallow and deep features.
Therefore, rich deep features enable the proposed method to describe the object more
comprehensively. The short backpropagation distance enables the proposed method to
converge faster than traditional methods.

2.3. Construction of the Higher-Level Capsule Layer

Figure 4 illustrates the dynamic routing process from the lower-level capsule to the
higher-level capsule.

1

i

n

j

Lower-level capsules Higher-level capsules

 !" #!"

 $"

 %"

#%"

#$"

&"
SReLU

'#!" = 1
"

Figure 4. Connections between the lower-level capsules and higher-level capsules.
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The lower-level active capsule ui is transported to the higher-level capsule sj using
the following formula:

sj = ∑
i

cijWijui, (11)

where Wij represents the connection weight matrix from the i-th lower-level capsule to the
j-th higher-level capsule. Here, cij denotes a coupling coefficient that is defined as

cij =
exp(bij)

∑k exp(bik)
, (12)

where bij (or bik) represents the prior probability from the lower-level capsule i to higher-
level capsule j (or k). As the modulus length of the capsule output vector represents the
probability of the existence of the entity, a nonlinear squeeze function is needed to compress
the modulus length to [0, 1) without changing the direction of the vector. The formula of
Squashing Rectified Linear Unit (SReLU) is defined as follows,

vj =

∥∥sj
∥∥2

1 +
∥∥sj
∥∥2

sj∥∥sj
∥∥ . (13)

In addition, we make a reasonable parameter adjustment based on the characteristics
of PolSAR data. Researchers generally consider that higher-level capsules represent more
complex entities and should have more dimensions than lower-level capsules [49]. The
dimension of higher-level capsules represents the number of polarimetric attributes of
the object. However, the polarimetric attributes of land covers depend on categories
of the input polarimetric features, such as phase, amplitude and so on. For PolSAR
image classification, a polarimetric attribute of land covers can be represented by multiple
polarimetric features. The number of polarimetric attributes of land covers is often small.
Therefore, higher-level capsules do not require too many dimensions to characterize the
polarimetric attributes of land covers. The reduction in the dimensions of the higher-level
capsules intuitively reduces the number of network parameters. The connection between
the lower-level capsules and the higher-level capsules is shown in Figure 4. N lower-level
capsules are connected to M higher-level capsules, and the number of parameters (Num)
required is calculated by the following formula:

Num = (N × d1)× (M× d2), (14)

where d1 and d2 represent the dimension of the lower-level and the higher-level capsule,
respectively. At present, most researchers continue to use the parameter settings of the
original capsule network, which set d2 to 16 [23–28]. This study reduces the size of d2 from
16 to 3, and the number of parameters is reduced by 13/16 times, according to (14).

2.4. Conditional Random Field

The fully connected CRF [34] can consider the spatial context information and realize
the correct classification of misclassified pixels through the consideration of local neighbor-
hoods. The energy function of the CRF model consists of the unary potential function and
the pairwise potential function. The formula is depicted as follows:

E(x) = ∑
i

ψu(xi) + ∑
i<j

ψp(xi, xj), (15)
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in which ψu(xi) represents the unary potential, which is computed independently for each
pixel by a classifier. ψp(xi, xj) represents the pairwise potential, which is defined as follows:

ψp(xi, xj)=µ(xi, xj)ω exp(−
|pi − pj|2

2θ2 )︸ ︷︷ ︸
smoothness kernel

, (16)

in which µ(•) is a label compatibility function. ω is liner combination weights. pi and pj
are positions of xi and xj. The degrees of nearness and similarity are controlled by the
parameter θ. The smoothness kernel can remove small isolated regions [50]. In the results of
PolSAR image classification, intra-class misjudgments are inevitable. Therefore, we use the
CRF to eliminate misclassified regions within the class.

2.5. Implementation Details

In detail, the proposed method is shown in Algorithm 1. First, the refined Lee filtering
with a window size of 7× 7 is performed on the PolSAR image. Then, the eight polarimetric
features are extracted and constructed into a feature vector. Before training, we initialize
the network weights to zero. In the training process, the network weights are iteratively
updated and the classifier model can be obtained. We used the margin loss [23] as a loss
function of the proposed HCapsNet. The formula of the loss function is depicted as follows:

Lk = Tk max
(
0, m+ − ‖vk‖

)2
+ λ(1− Tk)max

(
0, ‖vk‖ −m−

)2, (17)

where Tk = 1, if the true class is k. ‖vk‖ represents the modulus length of vector vk, which
is the probability that the pixel belongs to class k. m+ and m− are the lower boundary of
the true class and the higher boundary of the false class. The hyperparameter λ stops the
initial learning from shrinking the lengths of the activity vectors of all the higher-level
capsules [23].

In the testing process, we use the classifier model to classify the test samples, and
obtain the probability map M of the classification results. Finally, the probability map is
updated by the CRF, and the pixel-wise class labels can be obtained according to the final
probability map.
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Algorithm 1 Proposed method

Input: Fully polarimetric SAR image.
Output: Class labels of the test samples.

1: Preprocessing← refined Lee filter (7× 7 windows size)
2: [F]← { f1, f2, . . . , f8} (polarimetric features)
3: function TRAINING(training samples)
4: while iteration < epochs do
5: [p1]← “Reshape” ([F]) # [p]: capsules
6: [F1]← Conv & ReLU ([F])
7: [p2]← “Reshape” ([F1])
8: [F2]← Conv & ReLU ([F1])
9: [p3]← “Reshape” ([F2])

10: [P]← Concat([p1],[p2],[p3])
11: #[P]: Primary Capsules
12: [H]← dynamic routing [P]
13: #[H]: Higher-level Capsules
14: vj ← compute by (13)
15: Lk ← compute by (17)
16: Update the model parameters
17: end while
18: return Model
19: end function
20: Model← TRAINING(training samples)
21: M←Model(test samples) #M: probability map
22: Final M← CRF(M)
23: Class labels← argmax(Final M)

3. Experiment Results and Analysis

In this section, we evaluate the performance of the proposed method for PolSAR
image classification. We first briefly describe the used PolSAR datasets and parameter
settings. Afterward, we compare the classification accuracy between the proposed method
and other comparison PolSAR image classification methods on three different PolSAR
datasets. Finally, under a common comparable framework, we analyze the advantages of
the proposed method in terms of convergence speed and small sample performance.

3.1. Data Description and Parameter Settings

In our study, two widely used AIRSAR data and a newly-used GF-3 data are used to
validate the effectiveness of the proposed method. All experiments are implemented on
the Windows 10 platform, and the basic experimental environment settings are is shown in
Table 2.

Table 2. The basic experimental environment settings.

Platform Windows 10
Keras/TensorFlow V 2.2.4/V 1.13.1

CPU Intel Core i7-10700K
Memory 16 G

GPU Nvidia GeForce RTX 2080 SUPER
Video memory 8 G

(1) AIRSAR Flevoland dataset: The first quad-polarimetric SAR dataset is the widely
used L-band data acquired by the NASA/JPL AIRSAR system over the Flevoland test site
in mid-August of 1989. The incidence angle is approximately 20◦ at the near range and 44◦

at the far range. Figure 5a is a pseudo-color image formed by PauliRGB decomposition. The
size of these data is 750 × 1024. The ground truth data contain 177,018 pixels, including 15



Remote Sens. 2021, 13, 3132 11 of 30

different land cover types, as shown in Figure 5b [13]. One percent of the labeled samples
are selected as the training samples. The experimental information is shown in Table 3.

Stem bean Rapeseed Bare soil Potatoes Wheat Wheat2

Lucerne Barely

Peas Wheat3

Buildings Water Forest BackgroundGrasses Beets

(a) (b)

Figure 5. Flevoland dataset. (a) PauliRGB image (Red: double-bounce scattering power. Green:
volume scattering power. Blue: surface scattering power). (b) Ground truth map.

(2) AIRSAR San Francisco dataset: The second quad-polarimetric SAR dataset is also
the widely used data acquired by the NASA/JPL AIRSAR system in 1989. The spatial
resolution is 10 m. Figure 6a is a pseudo-color image formed by PauliRGB decomposition.
The size of these data is 900× 1024. The ground truth data contain 776,501 pixels, including
5 different land cover types, as shown in Figure 6b [51]; 0.5% of the labeled samples are
selected as the training samples. The experimental information is shown in Table 4.

Table 3. The image information of Flevoland dataset.

Class Name Train Test Total

1 Stem bean 1.00% 99.00% 8764
2 Rapeseed 1.00% 99.00% 19,326
3 Bare soil 1.01% 98.99% 5340
4 Potatoes 1.00% 99.00% 17,758
5 Wheat 1.00% 99.00% 17,636
6 Wheat2 1.00% 99.00% 10,371
7 Peas 1.01% 98.99% 10,417
8 Wheat3 1.00% 99.00% 22,090
9 Lucerne 1.00% 99.00% 10,967

10 Barely 1.01% 98.99% 8601
11 Grasses 1.00% 99.00% 8365
12 Beets 1.00% 99.00% 10,161
13 Buildings 1.11% 98.89% 904
14 Water 1.01% 98.99% 3477
15 Forest 1.00% 99.00% 22,841

Total 1.00% 99.00% 177,018
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Figure 6. San Francisco dataset. (a) PauliRGB image (Red: double-bounce scattering power. Green:
volume scattering power. Blue: surface scattering power). (b) Ground truth map.

Table 4. The image information of AIRSAR San Francisco dataset.

Class Name Train Test Total

1 High-density urban 0.50% 99.50% 163,370
2 Vegetation 0.50% 99.50% 157,698
3 Water 0.50% 99.50% 332,252
4 Developed urban 0.50% 99.50% 110,918
5 Low-density urban 0.51% 99.49% 12,263

Total 0.50% 99.50% 776,501

(3) GF-3 Hulunbuir dataset: The third quad-polarimetric SAR dataset is acquired
by the GF-3 system in Hulunbuir, China. Figure 7a is a pseudo-color image formed by
PauliRGB decomposition. The size is 1147 × 1265 pixels. The ground truth data contain
173,550 pixels, including 8 different land cover types, as shown in Figure 7b; 0.2% of the
labeled samples are selected as the training samples. The experimental information is
shown in Table 5.

Bare soil Forest Cole Wheat Grasses Water Sand Wetland

(a) (b)

Background

Figure 7. GF-3 dataset. (a) PauliRGB image (Red: double-bounce scattering power. Green: volume
scattering power. Blue: surface scattering power). (b) Ground truth map.
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Table 5. The image information of GF-3 dataset.

Class Name Train Test Total

1 Bare soil 0.21% 99.80% 23,038
2 Forest 0.20% 99.79% 39,099
3 Cole 0.20% 99.80% 49,588
4 Wheat 0.20% 99.80% 35,121
5 Grasses 0.21% 99.79% 10,214
6 Water 0.20% 99.80% 5382
7 Sand 0.21% 99.79% 10,213
8 Wetland 0.56% 99.44% 893

Total 0.20% 99.80% 173,550

We set the network parameters as follows. The size of the patch is 15 × 15 in two
AIRSAR data and 9 × 9 in GF-3 data [52]. We use 128 kernels in the first convolutional
layer and 256 kernels in the second one, and stride is set as 2. The kernel size is set as 3 × 3.
The batch size is set as 16. The “ReLU” is used as the activation function. The dimension of
primary capsule is set as 8. This study takes eight commonly used polarimetric features as
input, as shown in Table 1, which represents three polarimetric attributes: phase, amplitude,
and polarimetric decomposition parameters. Therefore, we set the dimension of the higher-
level capsule to 3. Moreover, the “Adam” is employed as an optimizer, and the learning
rate is set to 0.001 [53]. The parameters m+, m−, and λ in the loss function are set to 0.9,
0.1, and 0.5 by default [23]. The two hyperparameters in (16), ω is set to 12, and θ is set to 3
by default.

3.2. Classification Results of the AIRSAR Flevoland Dataset

To evaluate the performance of the proposed method, other PolSAR image classi-
fication methods are employed for performance comparison, including 1D-CNN [54],
2D-CNN [11], DenseNet [32], and CapsNet [23]. CapsNet-3 indicates that the dimension of
higher-level capsule is set as 3, while the remaining of the structure and parameters are the
same as the CapsNet. For the sake of fair comparison, all methods use the same training
samples and test samples. To avoid the negative influence of network instability on the
classification, the experiments are repeated five times, and the average value is taken as the
final classification result. The classification maps are shown in the Figure 8. Table 6 shows
the classification accuracies of each class with different classification methods, as well as
the OA, AA, and Kappa of the AIRSAR Flevoland dataset classification results.
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(B) (E)(D)(A) (C) (F)

(a) 1D-CNN, (b) 2D-CNN, (c) DenseNet, (d) CapsNet, (e) CapsNet-3,(f) HCapsNet+CRF

(b) (e)(d)(a) (c) (f)

Stem bean Rapeseed Bare soil Potatoes Wheat Wheat2 Lucerne BarelyPeas Wheat3 Buildings Water ForestGrasses Beets

Figure 8. Classification maps of the AIRSAR Flevoland dataset. (A) 1D-CNN. (B) 2D-CNN. (C) DenseNet. (D) CapsNet.
(E) CapsNet-3. (F) Proposed method. (a–f) are the masked results according to the ground truth of (A), (B), (C), (D), (E),
and (F), respectively.

From Table 6, we can observe that our proposed method produces much higher
classification accuracy than other deep neural networks. The classification accuracies of
the proposed method in Rapeseed, Bare soil, Potatoes, Wheat, Wheat2, Peas, Wheat3, Lucernes,
Beets, Water, and Forest are higher than other methods in L-band AIRSAR dataset. The
Kappa of the proposed method is 0.9889, which is also higher than other classification
methods. Figure 9 shows a box plot of five experimental results for each classification
method. The height of the box represents the divergence of the results. The proposed
method is superior to other classification methods in stability. The OA of the proposed
method is 9.77%, 2.13%, 4.46%, 1.73%, and 1.3% higher than that of 1D-CNN, 2D-CNN,
DenseNet, CapsNet, and CapsNet-3, respectively. The AA of the proposed method is
12.01%, 2.37%, 11.43%, 2.95%, and 1.81% higher than that of 1D-CNN, 2D-CNN, DenseNet,
CapsNet, and CapsNet-3, respectively.

AIRSAR

2D-CNN CapsNet CapsNet-3DenseNet Proposed
method

O
A

 (
%

)

1D-CNN

Methods

Figure 9. Box plot of the five repeated experimental results on AIRSAR Flevoland dataset.
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Table 6. Classification Accuracy (%) of the AIRSAR Flevoland Dataset.

Class 1D-CNN 2D-CNN DenseNet CapsNet CapsNet-3
Proposed
Method

Steam bean 94.57 99.23 99.48 99.10 99.15 99.29
Rapeseed 89.77 95.32 95.31 96.16 98.15 98.84
Bare soil 98.01 99.56 98.15 99.85 99.92 100.00
Potatoes 86.52 96.55 95.37 99.45 99.24 99.72
Wheat 90.84 96.86 95.83 98.57 97.16 99.84

Wheat2 83.68 96.27 83.14 96.39 96.26 98.28
Peas 92.35 93.64 92.72 96.52 97.03 98.30

Wheat3 96.24 99.85 99.90 99.75 99.96 99.98
Lucerne 92.60 96.16 96.41 95.43 95.31 97.08
Barley 91.91 98.39 98.04 99.74 99.90 99.87

Grasses 69.11 97.30 96.51 99.29 99.08 99.12
Beets 89.92 93.84 95.90 96.19 96.05 97.19

Buildings 68.36 92.17 6.97 74.50 88.37 91.92
Water 64.91 88.99 56.57 88.03 88.52 99.57
Forest 89.15 98.43 96.32 94.91 96.88 99.15

OA 89.27 96.91 94.58 97.31 97.74 99.04
AA 86.53 96.17 87.11 95.59 96.73 98.54

Kappa 0.8824 0.9665 0.9406 0.9754 0.9783 0.9895

In the AIRSAR Flevoland dataset, wheat is subdivided into the Wheat, Wheat2, and
Wheat3 regions, all of which have similar scattering mechanisms. The classification accuracy
of Wheat2 can only reach to 96.39% with other classification methods, while it reaches 98.28%
with the proposed method. This result indicates that the proposed method can perform
well in distinguishing different land covers with similar scattering mechanisms than other
classification methods.

Note that in Figure 8A–E, the top of the Water region has different degrees of misclas-
sifications. This is because the top and bottom of the Water region have some different
scattering mechanisms, as shown in Figure 10a. It is difficult to completely describe the
scattering mechanism of region 2© by only using training samples in region 1©. However,
in Figure 10h, we are excited to find that the entire Water region achieves accurate classifi-
cation. This result indicates that the proposed method can more comprehensively describe
the different scattering mechanisms of the same land cover.

(c) (d) (e) (f) (g) (h)

(c) 1D-CNN. (d) 2D-CNN. (e) DenseNet. (f) CapsNet. (g)CapsNet-3. (h) Proposed method.

(a) (b)

1

2

Figure 10. Enlarged results of the Water region on AIRSAR Flevoland dataset. (a) Pauli image. (b) Ground truth map.
(c) 1D-CNN. (d) 2D-CNN. (e) DenseNet. (f) CapsNet. (g) CapsNet-3. (h) Proposed method.

The classification accuracy of 1D-CNN is the lowest because the neighborhood infor-
mation is not used. As shown in Figure 8a, we can observe that the misclassification is sever
in the whole image. From Table 6, it can be found that although DenseNet considers the
neighborhood information of the training samples, the classification results are lower than
2D-CNN, especially the classification accuracy of the Buildings region with fewer labeled
samples, which is only 6.97%. This result once again demonstrates that a small number
of training samples cannot be suitable for training deep CNNs. Figure 8b shows that the
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misclassification is mainly concentrated at the class boundaries, while this phenomenon
is well avoided in Figure 8f. To more intuitively show the advantages of the proposed
method in class boundaries, we have enlarged the classification result maps of the Peas
region, as shown in Figure 11. We can observe that the classification results of the proposed
method are more consistent with the actual distribution in the Peas region.

Compared with the CapsNet, the OA and AA of the CapsNet-3 have increments
with 0.43% and 1.14%, respectively. Note that the improvement of classification accuracy
is concentrated on the land cover with a small sample size. For example, compared to
the CapsNet, the CapsNet-3 is 13.87% higher in the classification of the Buildings region.
Figure 12 shows the enlarged results of the Buildings region with the two methods. It is
shown that the CapsNet has more misclassifications on boundaries of land covers with
small samples than CapsNet-3. In this experiment, the number of parameters of CapsNet is
about 2.82 M, whereas that of CpasNet-3 is about 1.02 M. Experiments show that reducing
the dimension of higher-level capsules can not only reduces the number of parameters,
but also improves the classification accuracy. In this experiment, we measure the training
time of all codes (with 200 epoches). The 1D-CNN has the shortest training time, only
60 s. The training time of 2D-CNN and DenseNet is about 300 s and 150 s, respectively.
The CapsNet and CapsNet-3 require about 1150 s and 1000 s to run code because of the
complex dynamic routing connection used. In our method, we increase the stride of the
convolutional layers and shorten the distance of backpropagation, so the training time of
the proposed method is only 470 s.

(a) (b) (c)

Figure 11. Enlarged classification results of the Peas region on AIRSAR Flevoland dataset. (a) 2D-CNN. (b) Pauli RGB image.
(c) Proposed method.

(a) (b) (c)

Figure 12. Enlarged results of the Buildings region on AIRSAR Flevoland dataset. (a) CapsNet. (b) Pauli RGB image.
(c) CapsNet-3.

3.3. Classification Results of the AIRSAR San Francisco Dataset

To verify the proposed method on the challenging PolSAR image, we further subdivide
the human-made areas in the AIRSAR San Francisco dataset into three categories: High-
density urban, Developed urban, and Low-density urban. Note that in the classic ground
truth of AIRSAR San Francisco, these human-made areas are labeled as a whole. The
classification maps are shown in the Figure 13. Table 4 shows the classification accuracies
of each class with different classification methods, as well as the OA, AA, and Kappa of the
AIRSAR San Francisco dataset classification results.

From Figure 14, we can see that the proposed method achieves the highest classi-
fication accuracy and stability in the AIRSAR San Francisco dataset. Figure 13A shows
that the misclassifications are sever in the whole images. As shown in Figure 13B,C, the
three human-made areas are seriously misclassified. As shown in Figure 13D,E, misclas-
sifications of Vegetation and urban areas has been significantly improved. Note that in
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Figure 13a–e, most of the Low-density urban area is misclassified as Vegetation. This is
because the scattering mechanism of Low-density urban is closer to that of Vegetation [55].
As we all know, buildings will produce double-bounce scattering with the ground, which
is an important feature to distinguish human-made regions. Figure 15 shows the compo-
sition of the scattering mechanism in different regions (calculated based on Yamaguchi
four-component decomposition [56]). In Figure 15, double-bounce scattering occupies an
important proportion in Developed urban and High-density urban, but a very small proportion
in Low-density urban, resulting in Low-density urban being wrongly classified as Vegetation.
From Figure 13f), we can observe that a part of Low-density urban can be separated from
Vegetation. This show that our proposed method can extract the discriminative features of
Low-density urban and Vegetation.

(B) (E)(D)(A) (C) (F)

(a) 1D-CNN, (b) 2D-CNN, (c) DenseNet, (d) CapsNet, (e) CapsNet-3,(f) HCapsNet+CRF

(b) (e)(d)(a) (c) (f)

High-density urban Vegetation Water Low-density urbanDeveloped urban

Figure 13. Classification maps of the AIRSAR San Francisco dataset. (A) 1D-CNN. (B) 2D-CNN. (C) DenseNet. (D) CapsNet.
(E) CapsNet-3. (F) Proposed method. (a–f) are the masked results according to the ground truth of (A), (B), (C), (D), (E),
and (F), respectively.

2D-CNN CapsNet CapsNet-3DenseNet Proposed
method

O
A

 (
%

)

1D-CNN

Methods

Figure 14. Box plot of the five repeated experimental results on AIRSAR San Francisco dataset.



Remote Sens. 2021, 13, 3132 18 of 30

(b)(a) (d)(c)

(a)High
(b)Vegetation
(c)Developed
(d)Low

Surface scattering 
power

Double-bounce 
scattering power

Helix 
scattering power

Volume
scattering power

4%

8%

Figure 15. Illustration of scattering mechanism in different regions. (a) High-density urban. (b) Vege-
tation. (c) Developed urban. (d) Low-density urban.

From Table 7, we can find that the classification accuracies of the proposed method
in Vegetation, Water, Developed urban, Low-density urban are higher than other classification
methods. The classification accuracy of Low-density urban is 0.00% in 1D-CNN, 2D-CNN,
and DenseNet results, which shows that the 1D-CNN, 2D-CNN, and DenseNet are com-
pletely unable to learn the difference in scattering mechanism between low-density urban
and vegetation. The OA of the proposed method is 7.4%, 5.05%, 3.77%, 3.4%, and 2.98%
higher than that of 1D-CNN, 2D-CNN, DenseNet, CapsNet, and CapsNet-3, respectively.
The AA of the proposed method is 14.68%, 11.15%, 10.62%, 6.39%, and 7.76% higher than
that of 1D-CNN, 2D-CNN, DenseNet, CapsNet and CapsNet-3, respectively.

Table 7. Classification accuracy (%) of the AIRSAR San Francisco Dataset.

Class 1D-CNN 2D-CNN DenseNet CapsNet CapsNet-3
Proposed
Method

High-density
82.48 86.62 97.37 86.51 83.50 92.62urban

Vegetation 91.49 92.83 85.14 90.56 96.64 97.32

Water 99.56 97.70 99.94 99.80 99.64 99.96
Developed

74.10 88.13 85.47 94.83 95.23 97.84urban
Low-density

0.00 0.00 0.00 17.38 7.22 33.28urban

OA 89.12 91.47 92.75 93.12 93.54 96.52
AA 69.52 73.06 73.58 77.82 76.44 84.20

Kappa 0.8460 0.8799 0.8974 0.9032 0.9091 0.9510

Compared with the CapsNet, the OA of the CapsNet-3 has increments with 0.42%.
This shown that the CapsNet-3 performs better in the classification of land covers than the
CapsNet. In addition, we also measure the training time of the codes on the GF-3 dataset.
The training time of 1D-CNN, 2D-CNN, DenseNet, CapsNet, and CapsNet-3 are about
156 s, 364 s, 366 s, 1120 s and 1043 s, respectively. Compare with the traditional CapsNet,
the training time of the proposed method is only about 490 s.

3.4. Classification Results of the GF-3 Dataset

To verify the effectiveness of the proposed method, comparison experiments are also
conveyed on the GF-3 dataset. As the GF-3 dataset has few categories and relatively
simple image scene, only 0.2% of the labeled samples are selected as training samples.
The experiments are repeated five times, and the average value was taken as the final
classification result. The classification maps are shown in the Figure 16. Table 8 shows the
classification accuracies of each class with different classification methods, as well as the
OA, AA, and Kappa of the GF-3 dataset classification results.
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From Figures 16 and 17, we can see that the proposed method once again achieves
the highest classification accuracy and stability in the GF-3 dataset. From Table 8, we can
observe that the classification accuracies of the proposed method in Forest, Cole, Wheat,
Grasses, Water, and Sand are higher than other classification methods. Figure 16A,B shows
that the misclassifications are severe in the whole images. The classification results of 1D-
CNN and DenseNet are relatively poor, especially the classification accuracies of Grasses
are only 24.39% and 23.96%. In the case of a very small number of training samples,
2D-CNN exposed its shortcomings, that the classification accuracies of Grasses and Water
are only 65.58% and 66.09%, respectively. From Table 8, we can see that the AA of the
proposed method is 21.33%, 7.23%, 20.2%, 3.06%, and 2.39% higher than that of 1D-CNN,
2D-CNN, DenseNet, CapsNet, and CapsNet-3, respectively.

(B) (E)(D)(A) (C) (F)

(a) 1D-CNN, (b) 2D-CNN, (c) DenseNet, (d) CapsNet, (e) CapsNet-3,(f) HCapsNet+CRF

(b) (e)(d)(a) (c) (f)

Bare soil Forest Cole Wheat Grasses Water Sand Wetland

Figure 16. Classification maps of the GF-3 dataset. (A) 1D-CNN. (B) 2D-CNN. (C) DenseNet. (D) CapsNet. (E) CapsNet-3.
(F) Proposed method. (a–f) are the masked results according to the ground truth of (A), (B), (C), (D), (E), and (F), respectively.

Table 8. Classification Accuracy (%) of the GF-3 Dataset.

Class 1D-CNN 2D-CNN DenseNet CapsNet CapsNet-3
Proposed
Method

Bare soil 94.39 97.43 99.62 96.78 97.5 99.09
Forest 98.85 99.96 99.86 99.99 99.98 100
Cole 99.59 99.49 99.84 98.63 99.33 99.91

Wheat 99.47 98.99 92.34 99.1 99.28 99.99
Grasses 24.39 65.58 23.96 85.17 80.78 88.77
Water 64.68 66.09 76.66 78.04 80.96 85.97
Sand 69.58 98.23 75.31 93.81 95.56 99.58

Wetland 47.48 85.44 39.87 93.06 96.53 95.74

OA 91.16 96.04 91.36 97.04 97.32 98.71
AA 74.8 88.9 75.93 93.07 93.74 96.13

Kappa 0.8886 0.9504 0.8914 0.963 0.9665 0.9838

In PolSAR image classification, the same scattering mechanism can represent different
land covers. For example, the main scattering mechanisms of Bare soil and Sand are both
surface scattering. As shown in Figure 8a–e, many pixels of Sand are misclassified as Bare
soil. The misclassifications are well solved in Figure 16f. The classification accuracy of the
Sand in the proposed method is about 5% to 30% higher than other classification methods.
This result once again proves that the proposed method can extract more discriminative
features from different land covers with similar scattering mechanisms. In addition, despite
the large number of training samples for Grasses and Water, the scattering mechanism of
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Grasses is confused with Wheat, and the scattering mechanism of Water is confused with
Bare soil, so the classification accuracy of Grasses and Water is lower than other land covers.

2D-CNN CapsNet CapsNet-3DenseNet Proposed
method

O
A

 (
%

)

1D-CNN

Methods

Figure 17. Box plot of the five repeated experimental results on GF-3 dataset.

Compared with the CapsNet, the OA and AA of the CapsNet-3 have increments with
0.28% and 0.67%, respectively. The CapsNet-3 performs better in the classification of land
covers with small sample size than the CapsNet. The classification results of three PolSAR
datasets both indicate that reducing the dimension of higher-level capsules has a positive
effect on improving the classification accuracy. In addition, we also measure the training
time of the codes on the GF-3 dataset. The training time of 1D-CNN, 2D-CNN, DenseNet,
CapsNet, and CapsNet-3 are about 13 s, 25 s, 25 s, 68 s, and 65 s, respectively. The training
time of the proposed method is about 70s. Due to the small number of training samples,
the saving time of the model is longer than the training time.

3.5. Analysis of the Performance

To make a fair comparison of deep learning models, we make their structures and
parameter settings near identical. CNN-CapsNet [28] indicates that the fully connected
layers in the 2D-CNN are replaced with the capsule layers. The proposed HCapsNet
implements a hierarchical capsule network structure based on the CNN-CapsNet. Herein,
only the results for the AIRSAR Flevoland dataset are presented, while similar conclusions
are obtained from the AIRSAR San Francisco and GF-3 datasets. Table 9 gives a brief
description of their architectures.

Figure 18 shows the convergence performance of the three methods on the AIRSAR
dataset. As shown in Figure 18a, we can find that the proposed HCapsNet can quickly reach
a high accuracy. The reason is that capsule networks turn the traditional neuron output into
the vector output of the capsule, which can simultaneously represent multiple polarimetric
attributes of land covers. Therefore, it can be in line with the scattering characteristics of
actual land covers. As shown in Figure 18b, we can observe that 2D-CNN can completely
converge in about 140 epochs, CNN-CapsNet can completely converge in about 80 epochs.
In contrast, the proposed method can completely converge in about 40 epochs. The reason
is that the proposed HCapsNet can shorten the distance of backpropagation, resulting in
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that the loss of the primary capsule layer to reach the input layer and each convolutional
layer directly.

Table 9. A brief description of structures and parameters.

2D-CNN CNN-CapsNet HCapsNet (without CRF)

Layer 1 Input. 8 @ 15×15 Input. 8 @ 15×15 Input. 8 @ 15×15/“Reshape”
Layer 2 Conv. 128 @ 3×3 Conv. 128 @ 3×3 Conv. 128 @ 3×3/“Reshape”
Layer 3 Conv. 256 @ 3×3 Conv. 256 @ 3×3 Conv. 256 @ 3×3/“Reshape”

Layer 4 Max_pooling/Flatten “Reshape” Concatenate

Layer 5 Fully Connected Primary Capsule Primary Capsule
Layer 6 Dropout Higher-level Capsule Higher-level Capsule
Layer 7 Softmax Length Length
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o

ss

Epoch Number Epoch Number
(b)(a)

Figure 18. The loss and accuracy curves of different methods variation with iteration increasing.

The rapid convergence of deep learning algorithms depends on their powerful feature
learning capabilities. This means that the algorithm can learn useful features from a small
size of training samples. Figure 19 shows the OA of the three classification methods at 2%,
1.5%, 1%, 0.5%, and 0.1% training sample ratio. We can see that in the case of enough train-
ing samples (2%), the OA of the proposed HCapsNet is slightly higher than CNN-CapsNet
and 2D-CNN. When the training sample ratio is only 0.5%, the proposed HCapsNet can
still maintain more than 95% classification accuracy without any postprocessing. With
the reduction of training samples, the classification accuracy of 2D-CNN decreases faster.
When the training sample ratio is only 0.1%, the classification accuracy of 2D-CNN is much
lower than that of the CNN-CapsNet and HCapsNet. Regardless of the ratio of training
samples, the proposed HCapsNet can obtain the highest classification accuracy.

Training Percent (%)

O
A

 (
%

)

Figure 19. Classification accuracies with different training percentages on AIRSAR Flevoland data.
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The proposed method achieves the highest accuracy compared with the other clas-
sification methods on the three PolSAR datasets. This means that the proposed method
can learn more discriminative features from PolSAR images. A good discriminative fea-
ture should have two aspects, one is high degree of inter-class dispersion and another
is high degree of intra-class concentration. Figure 20 shows the distribution of training
results with a scattering plot, using the t-SNE technology for dimensionality reduction.
As shown in Figure 20c, in the training results of 2D-CNN, the deep features are not
discriminative enough, as they still show significant intra-class variations. As shown in
Figure 20a,b, the distribution of the training samples has high inter-class separation and
intra-class concentration.

(b)(a) (c)

Stem bean Rapeseed Bare soil Potatoes Wheat Wheat2

Lucerne Barely

Peas Wheat3

Buildings Water ForestGrasses Beets

Figure 20. Visualization of data distribution with different methods. (a) HCapsNet. (b) CNN-
CapsNet. (c) 2D-CNN.

To verify the effectiveness of the proposed method, the proposed method is compared
with state-of-the-art methods in the PolSAR image classification field. The training sam-
ple rate in the comparison experiments is also set as 1%. Four methods are selected for
comparison: the multichannel fusion convolutional neural network based on scattering
mechanism (MCCNN) [52], the compact and adaptive implementation of CNNs using a
sliding-window classification approach [57], the composite kernel and Hybrid discrim-
inative random field model based on feature fusion (CK-HDRF) [58], and the recurrent
complex-valued convolutional neural network (RCV-CNN) [13]. In which, CK-HDRF be-
longs to machine learning, RCV-CNN belongs to semi-supervised learning. Table 10 shows
the OA, AA, and Kappa of the AIRSAR Flevoland classification results. As can be seen
from Table 10, under the condition of limited training samples (1%), it is difficult to achieve
98% classification accuracy even with state-of-the-art classification methods. However, the
OA of our proposed HCapsNet can easily reach 98.34% without CRF. Furthermore, with
CRF optimization, the OA of our proposed method can even reach 99.04%.

Table 10. Classification accuracy comparison of state-of-the-art methods on the AIRSAR
Flevoland dataset.

Method Sample Rate OA AA Kappa

MCCNN [52] 1% 95.83% 96.02% /
Compact and Adaptive CNNs [57] 1% 96.35% / /

CK-HDRF [58] 1% 96.75% 97.00% 0.9569
RCV-CNN [13] 1% 97.22% 95.99% 0.8930

HCapsNet without CRF 1% 98.34% 97.44% 0.9818
HCapsNet with CRF 1% 99.04% 98.54% 0.9895

In summary, the convergence speed of the proposed method is faster than the CNN-
CapsNet, while the convergence speed of the CNN-CapsNeet is faster than the 2D-CNN.
The small sample performance of the proposed method is superior than the CNN-CapsNet
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and the 2D-CNN. The two CapsNets can extract more discriminative deep features than
the 2D-CNN. Moreover, the proposed method outperforms other state-of-the-art methods.

4. Discussion
4.1. Contributions of Polarimetric Features

Generally, the classification performance of PolSAR images depends on the number
and scattering information of input polarimetric features. In this paper, the proposed
method uses three discriminative attributes, i.e., phase, amplitude, and polarimetric de-
composition, to uniformly describe the scattering mechanism of different land covers. The
phase and amplitude are the basic attributes of PolSAR data, which can be easily obtained
from the original information of PolSAR data, which has strong application value as the
input of the network, so we do not change their features. To explore the impacts of different
categories and numbers of polarimetric features on the classification results, we replace the
eigenvalue decomposition features with model-based decomposition features. The number
of polarimetric features is increased to 9. The experiment adds the polarimetric features
obtained by Yamaguchi 4-component decomposition [56], including surface scattering
power (Ps), double-bounce scattering power (Pd), volume scattering power (Pv), and helix
scattering power (Pc). Table 11 lists the second experimental polarimetric feature set.

Table 11. The Polarimetric Feature Set II.

f1 f2 f3 f4 f5 f6 f7 f8 f9

Rcr Rco T11 T22 T33 Ps Pd Pv Pc

As shown in Figure 21, we can see that the proposed method, with polarimetric feature
set II, still achieves good classification results on the three PolSAR datasets. We calculate
the quantitative evaluations of the classification results for the three PolSAR datasets. The
OA, AA, and Kappa of the AIRSAR Flevoland dataset are 98.92%, 98.58%, and 0.9882,
respectively. The OA, AA, and Kappa of the AIRSAR San Francisco dataset are 96.69%,
89.06%, and 0.9534, respectively. The OA, AA, and Kappa of the GF-3 dataset are 99.48%,
95.38%, and 0.9935, respectively. The experimental results indicate that the proposed
method is robust to changes in the number and category of input polarimetric features.

(a) (b) (c)

Figure 21. Classification maps of proposed method with polarimetric Feature Set II. (a) AIRSAR
Flevoland dataset. (b) AIRSAR San Francisco dataset. (c) GF-3 dataset.

4.2. Comparison of Different Feature Extractors

The traditional CapsNet is insufficient in the deep feature extraction capability. In the
field of remote sensing image application, researchers have improved the feature extractor
of the capsule network, such as residual capsule network (Res-CapsNet) [21], densely
connected capsule network (Dense-CapsNet) [26], and CNN-CapsNet [28]. We apply these
methods to the land cover classification of PolSAR images and compare them with the
proposed method. For the sake of fair comparison, all methods use the same training
samples and test samples, and do not use postprocessing (without CRF). The experiments
are repeated five times, and the average value is taken as the final result. The classification
maps are shown in the Figures 22–24. The OA, AA, and Kappa of classification results with
different classification methods are shown in Table 12.
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(b)(a) (c) (d)

Figure 22. Classification maps of AIRSAR Flevoland dataset with different classification methods.
(a) Dense-CapsNet. (b) Res-CapsNet. (c) CNN-CapsNet. (d) Proposed HCapsNet (without CRF).

(b)(a) (c) (d)

Figure 23. Classification maps of AIRSAR San Francisco dataset with different classification methods.
(a) Dense-CapsNet. (b) Res-CapsNet. (c) CNN-CapsNet. (d) Proposed HCapsNet (without CRF).

A、denseCapsnet b\res-CapsNet C CNN-CapsNet D without CRF HCapsNet

(b)(a) (c) (d)

Figure 24. Classification maps of GF-3 dataset with different classification methods. (a) Dense-
CapsNet. (b) Res-CapsNet. (c) CNN-CapsNet. (d) Proposed HCapsNet (without CRF).

From Table 12, we can observe that the Dense-CapsNet has the lowest classification
accuracy of the three PolSAR datasets, especially in the classification results of the GF-3
dataset, the OA is 93.45%, while the AA is only 80.57%. This means that the Dense-CapsNet
has poor classification accuracy on land cover with a small sample size. In the classification
results of the AIRSAR Flevoland dataset, the AA of the proposed HCapsNet is higher than
that of the Dense-CapsNet, Res-CapsNet, and CNN-CapsNet by 1.99%, 0.92%, and 1.23%,
respectively. In the classification results of the AIRSAR San Francisco dataset, the AA
of the proposed HCapsNet is higher than that of the Dense-CapsNet, Res-CapsNet, and
CNN-CapsNet by 9.44%, 6.77%, and 6.41%, respectively. In the classification results of the
GF-3 dataset, the AA of the proposed HCapsNet is higher than that of the Dense-CapsNet,
Res-CapsNet, and CNN-CapsNet by 13.94%, 0.01%, and 3.64%, respectively. To show the
results more intuitively, we mark important regions to compare the classification results
of different methods. We can observe that the HCapsNet can significantly reduce the
misclassifications of class boundaries.
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Table 12. Comparison of the classification accuracy with different methods.

Data Set Accuracy
Dense- Res- CNN- HCapsNet HCapsNet

CapsNet CapsNet CapsNet (without CRF) (with CRF)

AIRSAR OA 97.40 97.67 97.88 98.34 99.04
Flevoland AA 95.45 96.52 96.21 97.44 98.54

dataset Kappa 0.9715 0.9745 0.9769 0.9818 0.9895

AIRSAR OA 91.44 93.89 93.88 94.34 96.52
San Francisco AA 73.08 75.75 76.11 82.52 84.20

dataset Kappa 0.8796 0.9136 0.9135 0.9204 0.9510

GF-3 OA 93.45 96.58 97.12 97.86 98.71
Hulunbuir AA 80.57 94.50 90.87 94.51 96.13

dataset Kappa 0.9176 0.9575 0.9641 0.9731 0.9838

4.3. Effect of the CRF

In this part, we discuss the effect of the CRF on the classification results. CRF can
eliminate small isolated regions of the classification results and further improve the classi-
fication accuracy. To intuitively show the impacts of the CRF, we mark the classification
maps, as shown in Figure 25. We can find that the CRF significantly reduces the intra-class
misclassification. In the classification maps with the CRF, as shown in Figure 25a–c, there
are almost no isolated misclassified pixels.

(B)(A) (b)(a) (C) (c)

Figure 25. (A–C) Classification maps of the proposed HCapsNet without the CRF. (a–c) Classification
maps of the proposed HCapsNet with the CRF.

4.4. Generalization Performance

As is well known, the majority of deep learning-based classification methods have
poor generalization performance. This is because the learned classification rules by these
methods deviate from the real scattering mechanism of land covers. In addition, the large
differences in the scattering mechanism of land covers in PolSAR images with different
sensors, band, and resolutions. In this paper, we design three discriminative attributes,
i.e., phase, amplitude, and polarimetric decomposition parameters, to uniformly describe
the scattering mechanism of land covers with different sensors, bands, and resolutions.
Moreover, we propose HCapsNet to accurately describe the scattering mechanism of
land covers.

The trained model distinguishes different land covers based on differences between
the scattering mechanisms of land covers. Therefore, the trained model is suitable for
transfer only when the two datasets contain same land covers with similar scattering
mechanisms. Furthermore, to make the trained model transfer effective, we use the same
filtering and feature normalization processing on the new dataset, and select sensors
with similar resolutions. The new San Francisco dataset is acquired by the RADARSAT-2
system in 2008. The spatial resolution is 8 m. Figure 26 is a pseudo-color image formed by
PauliRGB decomposition. The size of experimental region is 1500× 1150. There are also five
categories of land covers as same as the AIRSAR Flevoland dataset, i.e., High-density urban,
Vegetation, Water, Developed urban, and Low-density urban. From Figure 27, we can observe
that in the scattering mechanisms of Developed urban in the AIRSAR dataset correspond
to the Developed urban and High-density urban in the RS2 dataset [59–61]. In addition, the
proportions of scattering mechanisms of different land covers in two datasets are shown in
Figure 28. We can observe that in High-density urban and Developed urban, double-bounce
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scattering power occupies an important proportion [55]. In these two datasets, Vegetation,
Water, and Low-density urban have similar scattering mechanism proportions.

High-density urban

Vegetation

Water

Low-density urban

Developed urban

Figure 26. PauliRGB image of RS2 San Francisco dataset (Red: double-bounce scattering power.
Green: volume scattering power. Blue: surface scattering power).

AIRSAR RS2

entropy (H) entropy (H)

High-density urban

Vegetation

Water

Low-density urban

Developed urban

al
ph

a

al
ph

a

Figure 27. H-Alpha plots of two San Francisco datasets.

From Figure 29a, we can find that the positions of Developed urban and High-density
urban are completely reversed, and large regions of Vegetation are misclassified as High-
density urban. The 1D-CNN classification method even misclassifies Water into Vegetation.
In Figure 29b, a lot of human-made regions are misclassified into Water, which shows that
2D-CNN cannot learn the correct scattering mechanism of land covers. In Figure 29c,d, a
lot of Vegetation regions are misclassified into High-density urban. In CapsNet-3 classification
method, we set the number of attributes of land covers as 3, which is equal to the number of
categories of the input polarimetric features. Therefore, the generalization performance of
the model has significantly improved, as shown in Figure 29e. In Figure 29f, human-made
regions and non-human-made regions can be well separated, and a part of Low-density urban
can be correctly classified. Admittedly, all the classification models cannot correctly classify
the Developed urban and High-density urban. This is because the scattering mechanisms of the
Developed urban in AIRSAR dataset and High-density urban in RS2 dataset are particularly
similar, as shown in Figure 28a2,d1.

In general, our proposed method can show good generalization performance on
datasets with similar scattering mechanisms and similar resolutions. This is a very mean-
ingful study that proves the generalization performance of the proposed method and
the deep features extracted by the proposed method follow the scattering mechanism of
land covers.
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(a1) (b1) (c1) (d1) (e1)

(a2) (b2) (c2) (d2) (e2)

Surface scattering power Double-bounce scattering power Helix  scattering powerVolume scattering power

3% 2%

Figure 28. Comparison of the scattering mechanism of different land covers with different sensors.
(a1,a2) are High-density urban. (b1,b2) are Vegetation. (c1,c2) are Water. (d1,d2) are Developed urban.
(e1,e2) are Low-density urban. (a1–e1) are the results of the AIRSAR sensor. (a2–b2) are the results of
the RS2 sensor.

(b) (e)(d)(a) (c) (f)

High-density urban Vegetation Water Low-density urbanDeveloped urban

Figure 29. Classification maps of the RS2 dataset. (a) 1D-CNN. (b) 2D-CNN. (c) DenseNet. (d) Cap-
sNet. (e) CapsNet-3. (f) Proposed method.

5. Conclusions

In this paper, we proposed a PolSAR image land cover classification method, called
the hierarchical capsule network (HCapsNet). HCapsNet can consider the deep features
obtained at different network levels and jointly represent multiple scattering mechanisms of
different land covers. It can describe the polarimetric scattering information of land covers
more comprehensively, and significantly reduces the misclassification of class boundaries.
Moreover, the CRF can eliminate small isolated regions of the classification results. Experi-
mental results of three PolSAR datasets proved that our method can overcome this difficulty
well. The proposed method can reach 99.04% OA of the AIRSAR Flevoland dataset with
a 1% training sample ratio, and 96.52% OA of the AIRSAR San Francisco dataset with a
0.5% training sample ratio. In the GF-3 dataset, with a 0.2% training sample ratio, the
OA reached 98.71%. We designed a comparable framework and prove the advantages
of the proposed method in convergence speed, small sample performance, and feature
learning ability. Furthermore, we proved that the proposed method is robust to changes
in the number and category of input polarimetric features. In addition, we conducted
transfer tests on the trained models, confirming that the generalization performance of the
proposed method is better than comparison methods.
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